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Abstract. The two popular research of interests in graph theory are dominating set theory
and metric dimension theory. The two no tions can clearly model the real life problems and
give a breakthrough to analysing a graph representation in term of distance and domination. In
this paper, we try to combine the two concepts, it rises a new notion, namely a resolving strong
domination set. A set RD ⊂ V (H) is said to be a resolving strong domination of H if RD

satisfies two conditions, namely resolving set and strong dominating set in H . The minimum
cardinality of RD such that RD satisfies resolving set and strong dominating set is called the
resolving strong domination number of H , denoted by γrst(H). In this paper, we have obtained
the exact value of the resolving strong domination number of corona and cartesian product of
graphs, i.e. the corona and cartesian product of path and cycles.

1 Introduction

A graph (also known as an undirected graph or a simple graph to distinguish it from a multi-
graph) is a pair of H = (V,E), where V is a set of vertices (singular: vertex) and E is a set
of paired vertices with elements called edges (sometimes links or lines). In this study, we only
use a finite, simple, un-directed and connected graph. In graph H , the vertex set V represents
some elements, they could be computers, cities, bus, train, plane, etc and the edge set E repre-
sents some connection or relation between those elements. For detail definition of graph and its
elements, it can be referred to Chartrand et. al [1].

The two popular research of interests in graph are dominating set theory and metric dimension
theory. The two notions can clearly model the real life problems and give a breakthrough to
analysing a graph representation in term of distance and domination. We refer to Slater [2] for
the concept of resolving set of graph. Let H be a connected graph of order p and let W =
{v1, v2, ..., vk} be an ordered set of vertices of G. For a vertex u of G, the k-vector r(u|W ) =
(d(u, v1), d(u, v2), ..., d(u, vk)), where d(u, v) represents the distance between the vertices u and
v, is called the representation of vertices with respect to W . The set W is a resolving set for H
if r(u|W ) = r(v|W ) implies that u = v for every pair u, v of vertices of H . A resolving set of
minimum cardinality is called a minimum resolving set. The minimum cardinality of resolving
set ofH is its dimension ofH , denoted by dim(H). The concepts of resolving set and minimum
resolving set have previously appeared in the literature [2, 3].

A subset D of the vertex set V of a graph H is said to be a dominating set of H if every
vertex in D − V is adjacent to a vertex in D . The minimum cardinality of a dominating set
is called the domination number of H and is denoted by γ(H)[4]. In this paper we study a
variant of this classical notion, namely the strong domination. A set D ⊆ V is called a strong
dominating set if for every vertex v ∈ V −D, there exists a vertex u ∈ D such that uv ∈ E(H)
and deg(u) ≥ deg(v). The minimum cardinality of a strong dominating set is called the strong
domination number of H and is denoted by γst(H) [5, 6].

We initiate to study a new notion, namely the combination resolving set and strong dominat-
ing set. A set RD ⊂ V (H) is said to be a resolving strong domination of H if RD satisfies two
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conditions, namely resolving set and strong dominating set in H . The minimum cardinality of
RD such that RD satisfies resolving set and strong dominating set is called the resolving strong
domination number of H , denoted by γrst(H). Dafik et al [10] have obtained the bound of the
resolving strong domination number of any graph. Furthermore, Wardani et al [7, 8, 9] have de-
termined some results on the domination number of some graphs, while Dafik et al have studied
the resolving domination number of some graphs in [10, 11].

Lemma 1.1. [10] The strong domination number of any graph H satistisfies

max{γst(H), dim(H)} ≤ γrst(H) ≤ min{γst(H) + dim(H), |V (H)| − 1}.

Now, we recall the definition of corona and cartesian product of graphs. Let H1 and H2 be
two graphs of order n and m, respectively. The corona product of graph H1 and H2, denoted
by H1 � H2 is defined as the graph obtained from H1 and H2 by taking one copy of H1 and n
copies of H2 and joining by an edge each vertex from the ith-copy of H2 with the ith-vertex of
H1. While the cartesian product of H1 and H2 denoted by H1 ×H2 is the graph of order n×m
with vertex set V (H1) × V (H2) = {(x, y)|x ∈ V (H1) and y ∈ V (H2)} such that two vertices
(x, y), (x′, y′) are adjacent if only if either x = x′ in H1 and yy′ in E(H2) or xx′ in E(H1) and
y = y′ in H2. Iswadi �et. al stated the exact value of dimension number of corona product of any
two graphs as follows.

Theorem 1.2. [12] Let G,H be connected graph, with H with order of at least 2. The dimension
number of dim(G�H) is

dim(G�H) =

{
|G|dim(H), if H contains a dominant vertex;
|G|dim(K1 +H), otherwise

From now on, we start to give our result on resolving strong domination number in the fol-
lowing sections.

2 The Resolving Strong Domination Number of Corona Product Graphs

We have obtained the resolving strong domination number of the corona product of graphs, i.e.
path and cycle, denoted by γrst(Pn � Pm).

Theorem 2.1. For every positive integer n,m ≥ 3,

γrst(Pn � Pm) = n
⌈m

2

⌉
.

Proof. Graph Pn � Pm is a connected graph with vertex set V (Pn � Pm) = {xi; 1 ≤ i ≤ n} ∪
{yij ; 1 ≤ j ≤ m, 1 ≤ i ≤ n} and edge set E(Pn�Pm) = {xixi+1; 1 ≤ i ≤ n−1}∪{yijyij+1; 1 ≤
j ≤ m−1, 1 ≤ i ≤ n}∪{xiyij ; 1 ≤ j ≤ m, 1 ≤ i ≤ n}. The cardinality of vertex set V (Pn�Pm)
is n+m and the cardinality of edge set E(Pn � Pm) is 2nm− 1.

We divide two cases to show the proof. First, determining the lower bound and upper bound
of γrst(Pn � Pm). We use Lemma 1.1 to show the lower bound of γrst(Pn � Pm), thus we have
γrst(Pn � Pm) ≥ max{γst(Pn � Pm), dim(Pn � Pm)}. Based on Theorem 1.2 we know that
dim(Pn � Pm) = n dim(K1 + Pm) = ndm2 e. It is easy to see that γst(Pn � Pm) = n. Hence, it
implies

γrst(Pn � Pm) ≥ max{γst(Pn � Pm), dim(Pn � Pm)}

= max{n, ndm2 e} = n
⌈
m
2

⌉
Furthermore, we determine the upper bound of γrst(Pn � Pm) by defining the resolving strong
dominating set RD(Pn � Pm). By considering the above vertex and edge sets, we define the
following resolving strong dominating set RD = {xi, yij ; 1 ≤ i ≤ n, 2 ≤ j ≤ m − 1 and j ≡
0(mod2)}.

Secondly, we need to show the distinction of r(u|RD) showing the distance between the
vertices u ∈ V (Pn � Pm) and v ∈ RD. They are all different and it can be shown in Table 1. It
concludes the proof. 2
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Table 1. The distinction of r(u|RD) where u ∈ V (Pn � Pm)

y4
1

x1 x2 x3 x4 xn...

y1
1 y1

3 y1
5y1

2 y1
4 y2

1 y2
4 y2

5y2
2 y2

3 y3
1 y3

2 y3
3 y3

4 y3
5 y4

2 y4
3 y4

4 y4
5

Figure 1. The illustration of the resolving strong dominating set of P4 � P5

For more detail explanation, we give an illustration of the resolving strong domination of
P4 � P5 in Figure 1. Based on the Figure 1, the resolving strong dominating set RD(P4 � P5) =

{x1, x2, x3, x4, y
1
2 , y

1
4 , y

2
2 , y

2
4 , y

3
2 , y

3
4 , y

4
2 , y

4
4}. Thus γrst(P4 � C5) = 4

⌈
5
2

⌉
= 12. We present the

r(u|RD) showing the distance between the vertices u ∈ V (P4�P5) and v ∈ RD in the following.

x1 = (0, 1, 2, 3, 1, 1, 2, 2, 3, 3, 4, 4), x2 = (1, 0, 1, 2, 2, 2, 1, 1, 2, 2, 3, 3),
x3 = (2, 1, 0, 1, 3, 3, 2, 2, 1, 1, 2, 2), x4 = (2, 1, 0, 1, 3, 3, 2, 2, 1, 1, 2, 2),
y1

1 = (1, 2, 3, 4, 1, 2, 3, 3, 4, 4, 5, 5), y1
2 = (1, 2, 3, 4, 0, 2, 3, 3, 4, 4, 5, 5),

y1
3 = (1, 2, 3, 4, 1, 1, 3, 3, 4, 4, 5, 5), y1

4 = (1, 2, 3, 4, 2, 0, 3, 3, 4, 4, 5, 5),
y1

5 = (1, 2, 3, 4, 2, 1, 3, 3, 4, 4, 5, 5), y2
1 = (2, 1, 2, 3, 3, 3, 1, 2, 3, 3, 4, 4),

y2
2 = (2, 1, 2, 3, 3, 3, 0, 2, 3, 3, 4, 4), y2

3 = (2, 1, 2, 3, 3, 3, 1, 1, 3, 3, 4, 4),
y2

4 = (2, 1, 2, 3, 3, 3, 2, 0, 3, 3, 4, 4), y2
5 = (2, 1, 2, 3, 3, 3, 2, 1, 3, 3, 4, 4),

y3
1 = (3, 2, 1, 2, 4, 4, 3, 3, 1, 2, 3, 3), y3

2 = (3, 2, 1, 2, 4, 4, 3, 3, 0, 2, 3, 3),
y3

3 = (3, 2, 1, 2, 4, 4, 3, 3, 1, 1, 3, 3), y3
4 = (3, 2, 1, 2, 4, 4, 3, 3, 2, 0, 3, 3),

y3
5 = (3, 2, 1, 2, 4, 4, 3, 3, 2, 1, 3, 3), y4

1 = (4, 3, 2, 1, 5, 5, 4, 4, 3, 3, 1, 2),
y4

2 = (4, 3, 2, 1, 5, 5, 4, 4, 3, 3, 0, 2), y4
3 = (4, 3, 2, 1, 5, 5, 4, 4, 3, 3, 1, 1),

y4
4 = (4, 3, 2, 1, 5, 5, 4, 4, 3, 3, 2, 0), y4

5 = (4, 3, 2, 1, 5, 5, 4, 4, 3, 3, 2, 1).

Theorem 2.2. For every positive integer n,m ≥ 3,

γrst(Pn � Cm) = n
⌈m

2

⌉
.

Proof. Graph Pn � Cm is a connected graph with vertex set V (Pn � Cm) = {xi; 1 ≤ i ≤ n} ∪
{yij ; 1 ≤ j ≤ m, 1 ≤ i ≤ n} and edge set E(Pn�Cm) = {xixi+1; 1 ≤ i ≤ n−1}∪{yijyij+1; 1 ≤
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j ≤ m− 1, 1 ≤ i ≤ n} ∪ {yiiyim; 1 ≤ i ≤ n} ∪ {xiyij ; 1 ≤ j ≤ m, 1 ≤ i ≤ n}. The cardinality of
vertex set V (Pn � Cm) is n+m and the cardinality of edge set E(Pn � Cm) is 2nm+ n− 1.

To prove this theorem, We divide two cases, namely determining the lower bound and upper
bound of γrst(Pn � Cm). We use Lemma 1.1 to show the lower bound of γrst(Pn � Cm), thus
we have γrst(Pn � Cm) ≥ max{γst(Pn � Cm), dim(Pn � Cm)}. Based on Theorem 1.2 we
know that dim(Pn�Cm) = n dim(K1 +Cm) = ndm2 e. It is easy to see that γst(Pn�Cm) = n.
Hence, it implies

γrst(Pn � Cm) ≥ max{γst(Pn � Cm), dim(Pn � Cm)}

= max{n, ndm2 e} = n
⌈
m
2

⌉
Furthermore, we determine the upper bound of γrst(Pn � Cm) by defining the resolving strong
dominating set RD(Pn � Cm). By considering the above vertex and edge sets, we define the
following resolving strong dominating set RD = {xi, yij ; 1 ≤ i ≤ n, 2 ≤ j ≤ m − 1 and j ≡
0(mod2)}.

Secondly, we need to show the distinction of r(u|RD) showing the distance between the
vertices u ∈ V (Pn � Cm) and v ∈ RD. They are all different and it can be shown in Table 1. It
completes the proof. 2

3 The Resolving Strong Domination Number of Cartesian Product Graphs

In this section, We show two theorems on the resolving strong domination of the cartesian prod-
uct of graphs, namely path and cycle. The definition of this graph are shown in the introduction.

Theorem 3.1. For every positive integer n,m ≥ 3 and m ≥ n,

γrst(Pn × Pm) =

{
n+ 1, if m = 3
dm3 en, otherwise

Proof. Path graph, namely Pn and Pm have vertex set V (Pn) = {u1, u2, u3, . . . , un and V (Pm) =
{v1, v2, v3, . . . , vm}, respectively. Graph Pn×Pm is a connected graph with vertex set {(u, v)|u ∈
V (Pn) and v ∈ V (Pm), such that two vertices (u1, v1), (u2, v2) are adjacent if only if either
u1 = u2 in Pn and v1v2 in E(Pm) or u1u2 in E(Pn) and v1 = v2 in Pm. We divide two cases to
show the proof.
Case 1. For m = 3.
First, determining the lower bound and upper bound of γrst(Pn×P3). We use Lemma 1.1 to show
the lower bound of γrst(Pn×P3), thus we have γrst(Pn×P3) ≥ max{γst(Pn×P3), dim(Pn×
P3)}. We know that γst(Pn × P3) = n and dim(Pn × P3) = 2. Hence, it implies

γrst(Pn × P3) ≥ max{γst(Pn × P3), dim(Pn × P3)}
= max{n, 2} = n

Furthermore, we determine the upper bound of γrst(Pn×P3) by defining the resolving strong
dominating set RD(Pn × P3). Suppose RD(Pn × P3) = {(ui, v2) : 1 ≤ i ≤ n} and we
illustrate this resolving strong dominating set in Figure 2. Based on the illustration in Figure 2,
the vertices (ui, v1) and (ui, v3) will receive the same representation for 1 ≤ i ≤ n. Hence, we
add 1 vertex to the resolving strong dominating set RD(Pn × P3), such that the representations
of vertices in V (Pn × P3) are all distinct. The resolving strong dominating set of (Pn × P3) is
RD(Pn × P3) = {(u2, v1), (ui, v2) : 1 ≤ i ≤ n}, see Figure 3 to this illustration. Based on the
Figure 3, we give the all representation of each vertex in V (Pn × P3) in the following.

(u1, v1) = (1, 1, 2, 3, ..., n− 2, n− 1, n)
(u2, v1) = (0, 2, 1, 2, ..., n− 3, n− 2, n− 1)
(u3, v1) = (1, 3, 2, 1, ..., n− 4, n− 3, n− 2)

...



The Resolving Strong Domination Number of Graphs 173

Figure 2. The illustration of the resolving strong dominating set of Pn � P3.

Figure 3. The illustration of the resolving strong dominating set of Pn � P3.

(un−1, v1) = (n− 3, n− 1, n− 2, n− 3, ..., 2, 1, 2)
(un, v1) = (n− 2, n, n− 1, n− 2, ..., 3, 2, 1)
(u1, v2) = (2, 0, 1, 2, ..., n− 3, n− 2, n− 1)
(u2, v2) = (1, 1, 0, 1, ..., n− 4, n− 3, n− 2)
(u3, v2) = (2, 2, 1, 0, ..., n− 5, n− 4, n− 3)

...
(un−1, v2) = (n− 2, n− 2, n− 3, n− 4, ..., 3, 2, 1)
(un, v2) = (n− 1, n− 1, n− 2, n− 3, ..., 2, 1, 0)

(u1, v3) = (3, 1, 2, 3, ..., n− 2, n− 1, n)
(u2, v3) = (2, 2, 1, 2, ..., n− 3, n− 2, n− 1)
(u3, v3) = (3, 3, 2, 1, ..., n− 4, n− 3, n− 2)

...
(un−1, v3) = (n− 1, n− 1, n− 2, n− 3, ..., 2, 1, 2)

(un, v3) = (n, n, n− 1, n− 2, ..., 3, 2, 1)

It It completes the proof that γrst(Pn × P3) = n+ 1 for m = 3. 2

Case 2. For m otherwise.
First, determining the lower bound and upper bound of γrst(Pn × Pm). We use Lemma 1.1
to show the lower bound of γrst(Pn × Pm), thus we have γrst(Pn × Pm) ≥ max{γst(Pn ×
Pm), dim(Pn ×Pm)}. We know that γst(Pn ×Pm) =

⌈
m
3

⌉
n and dim(Pn ×Pm) = 2. Hence, it

implies

γrst(Pn × Pm) ≥ max{γst(Pn × Pm), dim(Pn × Pm)}

= max{
⌈
m
3

⌉
n, 2} =

⌈
m
3

⌉
n

Furthermore, we determine the upper bound of γrst(Pn × Pm) by defining the resolving
strong dominating set RD(Pn × Pm). We divide three cases for defining the resolving strong
dominating set of (Pn × Pm), namely

(i) For m ≡ 0(mod), RD(Pn × Pm) = {(ul, vk) : 1 ≤ l ≤ n, 1 ≤ k ≤ m and k ≡ 2(mod 3)}

(ii) For m ≡ 2(mod), RD(Pn × Pm) = {(ul, vm−1), (ul, vk) : 1 ≤ l ≤ n, 1 ≤ k < m and k ≡
2(mod 3)}

(iii) For m ≡ 1(mod), RD(Pn × Pm) = {(ul, vm−1), (ul, vk) : 1 ≤ l ≤ n, 1 ≤ k < m −
1 and k ≡ 2(mod 3)}
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Let the representations of each vertex in V (Pn × Pm) to RD is r[(ui, vj)|RD] = (αk
l : 1 ≤ l ≤

n, 1 ≤ k ≤ m and k ≡ 2(mod 3)). αk
l is a distance of a vertex (ui, vj) ∈ V (Pn × Pm) to every

vertices in RD(Pn × Pm) by the function f : d[(ui, vj), RD(Pn × Pm)] −→ αk
l , where

αk
l =

{
l − i+ |j − k|, if i ≤ l
i− l+ |j − k|, if i > l

It easy to see that the representations of vertices in V (Pn×P3) are all distinct. It It completes
the proof that γrst(Pn × P3) =

⌈
m
3

⌉
n for m otherwise. 2

Theorem 3.2. For every positive integer n,m ≥ 3 and m ≥ n,

γrst(Pn × Cm) =

{
n+ 1, if m = 3
dm3 en, otherwise

Let Pn and Cm are path and cycle graph, respectively. The vertex set of path is V (Pn) =
{u1, u2, u3, . . . , un and vertex set of cycle is V (Cm) = {v1, v2, v3, . . . , vm}. Graph Pn × Cm is
a connected graph with vertex set {(u, v)|u ∈ V (Pn) and v ∈ V (Cm), such that two vertices
(u1, v1), (u2, v2) are adjacent if only if either u1 = u2 in Pn and v1v2 in E(Cm) or u1u2 in E(Pn)
and v1 = v2 in Cm. We divide into two cases to prove the resolving strong domination number
of Pn × Cm.
Case 1. For m = 3.
First, determining the lowerbound and upperbound of γrst(Pn×C3). We use Lemma 1.1 to show
the lowerbound of γrst(Pn×C3), thus we have γrst(Pn×C3) ≥ max{γst(Pn×C3), dim(Pn×
C3)}. We know that γst(Pn × C3) = n and dim(Pn × C3) = 2. Hence, it implies

γrst(Pn × C3) ≥ max{γst(Pn × C3), dim(Pn × C3)}
= max{n, 2} = n

Furthermore, we determine the upperbound of γrst(Pn×C3) by defining the resolving strong
dominating setRD(Pn×C3). By considering the above vertex and edge sets, we define resolving
strong dominating set RD(Pn × C3) = {(ui, v2) : 1 ≤ i ≤ n} and we illustrate this resolving
strong dominating set in Figure 4. Based on the illustration in Figure 4, the vertices (ui, v1)
and (ui, v3) will receive the same representation for 1 ≤ i ≤ n. Hence, we add 1 vertex to
the resolving strong dominating set RD(Pn × C3), such that the representations of vertices in
V (Pn×C3) are all distinct. The resolving strong dominating set of (Pn×C3) is RD(Pn×C3) =
{(u2, v1), (ui, v2) : 1 ≤ i ≤ n}, see Figure 5 to this illustration. Based on the Figure 5, we give
the all representation of each vertex in V (Pn × C3) in the following.

(u1, v1) = (1, 1, 2, 3, ..., n− 2, n− 1, n)
(u2, v1) = (0, 2, 1, 2, ..., n− 3, n− 2, n− 1)
(u3, v1) = (1, 3, 2, 1, ..., n− 4, n− 3, n− 2)

...
(un−1, v1) = (n− 3, n− 1, n− 2, n− 3, ..., 2, 1, 2)

(un, v1) = (n− 2, n, n− 1, n− 2, ..., 3, 2, 1)
(u1, v2) = (2, 0, 1, 2, ..., n− 3, n− 2, n− 1)
(u2, v2) = (1, 1, 0, 1, ..., n− 4, n− 3, n− 2)
(u3, v2) = (2, 2, 1, 0, ..., n− 5, n− 4, n− 3)

...
(un−1, v2) = (n− 2, n− 2, n− 3, n− 4, ..., 3, 2, 1)
(un, v2) = (n− 1, n− 1, n− 2, n− 3, ..., 2, 1, 0)

(u1, v3) = (2, 1, 2, 3, ..., n− 2, n− 1, n)
(u2, v3) = (1, 2, 1, 2, ..., n− 3, n− 2, n− 1)
(u3, v3) = (2, 3, 2, 1, ..., n− 4, n− 3, n− 2)
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Figure 4. The illustration of the resolving strong dominating set of Pn � C3.

Figure 5. The illustration of the resolving strong dominating set on Pn � C3.

...
(un−1, v3) = (n− 2, n− 1, n− 2, n− 3, ..., 2, 1, 2)

(un, v3) = (n− 1, n, n− 1, n− 2, ..., 3, 2, 1)

It completes the proof that γrst(Pn × P3) = n+ 1 for m = 3.2
Case 2. For m otherwise.
First, determining the lowerbound and upperbound of γrst(Pn×Cm). We use Lemma 1.1 to show
the lowerbound of γrst(Pn×Cm), thus we have γrst(Pn×Cm) ≥ max{γst(Pn×Cm), dim(Pn×
Cm)}. We know that γst(Pn × Cm) =

⌈
m
3

⌉
n and dim(Pn × Cm) = 2. Hence, it implies

γrst(Pn × Cm) ≥ max{γst(Pn × Cm), dim(Pn × Cm)}

= max{
⌈
m
3

⌉
n, 2} =

⌈
m
3

⌉
n

Furthermore, we determine the upper bound of γrst(Pn × Cm) by defining the resolving
strong dominating set RD(Pn × Cm). We divide three cases for defining the resolving strong
dominating set of (Pn × Cm), namely

(i) For m ≡ 0(mod), RD(Pn × Cm) = {(ul, vk) : 1 ≤ l ≤ n, 1 ≤ k ≤ m and k ≡ 2(mod 3)}

(ii) For m ≡ 2(mod), RD(Pn × Cm) = {(ul, vm−1), (ul, vk) : 1 ≤ l ≤ n, 1 ≤ k < m and k ≡
2(mod 3)}

(iii) For m ≡ 1(mod), RD(Pn × Cm) = {(ul, vm−1), (ul, vk) : 1 ≤ l ≤ n, 1 ≤ k < m −
1 and k ≡ 2(mod 3)}

Let the representations of each vertex in V (Pn × Cm) to RD is r[(ui, vj)|RD] = (αk
l : 1 ≤ l ≤

n, 1 ≤ k ≤ m and k ≡ 2(mod 3)). αk
l is a distance of a vertex (ui, vj) ∈ V (Pn × Cm) to every

vertices in RD(Pn × Cm) by the function f : d[(ui, vj), RD(Pn × Cm)] −→ αk
l , where
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αk
l =



l − i+ |j − k|, if i ≤ l, k < n and j < (k + n) or
k > n and j > (k + n)mod m

i− l+ |j − k|, if i > l, k < n and j < (k + n) or
k > n and j > (k + n)mod m

l − i+ 2n− |j − k| − 1, if i ≤ l, k < n and j ≥ (k + n) or
k > n and j ≤ (k + n)mod m

i− l+ 2n− |j − k| − 1, if i > l, k < n and j ≥ (k + n) or
k > n and j ≤ (k + n)mod m

It easy to see that the representations of vertices in V (Pn ×Cm) are all distinct. It completes
the proof that γrst(Pn × C3) =

⌈
m
3

⌉
n for m otherwise. 2

4 Concluding Remark

The results in this paper are finding the exact values of γrst(H), whereH are Pn�Pm, Pn�Cm,
Pn × Pm and Pn × Cm. However, to determine γrst of any graph H is considered to be an NP-
problem. Therefore we propose the following open problems.

(i) Determine γrst of any graph H apart from above investigated graphs.

(ii) Determine the sharpest lower and upper bound of γrst for any coronation and cartesian
product of graphs.
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[4] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New
York, 1998.

[5] Dieter Rautenbach, Bounds on the strong domination number, Discrete Mathematics 215 (2000) 201-212.

[6] S. K. Vaidya, S. H. Karkar, On Strong Domination Number of Graphs, Applications and Applied Mathe-
matics: An International Journal (AAM) 12 pp. 604-612

[7] Wardani, D.A.R., Dafik, Agustin, I.H., The locating dominating set (LDS) of generalized of corona product
of path graph and any graphs, 2020, Journal of Physics: Conference Series 1465(1).

[8] Dafik, Agustin, I.H., Wardani, D.A.R., The number of locating independent dominating set on generalized
corona product graphs, 2020, Advances in Mathematics: Scientific Journal 9(7), pp. 4873-4891.

[9] Yuliana, I., Dafik, Agustin, I.H., Wardani, D.A.R. On the power domination number of corona product and
join graphs, 2019, Journal of Physics: Conference Series 1211(1).

[10] Dafik, Agustin, I.H., Retno Wardani, D.A., Kurniawati, E.Y., A study of local domination number of S n
âŁţ H graph, 2018, Journal of Physics: Conference Series 943(1).

[11] R Alfarisi, Dafik and AI Kristiana, Resolving domination number of graphs, Discrete Mathematics Algo-
rithms and Applications 11 No. 06

[12] Iswadi H, Baskoro E.T, Simanjuntak R, On the Metric Dimension of Corona Product of Graphs, Far East
Journal of Mathematical Sciences 2(2) 2011.



The Resolving Strong Domination Number of Graphs 177

Author information

Dafik∗,1,2, I.H Agustin1, A.C Prihandoko1,3, E.Y Kurniawati1,
R Nisviasari1, N. Mohanapriya4, 1CGANT-University of Jember Indonesia, 2Department of Mathematics
Education University of Jember Indonesia, 3Information Technology Department University of Jember
Indonesia, 4Department of Mathematics, Kongunadu Arts and Science College, India.
E-mail: d.dafik@unej.ac.id

Received : January 5, 2021
Accepted : April 15, 2021


	1 Introduction
	2 The Resolving Strong Domination Number of Corona Product Graphs
	3 The Resolving Strong Domination Number of Cartesian Product Graphs
	4 Concluding Remark



