On the Resolving Strong Domination Number of Corona and Cartesian Product of Graphs

Dafik ${ }^{*, 1,2}$, I.H Agustin ${ }^{1}$, A.C Prihandoko ${ }^{1,3}$, E.Y Kurniawati ${ }^{1}$, R Nisviasari ${ }^{1}$, N. Mohanapriya ${ }^{4}$
*Corresponding Author
Communicated by M. Venkatachalam

MSC 2010 Classifications: 05C12, 05C69.
Keywords and phrases: Resolving strong domination number, Corona product, Cartesian product.

Abstract

The two popular research of interests in graph theory are dominating set theory and metric dimension theory. The two no tions can clearly model the real life problems and give a breakthrough to analysing a graph representation in term of distance and domination. In this paper, we try to combine the two concepts, it rises a new notion, namely a resolving strong domination set. A set $R_{D} \subset V(H)$ is said to be a resolving strong domination of H if R_{D} satisfies two conditions, namely resolving set and strong dominating set in H. The minimum cardinality of R_{D} such that R_{D} satisfies resolving set and strong dominating set is called the resolving strong domination number of H, denoted by $\gamma_{r s t}(H)$. In this paper, we have obtained the exact value of the resolving strong domination number of corona and cartesian product of graphs, i.e. the corona and cartesian product of path and cycles.

1 Introduction

A graph (also known as an undirected graph or a simple graph to distinguish it from a multigraph) is a pair of $H=(V, E)$, where V is a set of vertices (singular: vertex) and E is a set of paired vertices with elements called edges (sometimes links or lines). In this study, we only use a finite, simple, un-directed and connected graph. In graph H, the vertex set V represents some elements, they could be computers, cities, bus, train, plane, etc and the edge set E represents some connection or relation between those elements. For detail definition of graph and its elements, it can be referred to Chartrand et. al [1].

The two popular research of interests in graph are dominating set theory and metric dimension theory. The two notions can clearly model the real life problems and give a breakthrough to analysing a graph representation in term of distance and domination. We refer to Slater [2] for the concept of resolving set of graph. Let H be a connected graph of order p and let $W=$ $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$ be an ordered set of vertices of G. For a vertex u of G, the k-vector $r(u \mid W)=$ $\left(d\left(u, v_{1}\right), d\left(u, v_{2}\right), \ldots, d\left(u, v_{k}\right)\right)$, where $d(u, v)$ represents the distance between the vertices u and v, is called the representation of vertices with respect to W. The set W is a resolving set for H if $r(u \mid W)=r(v \mid W)$ implies that $u=v$ for every pair u, v of vertices of H. A resolving set of minimum cardinality is called a minimum resolving set. The minimum cardinality of resolving set of H is its dimension of H, denoted by $\operatorname{dim}(H)$. The concepts of resolving set and minimum resolving set have previously appeared in the literature [2, 3].

A subset D of the vertex set V of a graph H is said to be a dominating set of H if every vertex in $D-V$ is adjacent to a vertex in D. The minimum cardinality of a dominating set is called the domination number of H and is denoted by $\gamma(H)[4]$. In this paper we study a variant of this classical notion, namely the strong domination. A set $D \subseteq V$ is called a strong dominating set if for every vertex $v \in V-D$, there exists a vertex $u \in D$ such that $u v \in E(H)$ and $\operatorname{deg}(u) \geq \operatorname{deg}(v)$. The minimum cardinality of a strong dominating set is called the strong domination number of H and is denoted by $\gamma_{s t}(H)[5,6]$.

We initiate to study a new notion, namely the combination resolving set and strong dominating set. A set $R_{D} \subset V(H)$ is said to be a resolving strong domination of H if R_{D} satisfies two
conditions, namely resolving set and strong dominating set in H. The minimum cardinality of R_{D} such that R_{D} satisfies resolving set and strong dominating set is called the resolving strong domination number of H, denoted by $\gamma_{r s t}(H)$. Dafik et al [10] have obtained the bound of the resolving strong domination number of any graph. Furthermore, Wardani et al [7, 8, 9] have determined some results on the domination number of some graphs, while Dafik et al have studied the resolving domination number of some graphs in [10, 11].

Lemma 1.1. [10] The strong domination number of any graph H satistisfies

$$
\max \left\{\gamma_{s t}(H), \operatorname{dim}(H)\right\} \leq \gamma_{r s t}(H) \leq \min \left\{\gamma_{s t}(H)+\operatorname{dim}(H),|V(H)|-1\right\}
$$

Now, we recall the definition of corona and cartesian product of graphs. Let H_{1} and H_{2} be two graphs of order n and m, respectively. The corona product of graph H_{1} and H_{2}, denoted by $H_{1} \odot H_{2}$ is defined as the graph obtained from H_{1} and H_{2} by taking one copy of H_{1} and n copies of H_{2} and joining by an edge each vertex from the i th-copy of H_{2} with the i th-vertex of H_{1}. While the cartesian product of H_{1} and H_{2} denoted by $H_{1} \times H_{2}$ is the graph of order $n \times m$ with vertex set $V\left(H_{1}\right) \times V\left(H_{2}\right)=\left\{(x, y) \mid x \in V\left(H_{1}\right)\right.$ and $\left.y \in V\left(H_{2}\right)\right\}$ such that two vertices $(x, y),\left(x^{\prime}, y^{\prime}\right)$ are adjacent if only if either $x=x^{\prime}$ in H_{1} and $y y^{\prime}$ in $E\left(H_{2}\right)$ or $x x^{\prime}$ in $E\left(H_{1}\right)$ and $y=y^{\prime}$ in H_{2}. Iswadi et. al stated the exact value of dimension number of corona product of any two graphs as follows.

Theorem 1.2. [12] Let G, H be connected graph, with H with order of at least 2 . The dimension number of $\operatorname{dim}(G \odot H)$ is

$$
\operatorname{dim}(G \odot H)= \begin{cases}|G| \operatorname{dim}(H), & \text { if H contains a dominant vertex; } \\ |G| \operatorname{dim}\left(K_{1}+H\right), & \text { otherwise }\end{cases}
$$

From now on, we start to give our result on resolving strong domination number in the following sections.

2 The Resolving Strong Domination Number of Corona Product Graphs

We have obtained the resolving strong domination number of the corona product of graphs, i.e. path and cycle, denoted by $\gamma_{r s t}\left(P_{n} \odot P_{m}\right)$.

Theorem 2.1. For every positive integer $n, m \geq 3$,

$$
\gamma_{r s t}\left(P_{n} \odot P_{m}\right)=n\left\lceil\frac{m}{2}\right\rceil .
$$

Proof. Graph $P_{n} \odot P_{m}$ is a connected graph with vertex set $V\left(P_{n} \odot P_{m}\right)=\left\{x_{i} ; 1 \leq i \leq n\right\} \cup$ $\left\{y_{j}^{i} ; 1 \leq j \leq m, 1 \leq i \leq n\right\}$ and edge set $E\left(P_{n} \odot P_{m}\right)=\left\{x_{i} x_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{y_{j}^{i} y_{j+1}^{i} ; 1 \leq\right.$ $j \leq m-1,1 \leq i \leq n\} \cup\left\{x_{i} y_{j}^{i} ; 1 \leq j \leq m, 1 \leq i \leq n\right\}$. The cardinality of vertex set $V\left(P_{n} \odot P_{m}\right)$ is $n+m$ and the cardinality of edge set $E\left(P_{n} \odot P_{m}\right)$ is $2 n m-1$.

We divide two cases to show the proof. First, determining the lower bound and upper bound of $\gamma_{r s t}\left(P_{n} \odot P_{m}\right)$. We use Lemma 1.1 to show the lower bound of $\gamma_{r s t}\left(P_{n} \odot P_{m}\right)$, thus we have $\gamma_{r s t}\left(P_{n} \odot P_{m}\right) \geq \max \left\{\gamma_{s t}\left(P_{n} \odot P_{m}\right)\right.$, $\left.\operatorname{dim}\left(P_{n} \odot P_{m}\right)\right\}$. Based on Theorem 1.2 we know that $\operatorname{dim}\left(P_{n} \odot P_{m}\right)=n \operatorname{dim}\left(K_{1}+P_{m}\right)=n\left\lceil\frac{m}{2}\right\rceil$. It is easy to see that $\gamma_{s t}\left(P_{n} \odot P_{m}\right)=n$. Hence, it implies

$$
\begin{aligned}
\gamma_{r s t}\left(P_{n} \odot P_{m}\right) & \geq \max \left\{\gamma_{s t}\left(P_{n} \odot P_{m}\right), \operatorname{dim}\left(P_{n} \odot P_{m}\right)\right\} \\
& =\max \left\{n, n\left\lceil\frac{m}{2}\right\rceil\right\}=n\left\lceil\frac{m}{2}\right\rceil
\end{aligned}
$$

Furthermore, we determine the upper bound of $\gamma_{r s t}\left(P_{n} \odot P_{m}\right)$ by defining the resolving strong dominating set $R_{D}\left(P_{n} \odot P_{m}\right)$. By considering the above vertex and edge sets, we define the following resolving strong dominating set $R_{D}=\left\{x_{i}, y_{j}^{i} ; 1 \leq i \leq n, 2 \leq j \leq m-1\right.$ and $j \equiv$ $0(\bmod 2)\}$.

Secondly, we need to show the distinction of $r\left(u \mid R_{D}\right)$ showing the distance between the vertices $u \in V\left(P_{n} \odot P_{m}\right)$ and $v \in R_{D}$. They are all different and it can be shown in Table 1. It concludes the proof.

Table 1. The distinction of $r\left(u \mid R_{D}\right)$ where $u \in V\left(P_{n} \odot P_{m}\right)$

	Resolving Strong Dominating Set (R_{D})																					
$\boldsymbol{V}\left(\boldsymbol{P}_{n} \odot \boldsymbol{P}_{m}\right)$	x_{1}	\boldsymbol{x}_{2}	x_{3}	\cdots	\boldsymbol{x}_{n}	\boldsymbol{y}_{2}^{1}	\boldsymbol{y}_{4}^{1}	\boldsymbol{y}_{6}^{1}	\cdots	y_{2}^{2}	y_{4}^{2}	y_{6}^{2}	\cdots	y_{2}^{3}	y_{4}^{3}	y_{6}^{3}	\cdots	\ldots	y_{2}^{n}	$\boldsymbol{y}_{4}^{\boldsymbol{n}}$	$\boldsymbol{y}_{6}^{\boldsymbol{n}}$	\ldots
x_{1}	0	1	2	...	$n-1$	1	1	1	\ldots	2	2	2	\ldots	3	3	3	\ldots	\ldots	n	n	n	\cdots
x_{2}	1	0	1	...	$n-2$	2	2	2	\ldots	1	1	1	\ldots	2	2	2	...	\ldots	$n-1$	$n-1$	$n-1$	\ldots
x_{3}	2	1	0	\ldots	$n-3$	3	3	3	\ldots	2	2	2	\ldots	1	1	1	\ldots	\ldots	$n-2$	$n-2$	$n-2$	\ldots
!	!	;	:	!	:	!	!	!	!	!	!	.	:	:	!	:	:	:	.	!	!	!
x_{n}	$n-1$	$n-2$	$n-3$...	0	n	n	n	\ldots	$n-1$	$n-1$	$n-1$...	n-2	$n-2$	$n-2$...	\ldots	1	1	1	\ldots
y_{1}^{1}	1	2	3	\ldots	n	1	2	2	\cdots	3	3	3	\cdots	4	4	4	\cdots	\ldots	$n+1$	$n+1$	$n+1$	\ldots
y_{2}^{1}	1	2	3	...	n	0	2	2	\cdots	3	3	3	\cdots	4	4	4	$n+1$	$n+1$	$n+1$	\ldots
y_{3}^{1}	1	2	3	\cdots	n	1	1	2	\cdots	3	3	3	\cdots	4	4	4	\cdots	\cdots	$n+1$	$n+1$	$n+1$	\cdots
\vdots	!	!	!	!	!	!	!	!	\vdots	\vdots	,	!	!	!	!	!	\vdots	!	!	!	:	\vdots
y_{m}^{1}	1	2	3	\ldots	n	2	2	2	...	3	3	3	...	4	4	4	$n+1$	$n+1$	$n+1$...
y_{1}^{2}	2	1	2	...	$n-1$	$n-2$	3	3	\ldots	1	2	2	\ldots	3	3	3	...	\ldots	n	n	n	...
y_{2}^{2}	2	1	2	\cdots	$n-1$	$n-2$	3	3	\ldots	0	2	2	\cdots	3	3	3	\cdots	\cdots	n	n	n	\cdots
y_{3}^{2}	2	1	2	\cdots	$n-1$	$n-2$	3	3	...	1	1	2	\cdots	3	3	3	\cdots	\cdots	n	n	n	\ldots
!	!	;	!	\vdots	:	!	!	!	\vdots	:	!	!	:	!	!	!	!	\vdots	\vdots	\vdots	\vdots	:
y_{m}^{2}	2	1	2	...	$n-1$	$n-2$	3	3	...	2	2	2	...	3	3	3	...	\ldots	n	n	n	\ldots
y_{1}^{3}	3	2	1	...	$n-2$	$n-2$	4	4	\ldots	3	3	3	\cdots	1	2	2	\cdots	\cdots	$n-1$	$n-1$	$n-1$	\ldots
y_{2}^{3}	3	2	1	\cdots	$n-2$	4	4	4	\ldots	3	3	3	\cdots	0	2	2	\cdots	\ldots	$n-1$	$n-1$	$n-1$	\ldots
y_{3}^{3}	3	2	1	\cdots	$n-2$	4	4	4	\cdots	3	3	3	\cdots	1	1	2	\cdots	\cdots	$n-1$	$n-1$	$n-1$	\cdots
!	!	!	!	\vdots	.	!	!	!	:	!	!	!	!	.	!	!	!	\vdots	!	.	\vdots	!
y_{m}^{3}	3	2	1	\cdots	$n-2$	4	4	4	\cdots	3	3	3	\cdots	2	2	2	\cdots	\cdots	$n-1$	$n-1$	$n-1$	\cdots
!	!	!	!	!	:	!	.	.	!	!	!	!	:	:	:	!	:	;	!	:	!	!
y_{1}^{n}	n	$n-1$	$n-2$	\ldots	1	$n+1$	$n+1$	$n+1$	\ldots	n	n	n	\cdots	$n-1$	$n-1$	$n-1$	1	2	2	\ldots
$y_{2}{ }^{n}$	n	$n-1$	$n-2$	\ldots	1	$n+1$	$n+1$	$n+1$	\ldots	n	n	n	\cdots	$n-1$	$n-1$	$n-1$	\cdots	\ldots	0	2	2	\ldots
y_{3}	n	$n-1$	$n-2$	\cdots	1	$n+1$	$n+1$	$n+1$	\cdots	n	n	n	\ldots	$n-1$	$n-1$	$n-1$	\cdots	\cdots	1	1	2	\cdots
!	!	:	!	!	:	!	:	!	!	!	!	:	:	!	:	!	:	!	!	!	:	!
y_{m}^{n}	n	$n-1$	$n-2$	\ldots	1	$n+1$	$n+1$	$n+1$	\cdots	n	n	n	...	$n-1$	$n-1$	$n-1$	\cdots	\cdots	2	2	2	\cdots

$\stackrel{\bullet}{x_{n}}$

Figure 1. The illustration of the resolving strong dominating set of $P_{4} \odot P_{5}$

For more detail explanation, we give an illustration of the resolving strong domination of $P_{4} \odot P_{5}$ in Figure 1. Based on the Figure 1, the resolving strong dominating set $R_{D}\left(P_{4} \odot P_{5}\right)=$ $\left\{x_{1}, x_{2}, x_{3}, x_{4}, y_{2}^{1}, y_{4}^{1}, y_{2}^{2}, y_{4}^{2}, y_{2}^{3}, y_{4}^{3}, y_{2}^{4}, y_{4}^{4}\right\}$. Thus $\gamma_{r s t}\left(P_{4} \odot C_{5}\right)=4\left\lceil\frac{5}{2}\right\rceil=12$. We present the $r\left(u \mid R_{D}\right)$ showing the distance between the vertices $u \in V\left(P_{4} \odot P_{5}\right)$ and $v \in R_{D}$ in the following.
$x_{1}=(0,1,2,3,1,1,2,2,3,3,4,4), x_{2}=(1,0,1,2,2,2,1,1,2,2,3,3)$,
$x_{3}=(2,1,0,1,3,3,2,2,1,1,2,2), x_{4}=(2,1,0,1,3,3,2,2,1,1,2,2)$,
$y_{1}^{1}=(1,2,3,4,1,2,3,3,4,4,5,5), y_{2}^{1}=(1,2,3,4,0,2,3,3,4,4,5,5)$,
$y_{3}^{1}=(1,2,3,4,1,1,3,3,4,4,5,5), y_{4}^{1}=(1,2,3,4,2,0,3,3,4,4,5,5)$,
$y_{5}^{1}=(1,2,3,4,2,1,3,3,4,4,5,5), y_{1}^{2}=(2,1,2,3,3,3,1,2,3,3,4,4)$,
$y_{2}^{2}=(2,1,2,3,3,3,0,2,3,3,4,4), y_{3}^{2}=(2,1,2,3,3,3,1,1,3,3,4,4)$,
$y_{4}^{2}=(2,1,2,3,3,3,2,0,3,3,4,4), y_{5}^{2}=(2,1,2,3,3,3,2,1,3,3,4,4)$,
$y_{1}^{3}=(3,2,1,2,4,4,3,3,1,2,3,3), y_{2}^{3}=(3,2,1,2,4,4,3,3,0,2,3,3)$,
$y_{3}^{3}=(3,2,1,2,4,4,3,3,1,1,3,3), y_{4}^{3}=(3,2,1,2,4,4,3,3,2,0,3,3)$,
$y_{5}^{3}=(3,2,1,2,4,4,3,3,2,1,3,3), y_{1}^{4}=(4,3,2,1,5,5,4,4,3,3,1,2)$,
$y_{2}^{4}=(4,3,2,1,5,5,4,4,3,3,0,2), y_{3}^{4}=(4,3,2,1,5,5,4,4,3,3,1,1)$,
$y_{4}^{4}=(4,3,2,1,5,5,4,4,3,3,2,0), y_{5}^{4}=(4,3,2,1,5,5,4,4,3,3,2,1)$.

Theorem 2.2. For every positive integer $n, m \geq 3$,

$$
\gamma_{r s t}\left(P_{n} \odot C_{m}\right)=n\left\lceil\frac{m}{2}\right\rceil .
$$

Proof. Graph $P_{n} \odot C_{m}$ is a connected graph with vertex set $V\left(P_{n} \odot C_{m}\right)=\left\{x_{i} ; 1 \leq i \leq n\right\} \cup$ $\left\{y_{j}^{i} ; 1 \leq j \leq m, 1 \leq i \leq n\right\}$ and edge set $E\left(P_{n} \odot C_{m}\right)=\left\{x_{i} x_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{y_{j}^{i} y_{j+1}^{i} ; 1 \leq\right.$
$j \leq m-1,1 \leq i \leq n\} \cup\left\{y_{i}^{i} y_{m}^{i} ; 1 \leq i \leq n\right\} \cup\left\{x_{i} y_{j}^{i} ; 1 \leq j \leq m, 1 \leq i \leq n\right\}$. The cardinality of vertex set $V\left(P_{n} \odot C_{m}\right)$ is $n+m$ and the cardinality of edge set $E\left(P_{n} \odot C_{m}\right)$ is $2 n m+n-1$.

To prove this theorem, We divide two cases, namely determining the lower bound and upper bound of $\gamma_{r s t}\left(P_{n} \odot C_{m}\right)$. We use Lemma 1.1 to show the lower bound of $\gamma_{r s t}\left(P_{n} \odot C_{m}\right)$, thus we have $\gamma_{r s t}\left(P_{n} \odot C_{m}\right) \geq \max \left\{\gamma_{s t}\left(P_{n} \odot C_{m}\right), \operatorname{dim}\left(P_{n} \odot C_{m}\right)\right\}$. Based on Theorem 1.2 we know that $\operatorname{dim}\left(P_{n} \odot C_{m}\right)=n \operatorname{dim}\left(K_{1}+C_{m}\right)=n\left\lceil\frac{m}{2}\right\rceil$. It is easy to see that $\gamma_{s t}\left(P_{n} \odot C_{m}\right)=n$. Hence, it implies

$$
\begin{aligned}
\gamma_{r s t}\left(P_{n} \odot C_{m}\right) & \geq \max \left\{\gamma_{s t}\left(P_{n} \odot C_{m}\right), \operatorname{dim}\left(P_{n} \odot C_{m}\right)\right\} \\
& =\max \left\{n, n\left\lceil\frac{m}{2}\right\rceil\right\}=n\left\lceil\frac{m}{2}\right\rceil
\end{aligned}
$$

Furthermore, we determine the upper bound of $\gamma_{r s t}\left(P_{n} \odot C_{m}\right)$ by defining the resolving strong dominating set $R_{D}\left(P_{n} \odot C_{m}\right)$. By considering the above vertex and edge sets, we define the following resolving strong dominating set $R_{D}=\left\{x_{i}, y_{j}^{i} ; 1 \leq i \leq n, 2 \leq j \leq m-1\right.$ and $j \equiv$ $0(\bmod 2)\}$.

Secondly, we need to show the distinction of $r\left(u \mid R_{D}\right)$ showing the distance between the vertices $u \in V\left(P_{n} \odot C_{m}\right)$ and $v \in R_{D}$. They are all different and it can be shown in Table 1. It completes the proof.

3 The Resolving Strong Domination Number of Cartesian Product Graphs

In this section, We show two theorems on the resolving strong domination of the cartesian product of graphs, namely path and cycle. The definition of this graph are shown in the introduction.

Theorem 3.1. For every positive integer $n, m \geq 3$ and $m \geq n$,

$$
\gamma_{r s t}\left(P_{n} \times P_{m}\right)= \begin{cases}n+1, & \text { if } m=3 \\ \left\lceil\frac{m}{3}\right\rceil n, & \text { otherwise }\end{cases}
$$

Proof. Path graph, namely P_{n} and P_{m} have vertex set $V\left(P_{n}\right)=\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right.$ and $V\left(P_{m}\right)=$ $\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{m}\right\}$, respectively. Graph $P_{n} \times P_{m}$ is a connected graph with vertex set $\{(u, v) \mid u \in$ $V\left(P_{n}\right)$ and $v \in V\left(P_{m}\right)$, such that two vertices $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)$ are adjacent if only if either $u_{1}=u_{2}$ in P_{n} and $v_{1} v_{2}$ in $E\left(P_{m}\right)$ or $u_{1} u_{2}$ in $E\left(P_{n}\right)$ and $v_{1}=v_{2}$ in P_{m}. We divide two cases to show the proof.

Case 1. For $m=3$.

First, determining the lower bound and upper bound of $\gamma_{r s t}\left(P_{n} \times P_{3}\right)$. We use Lemma 1.1 to show the lower bound of $\gamma_{r s t}\left(P_{n} \times P_{3}\right)$, thus we have $\gamma_{r s t}\left(P_{n} \times P_{3}\right) \geq \max \left\{\gamma_{s t}\left(P_{n} \times P_{3}\right)\right.$, $\operatorname{dim}\left(P_{n} \times\right.$ $\left.\left.P_{3}\right)\right\}$. We know that $\gamma_{s t}\left(P_{n} \times P_{3}\right)=n$ and $\operatorname{dim}\left(P_{n} \times P_{3}\right)=2$. Hence, it implies

$$
\begin{aligned}
\gamma_{r s t}\left(P_{n} \times P_{3}\right) \geq & \max \left\{\gamma_{s t}\left(P_{n} \times P_{3}\right), \operatorname{dim}\left(P_{n} \times P_{3}\right)\right\} \\
& =\max \{n, 2\}=n
\end{aligned}
$$

Furthermore, we determine the upper bound of $\gamma_{r s t}\left(P_{n} \times P_{3}\right)$ by defining the resolving strong dominating set $R_{D}\left(P_{n} \times P_{3}\right)$. Suppose $R_{D}\left(P_{n} \times P_{3}\right)=\left\{\left(u_{i}, v_{2}\right): 1 \leq i \leq n\right\}$ and we illustrate this resolving strong dominating set in Figure 2. Based on the illustration in Figure 2, the vertices $\left(u_{i}, v_{1}\right)$ and $\left(u_{i}, v_{3}\right)$ will receive the same representation for $1 \leq i \leq n$. Hence, we add 1 vertex to the resolving strong dominating set $R_{D}\left(P_{n} \times P_{3}\right)$, such that the representations of vertices in $V\left(P_{n} \times P_{3}\right)$ are all distinct. The resolving strong dominating set of $\left(P_{n} \times P_{3}\right)$ is $R_{D}\left(P_{n} \times P_{3}\right)=\left\{\left(u_{2}, v_{1}\right),\left(u_{i}, v_{2}\right): 1 \leq i \leq n\right\}$, see Figure 3 to this illustration. Based on the Figure 3, we give the all representation of each vertex in $V\left(P_{n} \times P_{3}\right)$ in the following.

$$
\begin{gathered}
\left(u_{1}, v_{1}\right)=(1,1,2,3, \ldots, n-2, n-1, n) \\
\left(u_{2}, v_{1}\right)=(0,2,1,2, \ldots, n-3, n-2, n-1) \\
\left(u_{3}, v_{1}\right)=(1,3,2,1, \ldots, n-4, n-3, n-2)
\end{gathered}
$$

Figure 2. The illustration of the resolving strong dominating set of $P_{n} \odot P_{3}$.

Figure 3. The illustration of the resolving strong dominating set of $P_{n} \odot P_{3}$.

$$
\begin{gathered}
\left(u_{n-1}, v_{1}\right)=(n-3, n-1, n-2, n-3, \ldots, 2,1,2) \\
\left(u_{n}, v_{1}\right)=(n-2, n, n-1, n-2, \ldots, 3,2,1) \\
\left(u_{1}, v_{2}\right)=(2,0,1,2, \ldots, n-3, n-2, n-1) \\
\left(u_{2}, v_{2}\right)=(1,1,0,1, \ldots, n-4, n-3, n-2) \\
\left(u_{3}, v_{2}\right)=(2,2,1,0, \ldots, n-5, n-4, n-3) \\
\vdots \\
\left(u_{n-1}, v_{2}\right)=(n-2, n-2, n-3, n-4, \ldots, 3,2,1) \\
\left(u_{n}, v_{2}\right)=(n-1, n-1, n-2, n-3, \ldots, 2,1,0) \\
\left(u_{1}, v_{3}\right)=(3,1,2,3, \ldots, n-2, n-1, n) \\
\left(u_{2}, v_{3}\right)=(2,2,1,2, \ldots, n-3, n-2, n-1) \\
\left(u_{3}, v_{3}\right)=(3,3,2,1, \ldots, n-4, n-3, n-2) \\
\vdots \\
\left(u_{n-1}, v_{3}\right)=(n-1, n-1, n-2, n-3, \ldots, 2,1,2) \\
\left(u_{n}, v_{3}\right)=(n, n, n-1, n-2, \ldots, 3,2,1)
\end{gathered}
$$

It It completes the proof that $\gamma_{r s t}\left(P_{n} \times P_{3}\right)=n+1$ for $m=3$.

Case 2. For m otherwise.
First, determining the lower bound and upper bound of $\gamma_{r s t}\left(P_{n} \times P_{m}\right)$. We use Lemma 1.1 to show the lower bound of $\gamma_{r s t}\left(P_{n} \times P_{m}\right)$, thus we have $\gamma_{r s t}\left(P_{n} \times P_{m}\right) \geq \max \left\{\gamma_{s t}\left(P_{n} \times\right.\right.$ $\left.\left.P_{m}\right), \operatorname{dim}\left(P_{n} \times P_{m}\right)\right\}$. We know that $\gamma_{s t}\left(P_{n} \times P_{m}\right)=\left\lceil\frac{m}{3}\right\rceil n$ and $\operatorname{dim}\left(P_{n} \times P_{m}\right)=2$. Hence, it implies

$$
\begin{aligned}
\gamma_{r s t}\left(P_{n} \times P_{m}\right) & \geq \max \left\{\gamma_{s t}\left(P_{n} \times P_{m}\right), \operatorname{dim}\left(P_{n} \times P_{m}\right)\right\} \\
& =\max \left\{\left\lceil\frac{m}{3}\right\rceil n, 2\right\}=\left\lceil\frac{m}{3}\right\rceil n
\end{aligned}
$$

Furthermore, we determine the upper bound of $\gamma_{r s t}\left(P_{n} \times P_{m}\right)$ by defining the resolving strong dominating set $R_{D}\left(P_{n} \times P_{m}\right)$. We divide three cases for defining the resolving strong dominating set of $\left(P_{n} \times P_{m}\right)$, namely
(i) For $m \equiv 0(\bmod), R_{D}\left(P_{n} \times P_{m}\right)=\left\{\left(u_{l}, v_{k}\right): 1 \leq l \leq n, 1 \leq k \leq m\right.$ and $\left.k \equiv 2(\bmod 3)\right\}$
(ii) For $m \equiv 2(\bmod), R_{D}\left(P_{n} \times P_{m}\right)=\left\{\left(u_{l}, v_{m-1}\right),\left(u_{l}, v_{k}\right): 1 \leq l \leq n, 1 \leq k<m\right.$ and $k \equiv$ $2(\bmod 3)\}$
(iii) For $m \equiv 1(\bmod), R_{D}\left(P_{n} \times P_{m}\right)=\left\{\left(u_{l}, v_{m-1}\right),\left(u_{l}, v_{k}\right): 1 \leq l \leq n, 1 \leq k<m-\right.$ 1 and $k \equiv 2(\bmod 3)\}$

Let the representations of each vertex in $V\left(P_{n} \times P_{m}\right)$ to R_{D} is $r\left[\left(u_{i}, v_{j}\right) \mid R_{D}\right]=\left(\alpha_{l}^{k}: 1 \leq l \leq\right.$ $n, 1 \leq k \leq m$ and $k \equiv 2(\bmod 3))$. α_{l}^{k} is a distance of a vertex $\left(u_{i}, v_{j}\right) \in V\left(P_{n} \times P_{m}\right)$ to every vertices in $R_{D}\left(P_{n} \times P_{m}\right)$ by the function $f: d\left[\left(u_{i}, v_{j}\right), R_{D}\left(P_{n} \times P_{m}\right)\right] \longrightarrow \alpha_{l}^{k}$, where

$$
\alpha_{l}^{k}= \begin{cases}l-i+|j-k|, & \text { if } i \leq l \\ i-l+|j-k|, & \text { if } i>l\end{cases}
$$

It easy to see that the representations of vertices in $V\left(P_{n} \times P_{3}\right)$ are all distinct. It It completes the proof that $\gamma_{r s t}\left(P_{n} \times P_{3}\right)=\left\lceil\frac{m}{3}\right\rceil n$ for m otherwise.

Theorem 3.2. For every positive integer $n, m \geq 3$ and $m \geq n$,

$$
\gamma_{r s t}\left(P_{n} \times C_{m}\right)= \begin{cases}n+1, & \text { if } m=3 \\ \left\lceil\frac{m}{3}\right\rceil n, & \text { otherwise }\end{cases}
$$

Let P_{n} and C_{m} are path and cycle graph, respectively. The vertex set of path is $V\left(P_{n}\right)=$ $\left\{u_{1}, u_{2}, u_{3}, \ldots, u_{n}\right.$ and vertex set of cycle is $V\left(C_{m}\right)=\left\{v_{1}, v_{2}, v_{3}, \ldots, v_{m}\right\}$. Graph $P_{n} \times C_{m}$ is a connected graph with vertex set $\left\{(u, v) \mid u \in V\left(P_{n}\right)\right.$ and $v \in V\left(C_{m}\right)$, such that two vertices $\left(u_{1}, v_{1}\right),\left(u_{2}, v_{2}\right)$ are adjacent if only if either $u_{1}=u_{2}$ in P_{n} and $v_{1} v_{2}$ in $E\left(C_{m}\right)$ or $u_{1} u_{2}$ in $E\left(P_{n}\right)$ and $v_{1}=v_{2}$ in C_{m}. We divide into two cases to prove the resolving strong domination number of $P_{n} \times C_{m}$.
Case 1. For $m=3$.
First, determining the lowerbound and upperbound of $\gamma_{r s t}\left(P_{n} \times C_{3}\right)$. We use Lemma 1.1 to show the lowerbound of $\gamma_{r s t}\left(P_{n} \times C_{3}\right)$, thus we have $\gamma_{r s t}\left(P_{n} \times C_{3}\right) \geq \max \left\{\gamma_{s t}\left(P_{n} \times C_{3}\right), \operatorname{dim}\left(P_{n} \times\right.\right.$ $\left.\left.C_{3}\right)\right\}$. We know that $\gamma_{s t}\left(P_{n} \times C_{3}\right)=n$ and $\operatorname{dim}\left(P_{n} \times C_{3}\right)=2$. Hence, it implies

$$
\begin{aligned}
\gamma_{r s t}\left(P_{n} \times C_{3}\right) \geq & \max \left\{\gamma_{s t}\left(P_{n} \times C_{3}\right), \operatorname{dim}\left(P_{n} \times C_{3}\right)\right\} \\
& =\max \{n, 2\}=n
\end{aligned}
$$

Furthermore, we determine the upperbound of $\gamma_{r s t}\left(P_{n} \times C_{3}\right)$ by defining the resolving strong dominating set $R_{D}\left(P_{n} \times C_{3}\right)$. By considering the above vertex and edge sets, we define resolving strong dominating set $R_{D}\left(P_{n} \times C_{3}\right)=\left\{\left(u_{i}, v_{2}\right): 1 \leq i \leq n\right\}$ and we illustrate this resolving strong dominating set in Figure 4. Based on the illustration in Figure 4, the vertices (u_{i}, v_{1}) and $\left(u_{i}, v_{3}\right)$ will receive the same representation for $1 \leq i \leq n$. Hence, we add 1 vertex to the resolving strong dominating set $R_{D}\left(P_{n} \times C_{3}\right)$, such that the representations of vertices in $V\left(P_{n} \times C_{3}\right)$ are all distinct. The resolving strong dominating set of $\left(P_{n} \times C_{3}\right)$ is $R_{D}\left(P_{n} \times C_{3}\right)=$ $\left\{\left(u_{2}, v_{1}\right),\left(u_{i}, v_{2}\right): 1 \leq i \leq n\right\}$, see Figure 5 to this illustration. Based on the Figure 5 , we give the all representation of each vertex in $V\left(P_{n} \times C_{3}\right)$ in the following.

$$
\begin{gathered}
\left(u_{1}, v_{1}\right)=(1,1,2,3, \ldots, n-2, n-1, n) \\
\left(u_{2}, v_{1}\right)=(0,2,1,2, \ldots, n-3, n-2, n-1) \\
\left(u_{3}, v_{1}\right)=(1,3,2,1, \ldots, n-4, n-3, n-2) \\
\vdots \\
\left(u_{n-1}, v_{1}\right)=(n-3, n-1, n-2, n-3, \ldots, 2,1,2) \\
\left(u_{n}, v_{1}\right)=(n-2, n, n-1, n-2, \ldots, 3,2,1) \\
\left(u_{1}, v_{2}\right)=(2,0,1,2, \ldots, n-3, n-2, n-1) \\
\left(u_{2}, v_{2}\right)=(1,1,0,1, \ldots, n-4, n-3, n-2) \\
\left(u_{3}, v_{2}\right)=(2,2,1,0, \ldots, n-5, n-4, n-3) \\
\vdots \\
\left(u_{n-1}, v_{2}\right)=(n-2, n-2, n-3, n-4, \ldots, 3,2,1) \\
\left(u_{n}, v_{2}\right)=(n-1, n-1, n-2, n-3, \ldots, 2,1,0) \\
\left(u_{1}, v_{3}\right)=(2,1,2,3, \ldots, n-2, n-1, n) \\
\left(u_{2}, v_{3}\right)=(1,2,1,2, \ldots, n-3, n-2, n-1) \\
\left(u_{3}, v_{3}\right)=(2,3,2,1, \ldots, n-4, n-3, n-2)
\end{gathered}
$$

Figure 4. The illustration of the resolving strong dominating set of $P_{n} \odot C_{3}$.

Figure 5. The illustration of the resolving strong dominating set on $P_{n} \odot C_{3}$.

$$
\begin{gathered}
\left(u_{n-1}, v_{3}\right)=(n-2, n-1, n-2, n-3, \ldots, 2,1,2) \\
\left(u_{n}, v_{3}\right)=(n-1, n, n-1, n-2, \ldots, 3,2,1)
\end{gathered}
$$

It completes the proof that $\gamma_{r s t}\left(P_{n} \times P_{3}\right)=n+1$ for $m=3 . \square$
Case 2. For m otherwise.
First, determining the lowerbound and upperbound of $\gamma_{r s t}\left(P_{n} \times C_{m}\right)$. We use Lemma 1.1 to show the lowerbound of $\gamma_{r s t}\left(P_{n} \times C_{m}\right)$, thus we have $\gamma_{r s t}\left(P_{n} \times C_{m}\right) \geq \max \left\{\gamma_{s t}\left(P_{n} \times C_{m}\right)\right.$, $\operatorname{dim}\left(P_{n} \times\right.$ $\left.\left.C_{m}\right)\right\}$. We know that $\gamma_{s t}\left(P_{n} \times C_{m}\right)=\left\lceil\frac{m}{3}\right\rceil n$ and $\operatorname{dim}\left(P_{n} \times C_{m}\right)=2$. Hence, it implies

$$
\begin{aligned}
\gamma_{r s t}\left(P_{n} \times C_{m}\right) & \geq \max \left\{\gamma_{s t}\left(P_{n} \times C_{m}\right), \operatorname{dim}\left(P_{n} \times C_{m}\right)\right\} \\
& =\max \left\{\left\lceil\frac{m}{3}\right\rceil n, 2\right\}=\left\lceil\frac{m}{3}\right\rceil n
\end{aligned}
$$

Furthermore, we determine the upper bound of $\gamma_{r s t}\left(P_{n} \times C_{m}\right)$ by defining the resolving strong dominating set $R_{D}\left(P_{n} \times C_{m}\right)$. We divide three cases for defining the resolving strong dominating set of $\left(P_{n} \times C_{m}\right)$, namely
(i) For $m \equiv 0(\bmod), R_{D}\left(P_{n} \times C_{m}\right)=\left\{\left(u_{l}, v_{k}\right): 1 \leq l \leq n, 1 \leq k \leq m\right.$ and $\left.k \equiv 2(\bmod 3)\right\}$
(ii) For $m \equiv 2(\bmod), R_{D}\left(P_{n} \times C_{m}\right)=\left\{\left(u_{l}, v_{m-1}\right),\left(u_{l}, v_{k}\right): 1 \leq l \leq n, 1 \leq k<m\right.$ and $k \equiv$ $2(\bmod 3)\}$
(iii) For $m \equiv 1(\bmod), R_{D}\left(P_{n} \times C_{m}\right)=\left\{\left(u_{l}, v_{m-1}\right),\left(u_{l}, v_{k}\right): 1 \leq l \leq n, 1 \leq k<m-\right.$ 1 and $k \equiv 2(\bmod 3)\}$

Let the representations of each vertex in $V\left(P_{n} \times C_{m}\right)$ to R_{D} is $r\left[\left(u_{i}, v_{j}\right) \mid R_{D}\right]=\left(\alpha_{l}^{k}: 1 \leq l \leq\right.$ $n, 1 \leq k \leq m$ and $k \equiv 2(\bmod 3)) . \alpha_{l}^{k}$ is a distance of a vertex $\left(u_{i}, v_{j}\right) \in V\left(P_{n} \times C_{m}\right)$ to every vertices in $R_{D}\left(P_{n} \times C_{m}\right)$ by the function $f: d\left[\left(u_{i}, v_{j}\right), R_{D}\left(P_{n} \times C_{m}\right)\right] \longrightarrow \alpha_{l}^{k}$, where

$$
\alpha_{l}^{k}= \begin{cases}l-i+|j-k|, & \text { if } i \leq l, k<n \text { and } j<(k+n) \text { or } \\ & k>n \text { and } j>(k+n) \bmod m \\ i-l+|j-k|, & \text { if } i>l, k<n \operatorname{and} j<(k+n) \text { or } \\ & k>n \text { and } j>(k+n) \bmod m \\ l-i+2 n-|j-k|-1, & \text { if } i \leq l, k<n \text { and } j \geq(k+n) \text { or } \\ & k>n \text { and } j \leq(k+n) \bmod m \\ & l+2 n-|j-k|-1, \\ \text { if } i>l, k<n \operatorname{and} j \geq(k+n) \text { or } \\ & k>n \text { and } j \leq(k+n) \bmod m\end{cases}
$$

It easy to see that the representations of vertices in $V\left(P_{n} \times C_{m}\right)$ are all distinct. It completes the proof that $\gamma_{r s t}\left(P_{n} \times C_{3}\right)=\left\lceil\frac{m}{3}\right\rceil n$ for m otherwise.

4 Concluding Remark

The results in this paper are finding the exact values of $\gamma_{r s t}(H)$, where H are $P_{n} \odot P_{m}, P_{n} \odot C_{m}$, $P_{n} \times P_{m}$ and $P_{n} \times C_{m}$. However, to determine $\gamma_{r s t}$ of any graph H is considered to be an NPproblem. Therefore we propose the following open problems.
(i) Determine $\gamma_{r s t}$ of any graph H apart from above investigated graphs.
(ii) Determine the sharpest lower and upper bound of $\gamma_{r s t}$ for any coronation and cartesian product of graphs.

Acknowledgments

We gratefully an acknowledge the support from Combinatorics, Graph Theory, and Network Topology (CGANT) Research Group University of Jember and Department of Mathematics, Kongunadu Arts and Science College of year 2021.

References

[1] G. Chartrand, L. Lesniak, P. Zhang, Graphs and Digraphs, sixth ed., Taylor and Francis Group, Boca Raton, New York
[2] P.J. Slater, Leaves of trees, Congr. Numer. 14 (1975) 549âĂŞ559.
[3] P.J. Slater, Dominating and reference sets in a graph, J. Math. Phys. Sci. 22 (1988) 445âĂŞ455.
[4] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of domination in graphs, Marcel Dekker, New York, 1998.
[5] Dieter Rautenbach, Bounds on the strong domination number, Discrete Mathematics 215 (2000) 201-212.
[6] S. K. Vaidya, S. H. Karkar, On Strong Domination Number of Graphs, Applications and Applied Mathematics: An International Journal (AAM) 12 pp. 604-612
[7] Wardani, D.A.R., Dafik, Agustin, I.H., The locating dominating set (LDS) of generalized of corona product of path graph and any graphs, 2020, Journal of Physics: Conference Series 1465(1).
[8] Dafik, Agustin, I.H., Wardani, D.A.R., The number of locating independent dominating set on generalized corona product graphs, 2020, Advances in Mathematics: Scientific Journal 9(7), pp. 4873-4891.
[9] Yuliana, I., Dafik, Agustin, I.H., Wardani, D.A.R. On the power domination number of corona product and join graphs, 2019, Journal of Physics: Conference Series 1211(1).
[10] Dafik, Agustin, I.H., Retno Wardani, D.A., Kurniawati, E.Y., A study of local domination number of S n âŁţ H graph, 2018, Journal of Physics: Conference Series 943(1).
[11] R Alfarisi, Dafik and AI Kristiana, Resolving domination number of graphs, Discrete Mathematics Algorithms and Applications 11 No. 06
[12] Iswadi H, Baskoro E.T, Simanjuntak R, On the Metric Dimension of Corona Product of Graphs, Far East Journal of Mathematical Sciences 2(2) 2011.

Author information

Dafik ${ }^{*, 1,2}$, I.H Agustin ${ }^{1}$, A.C Prihandoko ${ }^{1,3}$, E.Y Kurniawati ${ }^{1}$,
R Nisviasari ${ }^{1}$, N. Mohanapriya ${ }^{4}$, ${ }^{1}$ CGANT-University of Jember Indonesia, ${ }^{2}$ Department of Mathematics Education University of Jember Indonesia, ${ }^{3}$ Information Technology Department University of Jember Indonesia, ${ }^{4}$ Department of Mathematics, Kongunadu Arts and Science College, India.
E-mail: d.dafik@unej.ac.id
Received : January 5, 2021
Accepted : April 15, 2021

