ON *r***-FUZZY WEAKLY** *b***-OPEN FUNCTIONS**

S. Jafari, N. Rajesh and R. Vennila

Communicated by V. Kokilavani

MSC 2010 Classifications: 54A05.

Keywords and phrases: Fuzzy topological spaces, r-fuzzy b-open set, r-fuzzy b-closed set, r-fuzzy weakly b-open function, r-fuzzy weakly b-closed function.

Abstract In this paper, we introduce and characterize a new class of functions called *r*-fuzzy weakly *b*-open (*r*-fuzzy weakly *b*-closed) functions between smooth fuzzy topological spaces.

1 Introduction

The fuzzy concept has invaded almost all branches of Mathematics since its introduction by Zadeh [20]. Fuzzy sets have applications in many fields such as information [15] and control [18]. The theory of fuzzy topological spaces was introduced and developed by Chang [1] and since then various notions in classical topology have been extended to fuzzy topological spaces. S ŏstak [16] and Kubiak [8] introduced the fuzzy topology as an extension of ChangâĂŹs fuzzy topology. It has been developed in many directions. S ŏstak [17] also published a survey article of the developed areas of fuzzy topological spaces. In this paper, we introduce and characterize a new class of functions called r-fuzzy weakly b-open (r-fuzzy weakly b-closed) functions between smooth fuzzy topological spaces.

Definition 1.1. A fuzzy point x_t in X is a fuzzy set taking value $t \in I_0$ at x and zero elsewhere, $x_t \in \lambda$ if and only if $t \leq \lambda(x)$. A fuzzy set λ is quasicoincident with a fuzzy set μ , denoted by $\lambda q\mu$, if there exists $x \in X$ such that $\lambda(x) + \mu(x) > 1$. Otherwise $\lambda \bar{q}\mu$.

Definition 1.2. [8, 16] A function $\tau : I^X \to I$ is called a smooth fuzzy topology on X if it satisfies the following conditions:

- (i) $\tau(\bar{0}) = \tau(\bar{1}) = 1;$
- (ii) $\tau(\mu_1 \wedge \mu_2) \ge \tau(\mu_1) \wedge \tau(\mu_2)$ for any $\mu_1, \mu_2 \in I^X$.
- (iii) $\tau(\bigvee_{j\in\Gamma}\mu_j) \ge \bigvee_{j\in\Gamma}\tau(\mu_j)$ for any $\{\mu_j\}_{j\in\Gamma} \in I^X$. The pair (X,τ) is called a smooth fuzzy topological space.

A fuzzy point in X with support $x \in X$ and the value $\alpha(0 < \alpha \le 1)$ is denoted by x_{α} .

Definition 1.3. [11] A fuzzy set $\lambda \in I^X$ is said to be *q*-coincident with a fuzzy set μ , denoted by $\lambda q\mu$, if there exists $x \in X$ such that $\lambda(x) + \mu(x) > 1$. It is known that $\lambda \leq \mu$ if and only if λ and $1 - \mu$ are not *q*-coincident, denoted by $\lambda \bar{q}(1 - \mu)$.

Definition 1.4. [3] A fuzzy set λ is said to be *r*-fuzzy *Q*-neighbourhood of x_p if $\tau(\lambda) \ge r$ such that $x_p q \lambda$. We will denote the set of all *r*-fuzzy open *Q*-neighbourhood of x_p by $Q(x_p, r)$.

Definition 1.5. [2] Let (X, τ) be a smooth fuzzy topological space. For each $\lambda \in I^X$, $r \in I_0$, an operator $Cl : I^X \times I_0 \to I^X$ is defined as follows: $Cl(\lambda, r) = \wedge \{\mu : \mu \ge \lambda, \tau(\overline{1} - \mu) \ge r\}$. For $\lambda, \mu \in I^X$ and $r, s \in I_0$, it satisfies the following conditions:

- (i) $Cl(\bar{0}, r) = \bar{0}$.
- (ii) $\lambda \leq Cl(\lambda, r)$.
- (iii) $Cl(\lambda, r) \lor Cl(\mu, r) = Cl(\lambda \lor \mu, r).$

- (iv) $Cl(\lambda, r) \leq Cl(\lambda, s)$ if $r \leq s$.
- (v) $Cl(Cl(\lambda, r), r) = Cl(\lambda, r).$

Proposition 1.6. [12] Let (X, τ) be a smooth fuzzy topological space. For each $\lambda \in I^X$, $r \in I_0$, an operator Int : $I^X \times I_0 \to I^X$ is defined as follows: $Int(\lambda, r) = \vee \{\mu : \mu \leq \lambda, \tau(\mu) \geq r\}$. For $\lambda, \mu \in I^X$ and $r, s \in I_0$, it satisfies the following conditions:

- (i) $Int(\overline{1} \lambda, r) = \overline{1} Cl(\lambda, r).$
- (*ii*) $Int(\bar{1}, r) = \bar{1}$.
- (iii) $\lambda \ge Int(\lambda, r)$.
- (iv) $Int(\lambda, r) \wedge Int(\mu, r) = Int(\lambda \wedge \mu, r).$
- (v) $Int(\lambda, r) \ge Int(\lambda, s)$, if $r \le s$.
- (vi) $Int(Int(\lambda, r), r) = Int(\lambda, r).$

Definition 1.7. [10] A fuzzy point x_p is said to be a *r*-fuzzy θ -cluster point of a fuzzy set λ if and only if for every $\mu \in \mathcal{Q}(x_p, r)$, $Cl(\mu, r)$ is *q*-coincident with λ . The set of all *r*-fuzzy θ -cluster points of λ is called the *r*-fuzzy θ -closure of λ and will be denoted by $Cl_{\theta}(\lambda, r)$. A fuzzy set λ will be called *r*-fuzzy θ -closed if and only if $\lambda = Cl_{\theta}(\lambda, r)$. The complement of a *r*-fuzzy θ -closed set is called *r*-fuzzy θ -open and the *r*-fuzzy θ -interior of λ denoted by $Int_{\theta}(\lambda, r)$ is defined as $Int_{\theta}(\lambda, r) = \{x_p: \text{ for some } \beta \in \mathcal{Q}(x_p, r), Cl(\beta, r) \leq \lambda\}.$

Lemma 1.8. [10] Let λ be a fuzzy set in a smooth fuzzy topological space (X, τ) . Then,

- (*i*) λ is *r*-fuzzy θ -open if, and only if $\lambda = Int_{\theta}(\lambda, r)$;
- (ii) $1 Int_{\theta}(\lambda, r) = Cl_{\theta}(1 \lambda, r)$ and $Int_{\theta}(1 \lambda, r) = 1 Cl_{\theta}(\lambda, r)$;
- (iii) $Cl_{\theta}(\lambda, r)$ is a r-fuzzy closed set but not necessarily is a r-fuzzy θ -closed set.

Definition 1.9. A fuzzy set λ of a smooth fuzzy topological space (X, τ) is called:

- (i) *r*-fuzzy preopen [12] if $\lambda \leq Int(Cl(\lambda, r), r)$;
- (ii) *r*-fuzzy regular open [6] if $\lambda = Int(Cl(\lambda, r), r)$;
- (iii) *r*-fuzzy α -open [12] if $\lambda \leq Int(Cl(Int(\lambda, r), r), r);$
- (iv) *r*-fuzzy preclosed [12] if $Cl(Int(\lambda, r), r) \leq \lambda$;
- (v) *r*-fuzzy regular closed [6] if $\lambda = Cl(Int(\lambda, r), r)$;
- (vi) *r*-fuzzy α -closed [12] if $Cl(Int(Cl(\lambda, r), r), r) \leq \lambda$;
- (vii) *r*-fuzzy *b*-open if $\lambda \leq Cl(Int(\lambda, r), r) \vee Int(Cl(\lambda, r), r)$;
- (viii) *r*-fuzzy *b*-closed if $Cl(Int(\lambda, r), r) \wedge Int(Cl(\lambda, r), r) \leq \lambda$.

Definition 1.10. Let (X, τ) be a smooth fuzzy topological space. For each $\lambda \in I^X$, $r \in I_0$, an operator $bCl : I^X \times I_0 \to I^X$ is defined as $bCl(\lambda, r) = \wedge \{\mu : \mu \ge \lambda, \mu \text{ is } r\text{-fuzzy } b\text{-closed}\}$. An operator $bInt : I^X \times I_0 \to I^X$ is defined as $bInt(\lambda, r) = \vee \{\mu : \mu \le \lambda, \mu \text{ is } r\text{-fuzzy } b\text{-open}\}$.

Definition 1.11. A function $f : (X, \tau) \to (Y, \sigma)$ is called:

- (i) *r*-fuzzy *b*-open if $f(\lambda)$ is a *r*-fuzzy *b*-open set in *Y* for each fuzzy open set λ of *X*;
- (ii) *r*-fuzzy weakly open if $f(\lambda) \leq Int(f(Cl(\lambda, r)), r)$ for each fuzzy open set λ of X.

2 *r*-Fuzzy weakly *b*-open functions

Definition 2.1. A function $f: (X, \tau) \to (Y, \sigma)$ is said to be r-fuzzy weakly b-open if $f(\lambda) < 0$ $bInt(f(Cl(\lambda, r)), r)$ for each $\tau(\lambda) > r$.

Remark 2.2. It is evident that, every *r*-fuzzy weakly open function is *r*-fuzzy weakly *b*-open and every r-fuzzy b-open function is also r-fuzzy weakly b-open. But the converse need not be true in general.

Example 2.3. Let $X = \{a, b, c\}$ and $\mu = \left(\frac{a}{0.2}, \frac{b}{0.3}, \frac{c}{0.4}\right)$, and $\beta = \left(\frac{a}{0.2}, \frac{b}{0.3}, \frac{c}{0.3}\right)$. Define $\tau : L^X \to L^X$ $L \text{ and } \sigma : L^{Y} \to L \text{ as follows:}$ $\tau(\lambda) = \begin{cases} 1 & \text{if } \lambda = \overline{0} \text{ or } \overline{1} \\ \frac{1}{2} & \text{if } \lambda = \mu \\ 0 & otherwise \end{cases} \quad \sigma(\lambda) = \begin{cases} 1 & \text{if } \lambda = \overline{0} \text{ or } \overline{1} \\ \frac{1}{2} & \text{if } \lambda = \beta \\ 0 & otherwise \end{cases}$

Then the identity function $f: (X, \tau) \to (Y, \sigma)$ defined by g(a) = c, g(b) = a and g(c) = b is $\frac{1}{2}$ -fuzzy weakly *b*-open but not $\frac{1}{2}$ -fuzzy *b*-open.

Definition 2.4. A smooth fuzzy topological space (X, τ) is r-fuzzy regular if for each $x \in X$, $\rho \in [0, 1], \tau(\lambda) \ge r$ with $x_p \le \lambda$, there exists $\tau(\mu) \ge r$ such that $x_p \le Cl(\mu, r) \le \lambda$.

Theorem 2.5. For a surjective function $f: (X, \tau) \to (Y, \sigma)$, the following conditions are equivalent:

- (i) f is r-fuzzy weakly b-open;
- (ii) $f(Int_{\theta}(\lambda, r)) \leq bInt(f(\lambda), r)$ for every $\lambda \in I^X$:
- (iii) $Int_{\theta}(f^{-1}(\beta), r) \leq f^{-1}(bInt(\beta, r))$ for every $\beta \in I^{Y}$;
- (iv) $f^{-1}(bCl(\beta, r)) < Cl_{\theta}(f^{-1}(\beta), r)$ for every $\beta \in I^{Y}$;
- (v) For each r-fuzzy θ -open set $\lambda \in I^X$, $f(\lambda)$ is r-fuzzy b-open in Y;
- (vi) For any $\beta \in I^Y$ and any r-fuzzy θ -closed set $\lambda \in I^X$ containing $f^{-1}(\beta)$, where X is a r-fuzzy regular space, there exists a r-fuzzy b-closed $\delta \in I^Y$ containing β such that $f^{-1}(\delta) \le \lambda.$

Proof. (1) \Leftrightarrow (2): Let $\lambda \in I^X$ and x_p be a fuzzy point in $Int_{\theta}(\lambda, r)$. Then there exists a fuzzy open *q*-neighbourhood μ of x_p such that $\mu \leq Cl(\mu, r) \leq \lambda$. Then $f(\mu) \leq f(Cl(\mu, r)) \leq f(\lambda)$. Since f is r-fuzzy weakly *b*-open, $f(\mu) \leq bInt(f(Cl(\mu, r)), r) \leq bInt(f(\lambda), r)$. Then $f(x_p)$ is a fuzzy point in $bInt(f(\lambda), r)$. Hence $x_p \in f^{-1}(bInt(f(\lambda), r))$. Thus $Int_{\theta}(\lambda, r) \leq f^{-1}(bInt(f(\lambda), r))$, and so $f(Int(\lambda), r) \leq bInt(f(\lambda), r)$. Conversely, let $\tau(\mu) \geq r$. Since $\mu \leq Int_{\theta}(Cl(\mu, r), r)$, we have $f(\mu) \leq f(Int_{\theta}(Cl(\mu, r), r)) \leq bInt(f(Cl(\mu, r)), r)$. Hence f is r-fuzzy weakly b-open. (2) \Leftrightarrow (3): Let $\beta \in I^Y$. Then by (2), $f(Int_{\theta}(f^{-1}(\beta), r)) \leq bInt(\beta, r)$. Therefore, $Int_{\theta}(f^{-1}(\beta), r) \leq bInt(\beta, r)$. $f^{-1}(bInt(\beta, r))$. The converse is clear.

 $(3) \Leftrightarrow (4): \text{Let } \beta \in I^Y. \text{ By } (3), \overline{1} - Cl_{\theta}(f^{-1}(\beta), r) = Int_{\theta}(\overline{1} - f^{-1}(\beta), r) = Int_{\theta}(f^{-1}(\overline{1} - \beta), r)$ $\leq f^{-1}(bInt(\overline{1} - \beta, r)) = f^{-1}(\overline{1} - bCl(\beta, r)) = \overline{1} - f^{-1}(bCl(\beta, r)). \text{ Therefore, } f^{-1}(bCl(\beta, r))$ $\leq Cl_{\theta}(f^{-1}(\beta), r)$. The converse is clear.

(4) \Rightarrow (5): Let λ be a r-fuzzy θ -open set in X. Then $\overline{1} - f(\lambda) \in I^Y$ and by (4), $f^{-1}(bCl(\overline{1} - \delta))$ $f(\lambda)), r) \leq Cl_{\theta}(f^{-1}(\overline{1} - f(\lambda)), r)$. Therefore, $\overline{1} - f^{-1}(bInt(f(\lambda), r)) \leq Cl_{\theta}(\overline{1} - \lambda, r) = \overline{1} - \lambda$. Then we have $\lambda \leq f^{-1}(bInt(f(\lambda), r))$ which implies $f(\lambda) \leq bInt(f(\lambda), r)$. Hence $f(\lambda)$ is r-fuzzy b-open in Y

(5) \Rightarrow (6): Let $\beta \in I^Y$ and $\lambda \in I^X$ be a *r*-fuzzy θ -closed set such that $f^{-1}(\beta) \leq \lambda$. Since $\overline{1} - \lambda$ is *r*-fuzzy θ -open in X, by (5), $f(\overline{1} - \lambda)$ is *r*-fuzzy *b*-open in Y. Let $\delta = \overline{1} - f(\overline{1} - \lambda)$. Then δ is *r*-fuzzy *b*-closed and $\beta \leq \delta$. Now, $f^{-1}(\delta) = f^{-1}(\overline{1} - (f(\overline{1} - \lambda))) = \overline{1} - f^{-1}(f(\lambda)) \leq \lambda$. (6) \Rightarrow (4): Let $\beta \in I^Y$. Then by Corollary 3.6 of [?] $\lambda = Cl_{\theta}(f^{-1}(\beta), r)$ is r-fuzzy θ -closed in X and $f^{-1}(\beta) \leq \lambda$. Then there exists a r-fuzzy b-closed set $\delta \in Y^X$ containing β such that $f^{-1}(\delta) \leq \lambda$. Since δ is r-fuzzy b-closed, $f^{-1}(bCl(\beta, r) \leq f^{-1}(\delta) \leq Cl_{\theta}(f^{-1}(\beta), r)$.

Theorem 2.6. A function $f: (X, \tau) \to (Y, \sigma)$ is r-fuzzy weakly b-open if, and only if for each fuzzy point x_p in X and each $\tau(\mu) \geq r$ containing x_p , there exists a r-fuzzy b-open set δ containing $f(x_p)$ such that $\delta \leq f(Cl(\mu, r))$.

Proof. Let $x_p \in X$ and $\tau(\mu) \geq r$ such that μ containing x_p . Since f is r-fuzzy weakly b-open, $f(\mu) \leq bInt(f(Cl(\mu, r)), r)$. Let $\delta = bInt(f(Cl(\mu, r)), r)$. Hence $\delta \leq f(Cl(\mu, r))$ with δ containing $f(x_p)$. Conversely, let $\tau(\mu) \geq r$ and let $y_p \in f(\mu)$. Then $\delta \leq f(Cl(\mu, r))$ for some r-fuzzy b-open set δ in Y containing y_p . Hence we have, $y_p \in \delta \leq bInt(f(Cl(\mu, r)), r)$. Hence $f(\mu) \leq bInt(f(Cl(\mu, r)), r)$ and f is r-fuzzy weakly b-open.

Theorem 2.7. Let $f : (X, \tau) \to (Y, \sigma)$ be a bijective function. Then the following statements are equivalent:

- (i) f is r-fuzzy weakly b-open;
- (ii) $bCl(f(\lambda), r) \leq f(Cl(\lambda, r))$ for each $\tau(\lambda) \geq r$;
- (iii) $bCl(f(Int(\beta, r)), r) \le f(\beta)$ for each $\tau(\overline{1} \beta) \ge r$.

Proof. (1) \Leftrightarrow (3): Let $\tau(\overline{1}-\beta) \geq r$. Then $f(\overline{1}-\beta) = \overline{1} - f(\beta) \leq bInt(f(Cl(\overline{1}-\beta,r)),r)$ and so $\overline{1} - f(\beta) \leq \overline{1} - bCl(f(Int(\beta,r)),r)$. Hence $bCl(f(Int(\beta,r)),r) \leq f(\beta)$. The converse is clear. (3) \Leftrightarrow (2): Let $\tau(\lambda) \geq r$. Since $Cl(\lambda,r)$ is a *r*-fuzzy closed and $\lambda \leq Int(Cl(\lambda,r),r)$ by (3), $bCl(f(\lambda,r)) \leq bCl(f(Int(Cl(\lambda,r),r)),r) \leq f(Cl(\lambda,r))$. The converse is clear.

The proof of the following theorem is obvious and thus omitted.

Theorem 2.8. For a function $f : (X, \tau) \to (Y, \sigma)$ the following statements are equivalent:

(i) f is r-fuzzy weakly b-open;

(ii) for each $\tau(\overline{1} - \beta) \ge r$, $f(Int(\beta, r)) \le bInt(f(\beta), r)$;

(iii) for each $\tau(\lambda) \ge r$, $f(Int(Cl(\lambda, r), r)) \le bInt(f(Cl(\lambda, r)), r);$

(iv) for each r-fuzzy regular open set $\lambda \in I^X$, $f(\lambda) \leq bInt(f(Cl(\lambda, r)), r)$;

(v) for every r-fuzzy preopen set $\lambda \in I^X$, $f(\lambda) \leq bInt(f(Cl(\lambda, r)), r);$

(vi) for every r-fuzzy α -open set $\lambda \in I^X$, $f(\lambda) \leq bInt(f(Cl(\lambda, r)), r)$.

Definition 2.9. A function $f : (X, \tau) \to (Y, \sigma)$ is said to satisfy the *r*-fuzzy weakly *b*-open interiority condition of $bInt(f(Cl(\lambda, r)), r) \leq f(\lambda)$ for every $\tau(\lambda) \geq r$.

Theorem 2.10. If $f : (X, \tau) \to (Y, \sigma)$ is *r*-fuzzy weakly *b*-open and satisfies fuzzy weakly *b*-open interiority condition, then *f* is fuzzy *b*-open.

Proof. Let $\tau(\lambda) \ge r$. Since f is r-fuzzy weakly b-open, we have $f(\lambda) \le bInt(f(Cl(\lambda, r)), r)$. However, because f satisfies the r-fuzzy weakly b-open interiority condition, $f(\lambda) = bInt(f(Cl(\lambda, r)), r)$ and hence $f(\lambda)$ is r-fuzzy b-open.

Theorem 2.11. Let (X, τ) be a *r*-fuzzy regular space. Then $f : (X, \tau) \to (Y, \sigma)$ is *r*-fuzzy weakly *b*-open if and only if *f* is *r*-fuzzy b-open.

Proof. Let $\tau(\lambda) \ge r$ and $\lambda \ne \overline{0}$. For each fuzzy point x_p in λ , let $\tau(\mu_{x_p}) \ge r$ such that $x_p \in \mu_{x_p} \le Cl(\mu_{x_p}, r) \le \lambda$. Hence we have $\lambda = \lor \{\mu_{x_p}: x_p \in \lambda\} \lor \{Cl(\mu_{x_p}, r): x_p \in \lambda\}$ and, $f(\lambda) = \lor \{f(\mu_{x_p}): x_p \in \lambda\} \le \lor \{bInt(f(Cl(\mu_{x_p}, r)), r): x_p \in \lambda\} \le bInt(f(\lor \{Cl(\mu_{x_p}, r)), r): x_p \in \lambda\}) = bInt(f(\lambda), r)$. Thus, f is r-fuzzy b-open.

Definition 2.12. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be *r*-fuzzy contra-pre-*b*-closed provided that $f(\lambda)$ is *r*-fuzzy *b*-open for each *r*-fuzzy *b*-closed subset $\lambda \in I^X$.

Theorem 2.13. If $f : (X, \tau) \to (Y, \sigma)$ is *r*-fuzzy weakly *b*-open and *Y* has the property that union of *r*-fuzzy *b*-closed sets is *r*-fuzzy *b*-closed and if for each *r*-fuzzy *b*-closed subset β of *X* and each fiber $f^{-1}(y_p) \leq \overline{1} - \beta$ there exists $\tau(\mu) \geq r$ for which $\beta \leq \mu$ and $f^{-1}(y_p) \bar{q} Cl(\mu)$, then *f* is *r*-fuzzy contra-pre-*b*-closed.

Proof. Assume that $\beta \in I^X$ is *r*-fuzzy *b*-closed set and let $y_p \in \overline{1} - f(\beta)$. Thus, $f^{-1}(y_p) \leq \overline{1} - \beta$ and hence there exists $\tau(\mu) \geq r$ for which $\beta \leq \mu$ and $f^{-1}(y_p) \bar{q} Cl(\mu, r)$. Therefore, $y_p \in \overline{1} - f(Cl(\mu, r)) \leq \overline{1} - f(\beta)$. Since *f* is *r*-fuzzy weakly *b*-open, $f(\mu) \leq bInt(f(Cl(\mu, r)), r)$. Hence $y_p \in bCl(\overline{1} - f(Cl(\mu, r)), r) \leq \overline{1} - f(\beta)$. Let $\lambda_{y_p} = bCl(\overline{1} - f(Cl(\mu, r)), r)$. Then λ_{y_p} is a *r*-fuzzy *b*-closed set of *Y* containing y_p . Hence $\overline{1} - f(\beta) = \vee \{\lambda_{y_p} : y_p \in \overline{1} - f(\beta)\}$ is *r*-fuzzy *b*-closed and $f(\beta)$ is *r*-fuzzy *b*-open.

Definition 2.14. Two non-zero fuzzy sets λ and μ in a smooth fuzzy topological space (X, τ) are said to be *r*-fuzzy *b*-separated if $\lambda \bar{q} bCl(\mu, r)$ and $\mu \bar{q} bCl(\lambda, r)$ or equivalently, if there exist two *r*-fuzzy *b*-open sets ρ and η such that $\lambda \leq \rho$ and $\mu \leq \eta$, $\lambda \bar{q} \eta$ and $\mu \bar{q} \rho$.

Definition 2.15. A smooth fuzzy topological space (X, τ) which cannot be expressed as the union of two *r*-fuzzy *b*-separated sets is said to be a *r*-fuzzy *b*-connected space.

Theorem 2.16. If $f : (X, \tau) \to (Y, \sigma)$ is a *r*-fuzzy weakly b-open surjective function of a smooth fuzzy topological space (X, τ) to a *r*-fuzzy b-connected space (Y, σ) , then (X, τ) is *r*-fuzzy connected.

Proof. If possible, let (X, τ) be not *r*-fuzzy connected. Then there exist fuzzy separated sets λ and μ in X such that $\overline{1} = \lambda \lor \mu$. Since λ and μ are *r*-fuzzy separated, there exist $\tau(\rho) \ge r$ and $\tau(\eta) \ge r$ such that $\lambda \le \rho, \mu \le \eta, \lambda \bar{q} \eta$ and $\mu \bar{q} \rho$. Hence we have $f(\lambda) \le f(\rho), f(\mu) \le f(\eta), f(\lambda) \bar{q} f(\eta)$ and $f(\mu) \bar{q} f(\rho)$. Since *f* is *r*-fuzzy weakly *b*-open, $f(\rho) \le bInt(f(Cl(\rho, r)), r)$ and $f(\eta) \le bInt(f(Cl(\eta, r)), r)$ and since ρ and η are *r*-fuzzy open and also *r*-fuzzy closed, we have $f(Cl(\rho, r)) = f(\rho), f(Cl(\eta, r)) = f(\eta)$. Hence $f(\rho)$ and $f(\eta)$ are *r*-fuzzy *b*-open in *Y*. Therefore, $f(\lambda)$ and $f(\eta)$ are *r*-fuzzy *b*-separated sets in *Y* and $\overline{1} = f(\overline{1}) = f(\lambda \lor \mu) = f(\lambda) \lor f(\mu)$. Hence this contrary to the fact that *Y* is *r*-fuzzy *b*-connected. Thus, *X* is *r*-fuzzy connected.

Definition 2.17. A function $f : (X, \tau) \to (Y, \sigma)$ is said to be fuzzy weakly *b*-closed if $bCl(f(Int(\lambda, r)), r) \le f(\lambda)$ for each $\tau(\overline{1} - \lambda) \ge r$.

The proof of the following two Theorems are obvious and hence omitted.

Theorem 2.18. For a function $f : (X, \tau) \to (Y, \sigma)$, the following conditions are equivalent:

- (i) f is r-fuzzy weakly b-closed;
- (ii) $bCl(f(\lambda), r) \leq f(Cl(\lambda, r))$ for every $\tau(\lambda) \geq r$;
- (iii) $bCl(f(\lambda), r) \leq f(Cl(\lambda), r)$ for every r-fuzzy regular open set $\lambda \in I^X$;
- (iv) For each $\mu \in I^Y$ and every $\tau(\eta) \ge r$ with $f^{-1}(\mu) \le \eta$, there exists a r-fuzzy b-open set $\delta \in I^Y$ with $\mu \le \delta$ and $f^{-1}(\mu) \le Cl(\eta, r)$;
- (v) For each fuzzy point y_p in Y and each $\tau(\eta) \ge r$ with $f^{-1}(y_p) \le \eta$, there exists a r-fuzzy b-open set $\delta \in I^Y$ with $y_p \le \delta$ and $f^{-1}(\delta) \le Cl(\eta, r)$;
- (vi) $bCl(f(Int(Cl(\lambda, r), r)), r) \leq f(Cl(\lambda, r))$ for each $\lambda \in I^X$;
- (vii) $bCl(f(Int(Cl_{\theta}(\lambda, r), r)), r) \leq f(Cl_{\theta}(\lambda, r))$ for each $\lambda \in I^X$;
- (viii) $bCl(f(\lambda), r) \leq f(Cl(\lambda, r))$ for each r-fuzzy b-open set $\lambda \in I^X$.

Theorem 2.19. For a function $f: (X, \tau) \to (Y, \sigma)$, the following conditions are equivalent:

- (i) f is fuzzy weakly b-closed;
- (ii) $bCl(f(Int(\lambda, r)), r) \leq f(\lambda)$ for each r-fuzzy b-closed set $\lambda \in I^X$;
- (iii) $bCl(f(Int(\lambda, r)), r) \leq f(\lambda)$ for each r-fuzzy α -closed set $\lambda \in I^X$.

Theorem 2.20. If $f : (X, \tau) \to (Y, \sigma)$ is *r*-fuzzy weakly *b*-closed injective, then for each $\lambda \in I^Y$ and each $\tau(\mu) \ge r$ with $f^{-1}(\lambda) \le \mu$ there exists a *r*-fuzzy *b*-closed set $\rho \in I^Y$ with $\lambda \le \rho$ and $f^{-1}(\rho) \le Cl(\mu)$.

Proof. Follows from the definitions.

References

- [1] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182-190.
- [2] K. C. Chattopadhyay and S.K. Samanta, Fuzzy topology: fuzzy closure operator, fuzzy compactness and fuzzy connectedness, Fuzzy Sets Systems, 54(1993), 207-212.
- [3] M. Dimirci, Neighborhood strucure of smooth topological spaces, Fuzzy Sets Systems 92 (1997), 123âĂŞ128.
- [4] P. Dwinger, Characterizations of the complete homomorphic images of a completely distributive complete lattice, Indag Math (Proc) 85 (1982), 403-414.
- [5] G. Gierz, A compendium of continuous lattices. Springer, Berlin (1980).
- [6] S. J. Lee and E. P. Lee, Fuzzy r-regular open sets and fuzzy almost r-continuous maps, Bull. Korean Math. Soc., 39(2002), 441-453.
- [7] Y. M. Liu and M. K. Luo, Fuzzy topology. World Scientific, Singapore (1997).
- [8] T. Kubiak, On fuzzy topologies, Ph. D. Thesis, A. Mickiewicz, Poznan, 1985.
- [9] Y. C. Kim, Initial L-fuzzy closure spaces. Fuzzy Sets Systems, 133 (2003), 277-297.
- [10] Y. C. Kim and J. W. Park, *R*-fuzzy δ-closure and *R*-fuzzy θ-closure sets, Int. J. Fuzzy Logic Intell. Sys., 10(2000), 557-563.
- [11] P. P. Ming and L. Y. Ming, Fuzzy Topology. I. Neighborhood Structure of a Fuzzy Point and Moore-Smith Convergence, J. Math. Anal. Appl., 76 (1980), 571-599.
- [12] A. A. Ramadan, Y. C. Kim and S. E. Abbas, Weaker forms of continuity in SostakâĂŹs fuzzy topology, Indian J Pure Appl Math, 34 (3) (2003), 311-333.
- [13] F. G. Shi, Theory of Lb-nested sets and La-nested and their applications. Fuzzy System Math 4 (1995), 65-72 (in chinese).
- [14] F. G. Shi, J. Zhang and C. Y. Zheng, On L-fuzzy topological spaces, Fuzzy Sets Systems 149 (2005), 473-484.
- [15] P. Smets, The degree of belief in a fuzzy event, Inf. Sci., 25 (1981), 1-19.
- [16] A. P. Sŏstak, On a fuzzy topological structure, Suppl. Rend. Circ. Matem. Palerms ser II, 11, (1985) 89-103.
- [17] A. P. Sŏstak, Basic structures of fuzzy topology, J. Math. Sci., 78(6) (1996) 662-701.
- [18] M. Sugeno, An introductory survey of fuzzy control, Inf Sci., 36(1985), 59-83.
- [19] G.J. Wang, Theory of L-fuzzy topological space, Shaanxi Normal University Press, Xiàn, 1988 (in Chinese).
- [20] L. A. Zadeh, Fuzzy sets, Information and Control, 8(1965), 338-353.

Author information

S. Jafari, Mathematical and Physical Science Foundation, 4200 Slagelse, Denmark. E-mail: saeidjafari@topositus.com

N. Rajesh, Department of Mathematics, Rajah Serfoji Govt. College, Thanjavur-613005, Tamilnadu,, India. E-mail: nrajesh_topology@yahoo.co.in

R. Vennila, Department of Mathematics Education Kongu Engg. College, perundurai, Erode, Tamilnadu,, India.

E-mail: vennilamaths@gmail.com

Received : January 5, 2021 Accepted : April 20, 2021