ON r-DYNAMIC COLORING OF SUBDIVISION - VERTEX JOIN OF TWO GRAPHS

Aparna V and Mohanapriya N
Communicated by Dafik

MSC 2010 Classifications: 05C15.

Keywords and phrases: r-dynamic coloring, subdivision graph, subdivision - vertex join, star graph.

Abstract

Let H be a simple graph with vertex set $V(H)$ and edge set $E(H)$ which is connected, undirected and finite. For positive integers r, the proper k-coloring of the vertices of the graph H such that $|f(N(z))| \geq \min \{r, d(z)\}$ for each $z \in V(H)$ is referred to as r-dynamic coloring of a graph H. Here $N(z)$ denotes the neighborhood of the vertex z and $d(z)$ is the degree of the vertex z. The least k which permits H to have an r-dynamic coloring with k colors is called the r-dynamic chromatic number of the graph H and it is denoted as $\chi_{r}(H)$. The subdivision vertex join of two graphs H_{1} and H_{2} denoted as $H_{1} \stackrel{\vee}{ } H_{2}$ is acquired from the sub-division graph $S\left(H_{1}\right)$ and H_{2} by connecting each old vertex of H_{1} with every vertex of H_{2}. In this paper we have acquired the r-dynamic chromatic number of subdivision - vertex join of path P_{n} with path P_{m}, complete graph K_{m} and star graph $K_{1, m}$.

1 Introduction and Preliminaries

The idea of r-dynamic coloring was put forward by Bruce Montgomery in [9]. By the word proper vertex coloring of a graph we mean a coloring where any two adjacent vertices receive distinct colors. Let $N(z)$ and $d(z)$ denotes the neighborhood set of vertex z and number of vertices adjacent to z respectively then for each positive integer r, the r-dynamic coloring of H is a proper vertex coloring f such that $|f(N(z))| \geq \min \{r, d(z)\}$, for every $z \in V(H)$ i.e. the neighbors of each vertex z acquires at least $\min \{r, d(z)\}$ distinct colors. The least k which permits H to have an r-dynamic coloring with k colors is referred to as the r-dynamic chromatic number $[4,10]$ of the graph H and it is denoted as $\chi_{r}(H)$. The 1-dynamic chromatic number is the normal chromatic number $\chi(H)$ and the 2-dynamic chromatic number is simply called the dynamic chromatic number of H and is denoted as $\chi_{d}(H)$. In the following papers $[1,2,3,6,7$, 8] the dynamic coloring of graphs has been analyzed in depth. $\chi_{r}(H) \geq \min \{r, \Delta(H)\}+1$ is one of the most familiar lower bound for $\chi_{r}(H)$ and it was put forward by Montgomery and Lai in [6].
The subdivision graph $S(H)$ of a graph H is acquired by inserting a new vertex for every edge of H. The subdivision - vertex join [5] of two graphs H_{1} and H_{2} denoted as $H_{1} \dot{\vee} H_{2}$ is acquired from the sub-division graph $S\left(H_{1}\right)$ and H_{2} by connecting each old vertex of H_{1} with every vertex of H_{2}. Consider the graph H_{1} having n vertices, t edges and H_{2} having m vertices. Let the vertex set and edge set of H_{1} be defined as $V\left(H_{1}\right)=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}, E\left(H_{1}\right)=\left\{a_{1}, a_{2}, \cdots, a_{t}\right\}$ and let the vertex set of H_{2} be $V\left(H_{2}\right)=\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$ then the vertex set of $H_{1} \vee H_{2}$ be defined as $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\} \cup\left\{a_{1}, a_{2}, \cdots, a_{t}\right\} \cup\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$. The star graph $K_{1, m}$ is a complete bipartite graph with $m+1$ vertices in which the single vertex belongs to one set and the remaining t vertices belongs to the other set.

2 Theorems

Theorem 2.1. For positive integers n, m, the r - dynamic chromatic number of subdivision vertex join of path P_{n} with path P_{m} is
I. When $n \geq 4, m \geq 3$ and $m<n$

$$
\chi_{r}\left(P_{n} \dot{\vee} P_{m}\right)= \begin{cases}r+2 & : 1 \leq r \leq 3 \\ 2 r-1 & : 4 \leq r \leq m, m \geq 4 \\ r+m-1 & : m+1 \leq r \leq n+1, m \geq 3 \\ m+n & : r=n+2\end{cases}
$$

Proof. Let the edge set of P_{n} be $E\left(P_{n}\right)=\left\{a_{1}, a_{2}, \cdots, a_{n-1}\right\}$. Then vertex set of $P_{n} \dot{\vee} P_{m}$ is $V\left(P_{n} \dot{\vee} P_{m}\right)=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\} \cup\left\{a_{1}, a_{2}, \cdots, a_{n-1}\right\} \cup\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$. The edge set of $P_{n} \dot{\vee} P_{m}$ is $E\left(P_{n} \dot{\vee} P_{m}\right)=\left\{u_{i} a_{i}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} a_{i-1}: 2 \leq i \leq n\right\} \cup\left\{v_{j} v_{j+1}: 1 \leq j \leq\right.$ $m-1\} \cup\left\{u_{i} v_{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$. The minimum degree and maximum degree in this case is 2 and $n+2$ respectively.
Case 1: When $1 \leq r \leq 3$.
Subcase 1: $r=1$
The presence of clique of order 3 gives us the fact we require at least 3 different colors. Hence the lower bound $\chi_{r}\left(P_{n} \dot{\vee} P_{m}\right) \geq 3$. We provide the upper bound using the mapping $f: V\left(P_{n} \dot{\vee} P_{m}\right) \rightarrow$ $\{1,2,3\}$ as follows:
$f\left(u_{i}\right)=1$ for all i
$f\left(a_{i}\right)=1$ for $1 \leq i \leq n-1$

$$
f\left(v_{j}\right)=\left\{\begin{array}{l}
2, \text { when } j \text { is odd } \\
3, \text { when } j \text { is even }
\end{array}\right.
$$

This gives the upper bound $\chi_{r}\left(P_{n} \dot{\vee} P_{m}\right) \leq 3$ and hence $\chi_{r}\left(P_{n} \dot{\vee} P_{m}\right)=3=r+2$.
Subcase 2: $2 \leq r \leq 3$.
Consider the vertex a_{1} which is of degree 2 inorder to satisfy its 2-adjacency provide the colors 1,2 and 3 to u_{1}, a_{1}, u_{2} respectively. Now while considering the vertex u_{1} for satisfying its 2-adjacency we need to provide a new color $4=r+2$ to any v_{j} since neither the color 1 and 3 can be applied to v_{j}. Similarly when $r=3$ for satisfying the r-adjacency condition of u_{1} we need to provide the colors 4 and $5=r+2$ to any of the two v_{j} 's. Hence we require a minimum of $r+2$ different colors here i.e., $\chi_{r}\left(P_{n} \dot{\vee} P_{m}\right) \geq r+2$. The upper bound is given by the map $f: V\left(P_{n} \dot{\vee} P_{m}\right) \rightarrow\{1,2, \cdots, r+2\}$.

$$
f\left(u_{i}\right)=\left\{\begin{array}{l}
1, \text { when } i \text { is odd } \\
3, \text { when } i \text { is even }
\end{array}\right.
$$

$f\left(a_{i}\right)=2$ for $1 \leq i \leq n-1$
$f\left(v_{1}, v_{2}, \cdots, v_{m}\right)=\{2,4, \cdots, r+2,2,4, \cdots, r+2, \cdots\}$
Hence $\chi_{r}\left(P_{n} \dot{\vee} P_{m}\right)=r+2$.
Case 2: When $4 \leq r \leq m, m \geq 4$.
Here in this case we consider $m \geq 4$ and the case when $m=3$ does not come under this case because in this case the value of r varies from 4 to m so it belongs to the next case. Consider the vertex u_{1} and let it be assigned the color 1 also let the vertices a_{1}, u_{2} be assigned the colors 2 and 3 respectively. Now in order to satisfy the r-adjacency condition of u_{1} we provide the colors $4, \cdots, r+2$ to the vertices v_{j} 's in order and this case ends at $r=m$. Now consider the vertex v_{1} it is already adjacent to the vertex u_{1}, u_{2} with colors 1 and 3 in order to satisfy the r-adjacency condition we need to provide the colors $r+3, \cdots, 2 r-1$ to the remaining vertices of u_{i} since $n>m$. Hence we have the lower bound $\chi_{r}\left(P_{n} \dot{\vee} P_{m}\right) \geq 2 r-1$. Consider the map $f: V\left(P_{n} \dot{\vee} P_{m}\right) \rightarrow\{1,2, \cdots, 2 r-1\}$ and the coloring is as below.
$f\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\{1,3, r+3, \cdots, 2 r-1,1,3, r+3, \cdots, 2 r-1, \cdots\}$
$f\left(a_{i}\right)=2$ for $1 \leq i \leq n-1$
$f\left(v_{1}, v_{2}, \cdots, v_{m}\right)=\{2,4, \cdots, r+2,2,4, \cdots, r+2, \cdots\}$
This gives us the upper bound as $\chi_{r}\left(P_{n} \dot{\vee} P_{m}\right) \leq 2 r-1$ and hence $\chi_{r}\left(P_{n} \dot{\vee} P_{m}\right)=2 r-1$.
Case 3: When $m+1 \leq r \leq n+1, n \geq 3$.
Let us first assign the vertices u_{1}, a_{1}, u_{2} with the colors $1,2,3$ respectively. Now the vertex u_{1}

Figure 1. The 7-dynamic coloring of the graph $P_{7} \dot{V}_{5}$
with degree $m+1$ needs $m+1$ different colored neighbors hence assign the colors $4, \cdots, m+3$ colors to $v_{1}, v_{2}, \cdots, v_{m}$. Now for satisfying the r-adjacency of the vertices v_{j} we provide the colors $m+4, \cdots, r+m-1$ to the remaining u_{i} 's, $i \geq 3$. Thus we require a minimum of at least $r+m-1$ colors in this case hence $\chi_{r}\left(P_{n} \dot{\vee} P_{m}\right) \geq r+m-1$. The coloring is given below using the map $f: V\left(P_{n} \dot{\vee} P_{m}\right) \rightarrow\{1,2, \cdots, r+m-1\}$.
When $m=3$ and $r=4$ the coloring is:
$f\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\{1,3,2,1,3,2, \cdots\}$
$f\left(v_{1}, v_{2}, v_{3}\right)=\{4,5,6\}$ and for $\left\{a_{i}: 1 \leq i \leq n-1\right\}$ provide suitable color from the set of colors $\{1,2,3\}$ so that each a_{i} satisfies 2-adjacency condition.
For all the remaining case the coloring is as below.
$f\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\{1,3, m+4, \cdots, r+m-1,1,3, m+4, \cdots, r+m-1, \cdots\}$
For $\left\{a_{i}: 1 \leq i \leq n-1\right\}$ provide the coloring as said for $m=3$ and $r=4$.
$f\left(v_{1}, v_{2}, \cdots, v_{m}\right)=\{4,5, \cdots, m+3\}$
Thus $\chi_{r}\left(P_{n} \dot{\vee} P_{m}\right)=r+m-1$.
Case 4: When $r=\Delta=n+2$.
By the case $r=n+1$ the r-adjacencies of all the vertices will be satisfied and we no longer require any new colors other than the $m+n$ colors used in the case $r=n+1$. The coloring in this case is as below.
$f\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\{1,3, m+4, \cdots, m+n\}$
For the $\left\{a_{i}: 1 \leq i \leq n-1\right\}$ provide suitable color from the set of colors $\{1,2,3\}$ so that each a_{i} satisfies 2-adjacency condition.
$f\left(v_{1}, v_{2}, \cdots, v_{m}\right)=\{4,5, \cdots, m+3\}$
Hence $\chi_{r}\left(P_{n} \dot{\vee} P_{m}\right)=m+n$.
II. When $n \geq 4$ and $m \geq n$

$$
\chi_{r}\left(P_{n} \dot{\vee} P_{m}\right)=\left\{\begin{array}{lll}
r+2 & : & 1 \leq r \leq 3 \\
2 r-1 & : & 4 \leq r \leq n+1, m>n \text { and } 4 \leq r \leq n, m=n \\
r+n & : & n+2 \leq r \leq m, m \geq n+2 \\
m+n & : & r=m+1, m+2, m \geq n
\end{array}\right.
$$

Proof. The maximum and minimum degrees in this case are $m+2$ and 2 respectively. The cases when $1 \leq r \leq 3$ is same as the one given in the earlier part of the theorem.
Case 2: When $4 \leq r \leq n+1, m>n$ and $4 \leq r \leq n, m=n$.
When $m=n$ the case ends at $r=n$ and the coloring for $r=n+1$ goes to Case 4 . Let us first assign the vertices u_{1}, a_{1}, u_{2} with the colors $1,2,3$ respectively. Now in order to satisfy the r-adjacency condition of u_{1} we provide the colors $4, \cdots, r+2$ to the vertices v_{j} 's in order. Also while considering the vertex v_{1} it is already adjacent to the vertex u_{1}, u_{2} with colors 1 and 3 in order to satisfy the r-adjacency condition we need to provide the colors $r+3, \cdots, 2 r-1$ to the remaining vertices of u_{i} and this case ends at $r=n+1$ since the degree of v_{1} is $n+1$. The coloring in this case is same as the one given in Case 2 of first part of the theorem. Thus $\chi_{r}\left(P_{n} \dot{\vee} P_{m}\right)=2 r-1$.

Figure 2. The 8-dynamic coloring of the graph $P_{6} \dot{\vee} P_{8}$

Case 3 : When $n+2 \leq r \leq m, m \geq n+2$.
The condition $m \geq n+2$ is necessary otherwise it will not be well-defined as in the case of $m=n, n+1$. For $m=n, r=n+2=\Delta$ and $m=n+1, r=n+2=m+1$ is provided in Case 4. Now for the remaining $m \geq n+2$, in order to satisfy the r-adjacency condition of u_{1} and v_{i} we provide the colors $4, \cdots, r+2$ to the vertices v_{j} 's in order and $1,3, r+3, \cdots, r+n$ to the vertices u_{i} in order. Hence we have the lower bound $\chi_{r}\left(P_{n} \dot{\vee} P_{m}\right) \geq r+n$. The coloring is this case is defined by the mapping $f: V\left(P_{n} \dot{\vee} P_{m}\right) \rightarrow\{1,2, \cdots, r+n\}$.
$f\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\{1,3, r+3, \cdots, r+n, 1,3, r+3, \cdots, r+n, \cdots\}$
$f\left(a_{i}\right)=2$
$f\left(v_{1}, v_{2}, \cdots, v_{m}\right)=\{2,4,5, \cdots, r+2,2,4,5, \cdots, r+2, \cdots\}$
Thus $\chi_{r}\left(P_{n} \dot{\vee} P_{m}\right)=r+n$.
Case 4: When $r=m+1, m+2, m \geq n$.
When $r=m+1$ for satisfying the $m+1$-adjacency of the vertex u_{1} we first provide the colors $4, \cdots, m+3$ to the m vertices of P_{m} with the assumption that u_{1}, a_{1}, u_{2} are assigned the color $1,2,3$. Now for satisfying the r-adjacency of v_{1} assign the colors $2, m+4, \cdots, m+n$ to the vertices u_{3}, \cdots, u_{n} of P_{n}. Hence $m+n$ colors is the minimum requirement. Also when $r=m+2$, $m+n$ colors are sufficient for proper r-coloring. The coloring in this case is same as the one given in Case 4 of first part. Thus $\chi_{r}\left(P_{n} \dot{\vee} P_{m}\right)=m+n$.

Observation 1 For $n \geq 4$,

$$
\chi_{r}\left(P_{n} \dot{\vee} P_{2}\right)= \begin{cases}r+2 & : \\ r+1 & : \\ r \leq r \leq 3 \\ r \leq \Delta\end{cases}
$$

The minimum degree is $\delta\left(P_{n} \dot{\vee} P_{2}\right)=2$ and maximum degree is $\Delta\left(P_{n} \dot{\vee} P_{2}\right)=n+1$.
Case 1: When $1 \leq r \leq 3$.
The coloring for $r=1$ is same as the one for $r=1$ of Theorem 1 .
When $r=2$

$$
f\left(u_{i}\right)=\left\{\begin{array}{l}
1, \text { when } i \text { is odd } \\
3, \text { when } i \text { is even }
\end{array}\right.
$$

$f\left(a_{i}\right)=2$ for $1 \leq i \leq n-1$
$f\left(v_{1}, v_{2}\right)=\{2,4\}$
When $r=3$
$f\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\{1,3,2,1,3,2, \cdots\}$
For $\left\{a_{i}: 1 \leq i \leq n-1\right\}$ provide suitable color from the set of colors $\{1,2,3\}$ so that each a_{i} satisfies 2-adjacency condition.
$f\left(v_{1}, v_{2}\right)=\{4,5\}$
Case 2: When $4 \leq r \leq \Delta=n+1$.
$f\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\{1,3,2,6, \cdots, r+1,1,3,2,6, \cdots, r+1, \cdots\}$. The coloring for remaining vertices are same as in Case 2.

Observation 2 For $m \geq 2$,

$$
\chi_{r}\left(P_{2} \dot{\vee} P_{m}\right)= \begin{cases}r+2 & : \\ & 1 \leq r \leq m+1\end{cases}
$$

The minimum degree is $\delta\left(P_{2} \dot{\vee} P_{m}\right)=2$ and maximum degree is $\Delta\left(P_{2} \dot{\vee} P_{m}\right)=m+1$. The coloring for $r=1$ is same as given in theorem 1 .
When $2 \leq r \leq m+1$ the coloring is as follows:
$f\left(u_{1}, u_{2}\right)=\{1,3\}$
$f\left(a_{1}\right)=2$
$f\left(v_{1}, v_{2}, \cdots, v_{m}\right)=\{4,5,6, \cdots, r+2,4,5,6, \cdots, r+2, \cdots\}$
Observation 3 For $m \geq 3$,

$$
\chi_{r}\left(P_{3} \dot{\vee} P_{m}\right)= \begin{cases}r+2 & : \quad 1 \leq r \leq m+1 \\ m+3 & : \quad r=m+2\end{cases}
$$

The minimum degree is $\delta\left(P_{3} \dot{\vee} P_{m}\right)=2$ and maximum degree is $\Delta\left(P_{3} \dot{\vee} P_{m}\right)=m+2$.
Case 1: When $1 \leq r \leq m+1$ the coloring is as follows:
The coloring for $r=1$ is same as given in theorem 1.
When $r=2,3$.
$f\left(u_{1}, u_{2}, u_{3}\right)=\{1,3,1\}$
$f\left(a_{1}\right)=2$
$f\left(v_{1}, v_{2}, \cdots, v_{m}\right)=\{2,4, \cdots, r+2,2,4, \cdots, r+2, \cdots\}$
When $4 \leq r \leq m+1$.
$f\left(u_{1}, u_{2}, u_{3}\right)=\{1,3,2\}$
$f\left(a_{1}, a_{2}\right)=\{2,1\}$
$f\left(v_{1}, v_{2}, \cdots, v_{m}\right)=\{4, \cdots, r+2,4, \cdots, r+2, \cdots\}$
Case 2: When $r=m+2$ the coloring is same as the one for $r=m+1$.

Theorem 2.2. For positive integers $n \geq 3, m \geq 2$, the r-dynamic chromatic number of subdivision - vertex join of path P_{n} with complete graph K_{m} is

$$
\chi_{r}\left(P_{n} \dot{\vee} K_{m}\right)=\left\{\begin{array}{lll}
m+1 & : & r=1 \\
m+2 & : & 2 \leq r \leq m \\
m+3 & : & m+1 \leq r \leq m+2 \\
r+1 & : & m+3 \leq r \leq \Delta, n \geq 4
\end{array}\right.
$$

Proof. The vertex set of $P_{n} \dot{\vee} K_{m}$ is $V\left(P_{n} \dot{\vee} K_{m}\right)=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\} \cup\left\{a_{1}, a_{2}, \cdots, a_{n-1}\right\} \cup$ $\left\{v_{1}, v_{2}, \cdots, v_{m}\right\}$. The edge set of $P_{n} \dot{\vee} K_{m}$ is $E\left(P_{n} \dot{\vee} K_{m}\right)=\left\{u_{i} a_{i}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} a_{i-1}\right.$: $2 \leq i \leq n\} \cup\left\{v_{j} v_{k}: 1 \leq j, k \leq m-1\right.$ and $\left.j \neq k\right\} \cup\left\{u_{i} v_{j}: 1 \leq i \leq n, 1 \leq j \leq m\right\}$. The minimum degree, $\delta\left(P_{n} \dot{\vee} K_{m}\right)=2$ and maximum degreee, $\Delta\left(P_{n} \dot{\vee} K_{m}\right)=m+n-1$.
Case 1: When $r=1$.
The vertices $\left\{u_{i}, v_{1}, v_{2}, \cdots, v_{m}\right\}$ induces a clique of order $m+1$ for all i and hence we have the lower bound $\chi_{r}\left(P_{n} \dot{\vee} K_{m}\right) \geq m+1$. We provide the upper bound $\chi_{r}\left(P_{n} \dot{\vee} K_{m}\right) \leq m+1$ using the color mapping $f: V\left(P_{n} \dot{\vee} K_{m}\right) \rightarrow\{1,2, \cdots, m+1\}$ defined as follows.
$f\left(u_{i}\right)=1$ for all $1 \leq i \leq n$
$f\left(a_{i}\right)=2$ for $1 \leq i \leq n-1 f\left(v_{1}, v_{2}, \cdots, v_{m}\right)=\{2,3, \cdots, m+1\}$
Hence $\chi_{r}\left(P_{n} \dot{\vee} K_{m}\right)=m+1$.
Case 2: When $2 \leq r \leq m$.
Considering the vertices $a_{i}: 1 \leq i \leq n-1$ for satisfying its 2-adjacency we need to provide two different colors to its neighbors u_{i} and u_{i+1}. Thus let the colors $1,2,3$ be assigned to u_{i}, a_{i}, u_{i+1} respectively then the colors 1 and 3 cannot be assigned to any v_{j} 's. So in order to color K_{m} we use the colors $2,4,5, \cdots, m+2$. And this coloring satisfies the r-adjacency of vertices till $r=m$. Thus $\chi_{r}\left(P_{n} \dot{\vee} K_{m}\right) \geq m+2$. Let $f: V\left(P_{n} \dot{\vee} K_{m}\right) \rightarrow\{1,2, \cdots, m+2\}$ be the function

Figure 3. The 8-dynamic coloring of the graph $P_{6} \dot{\vee} K_{4}$
which defines the coloring in this case as below.

$$
f\left(u_{i}\right)=\left\{\begin{array}{l}
1, \text { when } i \text { is odd } \\
3, \text { when } i \text { is even }
\end{array}\right.
$$

$f\left(a_{i}\right)=2$ for $1 \leq i \leq n-1 f\left(v_{1}, v_{2}, \cdots, v_{m}\right)=\{2,4, \cdots, m+2\}$
Thus the upper bound is $\chi_{r}\left(P_{n} \dot{\vee} K_{m}\right) \leq m+2$ and we conclude that $\chi_{r}\left(P_{n} \dot{\vee} K_{m}\right)=m+2$.
Case 3 : When $m+1 \leq r \leq m+2$.
When $r=m+1$ we have by the lemma $\chi_{r}\left(P_{n} \dot{\vee} K_{m}\right) \geq \min \left\{r, \Delta\left(P_{n} \dot{\vee} K_{m}\right)\right\}+1=r+1=$ $m+2$ but inorder to satisfy the r-adjacency of the vertices u_{i} we need an extra color $m+3$ in this case. Hence $\chi_{r}\left(P_{n} \dot{\vee} K_{m}\right) \geq m+3$. Again when $r=m+2$ we have by the lemma $\chi_{r}\left(P_{n} \dot{\vee} K_{m}\right) \geq \min \left\{r, \Delta\left(P_{n} \dot{\vee} K_{m}\right)\right\}+1=r+1=m+3$. We provide the coloring in this case by the mapping $f: V\left(P_{n} \dot{\vee} K_{m}\right) \rightarrow\{1,2, \cdots, m+3\}$.

$$
f\left(u_{i}\right)=\left\{\begin{array}{l}
1, \text { when } i \equiv 1(\bmod 3) \\
3, \text { when } i \equiv 2(\bmod 3) \\
2, \text { when } i \equiv 0(\bmod 3)
\end{array}\right.
$$

For $\left\{a_{i}: 1 \leq i \leq n-1\right\}$ provide suitable color from the set of colors $\{1,2,3\}$ so that each a_{i} satisfies 2-adjacency condition.
$f\left(v_{1}, v_{2}, \cdots, v_{m}\right)=\{4,5, \cdots, m+3\}$
Thus $\chi_{r}\left(P_{n} \dot{\vee} K_{m}\right)=m+3$.
Case 4 : When $m+3 \leq r \leq \Delta, n \geq 4$.
For this case $n \geq 4$ because when $n=3$ the maximum degree was $m+2$ and it ended in the previous case itself. By the lemma we the lower bound $\chi_{r}\left(P_{n} \dot{\vee} K_{m}\right) \geq \min \left\{r, \Delta\left(P_{n} \dot{\vee} K_{m}\right)\right\}+$ $1=r+1$. The upper bound is attained by the following coloring defined by the map f : $V\left(P_{n} \dot{\vee} K_{m}\right) \rightarrow\{1,2, \cdots, r+1\}$.
$f\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\{1,3,2, m+4, \cdots, r+1,1,3,2, m+4, \cdots, r+1, \cdots\}$
For $a_{i}: 1 \leq i \leq n-1$ provide suitable color from the set of colors $\{1,2,3\}$ so that each a_{i} satisfies 2-adjacency condition.
$f\left(v_{1}, v_{2}, \cdots, v_{m}\right)=\{4,5, \cdots, m+3\}$
Hence we have the upper bound $\chi_{r}\left(P_{n} \dot{\vee} K_{m}\right) \leq r+1$ and we conclude that $\chi_{r}\left(P_{n} \dot{\vee} K_{m}\right)=r+1$.

Observation 4 For $m \geq 2$,

$$
\chi_{r}\left(P_{2} \dot{\vee} K_{m}\right)= \begin{cases}m+1 & : r=1 \\ m+2 & : \\ m+3 & : \quad r=m+m \\ m+1\end{cases}
$$

The minimum degree is $\delta\left(P_{2} \dot{\vee} K_{m}\right)=2$ and maximum degree is $\Delta\left(P_{2} \dot{\vee} K_{m}\right)=m+1$. The coloring for cases 1, 2 and 3 are same as given in Case 1, 2 and 3 of theorem 2.

Theorem 2.3. For positive integers n, m, the r - dynamic chromatic number of subdivision vertex join of path P_{n} with star graph $K_{1, m}$ is
I. When $n \geq 4, m \geq 2$ and $m+1<n$

$$
\chi_{r}\left(P_{n} \dot{\vee} K_{1, m}\right)= \begin{cases}r+2 & : 1 \leq r \leq 3 \\ 2 r-1 & : 4 \leq r \leq m+1, m \geq 3 \\ r+m & : m+2 \leq r \leq n+1, m \geq 2 \\ m+n+1 & : n+2 \leq r \leq m+n\end{cases}
$$

Proof. Let the edge set of P_{n} be $E\left(P_{n}\right)=\left\{a_{1}, a_{2}, \cdots, a_{n-1}\right\}$. Then vertex set of $P_{n} \dot{\vee} K_{1, m}$ is $V\left(P_{n} \dot{\vee} K_{1, m}\right)=\left\{u_{1}, u_{2}, \cdots, u_{n}\right\} \cup\left\{a_{1}, a_{2}, \cdots, a_{n-1}\right\} \cup\left\{v_{1}, v_{2}, \cdots, v_{m+1}\right\}$ where v_{1} is the central vertex of $K_{1, m}$ to which the m vertices are adjacent with. The edge set of $P_{n} \dot{\vee} K_{1, m}$ is $E\left(P_{n} \dot{\vee} K_{1, m}\right)=\left\{u_{i} a_{i}: 1 \leq i \leq n-1\right\} \cup\left\{u_{i} a_{i-1}: 2 \leq i \leq n\right\} \cup v_{1} v_{j}: 2 \leq j \leq m+1 \cup\left\{u_{i} v_{j}:\right.$ $1 \leq i \leq n, 1 \leq j \leq m+1\}$. The minimum degree and maximum degree in this case is 2 and $m+n$ respectively.
Case 1: When $1 \leq r \leq 3$.
Subcase 1: $r=1$.
The presence of cycle C_{3} in $P_{n} \dot{\vee} K_{1, m}$ paves way to the fact that we require at least 3 different colors. Hence the lower bound $\chi_{r}\left(P_{n} \dot{\vee} K_{1, m}\right) \geq 3$. We provide the upper bound using the mapping $f: V\left(P_{n} \dot{\vee} K_{1, m}\right) \rightarrow\{1,2,3\}$ as follows:
$f\left(u_{i}\right)=1$ for all i
$f\left(a_{i}\right)=1$ for $1 \leq i \leq n-1$
$f\left(v_{1}, v_{2}, \cdots, v_{m+1}\right)=\{3,2,2, \cdots\}$
This gives the upper bound $\chi_{r}\left(P_{n} \dot{\vee} K_{1, m}\right) \leq 3$ and hence $\chi_{r}\left(P_{n} \dot{\vee} K_{1, m}\right)=3=r+2$.
Subcase 2: $2 \leq r \leq 3$.
Consider the vertex a_{1} which is of degree 2 in order to satisfy its 2 -adjacency provide the colors 1,2 and 3 to u_{1}, a_{1}, u_{2} respectively. Now while considering the vertex u_{1} for satisfying its 2-adjacency we need to provide a new color $4=r+2$ to any one v_{j} since neither the color 1 and 3 can be applied to v_{j} 's. Similarly when $r=3$ for satisfying the r-adjacency condition of u_{1} we need to provide the colors 4 and $5=r+2$ to any of the two v_{j} 's. Hence we require a minimum of $r+2$ different colors here i.e., $\chi_{r}\left(P_{n} \dot{\vee} K_{1, m}\right) \geq r+2$. The upper bound is given by the map $f: V\left(P_{n} \dot{\vee} K_{1, m}\right) \rightarrow\{1,2, \cdots, r+2\}$.

$$
f\left(u_{i}\right)=\left\{\begin{array}{l}
1, \text { when } i \text { is odd } \\
3, \text { when } i \text { is even }
\end{array}\right.
$$

$f\left(a_{i}\right)=2$ for $1 \leq i \leq n-1$
when $r=2, f\left(v_{1}, v_{2}, \cdots, v_{m}+1\right)=\{4,2,2, \cdots\}$
when $r=3, f\left(v_{1}, v_{2}, \cdots, v_{m}+1\right)=\{5,4,2,2, \cdots\}$
Hence $\chi_{r}\left(P_{n} \dot{\vee} K_{1, m}\right)=r+2$.
Case 2: When $4 \leq r \leq m+1, m \geq 3$.
Here in this case we consider $m \geq 3$ and the case when $m=2$ does not come under this case because in this case the value of r varies from 4 to $m+1$ so it belongs to the next case. Consider the vertex u_{1} and let be assigned the color 1 also let the vertices a_{1}, u_{2} be assigned the colors 2 and 3 respectively. Now in order to satisfy the r-adjacency condition of u_{1} we provide the colors $r+2,4, \cdots, r+1$ to the vertices v_{j} 's in order and this case ends at $r=m+1$. Now consider

Figure 4. The 5-dynamic coloring of the graph $P_{6} \dot{\vee} K_{1,4}$
the vertex v_{1} it is already adjacent to the vertex u_{1}, u_{2} with colors 1 and 3 in order to satisfy the r-adjacency condition we need to provide the colors $r+3, \cdots, 2 r-1$ to the remaining vertices of u_{i} since $m+1<n$. Hence we have the lower bound $\chi_{r}\left(P_{n} \dot{\vee} K_{1, m}\right) \geq 2 r-1$. Consider the map $f: V\left(P_{n} \dot{\vee} K_{1, m}\right) \rightarrow\{1,2, \cdots, 2 r-1\}$ and the coloring is as below.
$f\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\{1,3, r+3, \cdots, 2 r-1,1,3, r+3, \cdots, 2 r-1, \cdots\}$
$f\left(a_{i}\right)=2$ for $1 \leq i \leq n-1$
$f\left(v_{1}, v_{2}, \cdots, v_{m+1}\right)=\{r+2,2,4, \cdots, r+1,2,4, \cdots, r+1, \cdots\}$
This gives us the upper bound as $\chi_{r}\left(P_{n} \dot{\vee} K_{1, m}\right) \leq 2 r-1$ and hence $\chi_{r}\left(P_{n} \dot{\vee} K_{1, m}\right)=2 r-1$.
Case 3: When $m+2 \leq r \leq n+1, m \geq 2$.
Let us first assign the vertices u_{1}, a_{1}, u_{2} with the colors $1,2,3$ respectively. Now the vertex u_{1} with degree $m+2$ needs $m+2$ different colored neighbors hence assign the colors $4, \cdots, m+4$ colors to $v_{2}, v_{3}, \cdots, v_{m+1}, v_{1}$. Now for satisfying the r-adjacency of the vertices v_{j} we provide the colors $m+5, \cdots, r+m$ to the remaining u_{i} 's, $i \geq 3$. Thus we require a minimum of at least $r+m$ colors in this case hence $\chi_{r}\left(P_{n} \dot{\vee} K_{1, m}\right) \geq r+m$. The coloring is given below using the map $f: V\left(P_{n} \dot{\vee} K_{1, m}\right) \rightarrow\{1,2, \cdots, r+m\}$.
When $m=2$ and $r=4$ the coloring is:
$f\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\{1,3,2,1,3,2, \cdots\}$
$f\left(v_{1}, v_{2}, v_{3}\right)=\{4,5,6\}$ and for $\left\{a_{i}: 1 \leq i \leq n-1\right\}$ provide suitable color from the set of colors $\{1,2,3\}$ so that each a_{i} satisfies 2-adjacency condition.
For all the remaining case the coloring is as below.
$f\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\{1,3, m+5, \cdots, r+m, 1,3, m+5, \cdots, r+m, \cdots\}$
For $\left\{a_{i}: 1 \leq i \leq n-1\right\}$ provide the coloring as said for $m=2$ and $r=4$.
$f\left(v_{1}, v_{2}, \cdots, v_{m+1}\right)=\{m+4,4,5, \cdots, m+3\}$
Thus we have the upper bound $\chi_{r}\left(P_{n} \dot{\vee} K_{1, m}\right) \leq r+m$ and we conclude that $\chi_{r}\left(P_{n} \dot{\vee} K_{1, m}\right)=$ $r+m$.

Case 4: When $n+2 \leq r \leq m+n$.
By the case $r=n+1$ the r-adjacencies of all the vertices will be satisfied and we no longer require any new colors other than the $m+n$ colors used in the case $r=n+1$. The coloring in this case is as below.
$f\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\{1,3, m+5, \cdots, m+n+1\}$
For the $\left\{a_{i}: 1 \leq i \leq n-1\right\}$ provide suitable color from the set of colors $\{1,2,3\}$ so that each a_{i} satisfies 2 -adjacency condition.
$f\left(v_{1}, v_{2}, \cdots, v_{m+1}\right)=\{m+4,4,5, \cdots, m+3\}$
Hence $\chi_{r}\left(P_{n} \dot{\vee} K_{1, m}\right)=m+n+1$.

Figure 5. The 7-dynamic coloring of the graph $P_{6} \dot{\vee} K_{1,7}$
II. When $n \geq 4$ and $m+1 \geq n$

$$
\chi_{r}\left(P_{n} \dot{\vee} K_{1, m}\right)= \begin{cases}r+2 & : 1 \leq r \leq 3 \\ 2 r-1 & : 4 \leq r \leq n+1, m+1>n \text { and } 4 \leq r \leq n, m+1=n \\ r+n & : n+2 \leq r \leq m+1, m+1 \geq n+2 \\ m+n+1 & : m+2 \leq r \leq \Delta, m+1 \geq n\end{cases}
$$

Proof. The maximum and minimum degrees in this case are $m+n$ and 2 respectively. The cases when $1 \leq r \leq 3$ is same as the one given in the earlier part of the theorem.
Case 2: When $4 \leq r \leq n+1, m+1>n$ and $4 \leq r \leq n, m+1=n$.
When $m+1=n$ the case ends at $r=n$ and the coloring for $r=n+1=m+2$ goes to Case 4. Let us first assign the vertices u_{1}, a_{1}, u_{2} with the colors $1,2,3$ respectively. Now in order to satisfy the r-adjacency condition of u_{1} we provide the colors $r+2,4, \cdots, r+1$ to the vertices v_{j} 's in order. Also while considering the vertex v_{1} it is already adjacent to the vertex u_{1}, u_{2} with colors 1 and 3 in order to satisfy the r-adjacency condition we need to provide the colors $r+3, \cdots, 2 r-1$ to the remaining vertices of u_{i} and this case ends at $r=n+1$ since the degree of v_{j} is $n+1$ for $j \geq 2$. The coloring in this case is same as the one given in Case 2 of first part of the theorem. Thus $\chi_{r}\left(P_{n} \dot{\vee} K_{1, m}\right)=2 r-1$.

Case 3: When $n+2 \leq r \leq m+1, m+1 \geq n+2$.
The condition $m+1 \geq n+2$ is necessary otherwise it will not be well-defined as in the case of $n=m+1$ and $m=n$. For $n=m+1, r=n+2=m+3$ and $m=n$, $r=n+2=m+2$ is provided in Case 4 . Now for the remaining $m+1 \geq n+2$, in order to satisfy the r-adjacency condition of u_{1} and v_{i} we provide the colors $r+2,4, \cdots, r+1$ to the vertices v_{j} 's in order and $1,3, r+3, \cdots, r+n$ to the vertices u_{i} in order. Hence we have the lower bound $\chi_{r}\left(P_{n} \dot{\vee} P_{m}\right) \geq r+n$. The coloring is this case is defined by the mapping $f: V\left(P_{n} \dot{\vee} K_{1, m}\right) \rightarrow\{1,2, \cdots, r+n\}$.
$f\left(u_{1}, u_{2}, \cdots, u_{n}\right)=\{1,3, r+3, \cdots, r+n, 1,3, r+3, \cdots, r+n, \cdots\}$
$f\left(a_{i}\right)=2$
$f\left(v_{1}, v_{2}, \cdots, v_{m+1}\right)=\{r+2,2,4,5, \cdots, r+1,2,4,5, \cdots, r+1, \cdots\}$
Thus $\chi_{r}\left(P_{n} \dot{\vee} K_{1, m}\right)=r+n$.
Case 4 : When $m+2 \leq r \leq \Delta, m+1 \geq n$.
When $r=m+2$ for satisfying the $m+2$-adjacency of the vertex u_{1} we first provide the colors
$m+4,4, \cdots, m+3$ to the $m+1$ vertices of $K_{1, m}$ with the assumption that u_{1}, a_{1}, u_{2} are assigned the color $1,2,3$. Now for satisfying the r-adjacency of v_{1} assign the colors $2, m+5, \cdots, m+n+1$ to the vertices u_{3}, \cdots, u_{n} of P_{n}. Hence $m+n+1$ colors is the minimum requirement. Also for all the remaining cases of r these $m+n+1$ colors are sufficient for proper r-coloring. The coloring in this case is same as the one given in Case 4 of first part. Thus $\chi_{r}\left(P_{n} \dot{\vee} K_{1, m}\right)=m+n+1$.

Observation 5 For $m \geq 2$,

$$
\chi_{r}\left(P_{2} \dot{\vee} K_{1, m}\right)=\left\{\begin{array}{l}
r+2: 1 \leq r \leq m+2
\end{array}\right.
$$

The minimum degree is $\delta\left(P_{2} \dot{\vee} K_{1, m}\right)=2$ and maximum degree is $\Delta\left(P_{2} \dot{\vee} K_{1, m}\right)=m+2$. The coloring for $r=1$ is same as given for $r=1$ of theorem 3 .
When $2 \leq r \leq m+2$ the coloring is as follows:
$f\left(u_{1}, u_{2}\right)=\{1,3\}$
$f\left(a_{1}\right)=2$
when $2 \leq r \leq m+1, f\left(v_{1}, v_{2}, \cdots, v_{m+1}\right)=\{r+2,2,4,5,6, \cdots, r+1,2,4,5,6, \cdots, r+1, \cdots\}$ when $r=m+2, f\left(v_{1}, v_{2}, \cdots, v_{m+1}\right)=\{r+2,4,5,6, \cdots, r+1,4,5,6, \cdots, r+1, \cdots\}$

Observation 6 For $m \geq 2$,

$$
\chi_{r}\left(P_{3} \dot{\vee} K_{1, m}\right)=\left\{\begin{array}{lll}
r+2 & : & 1 \leq r \leq m+2 \\
m+4 & : & r=m+3
\end{array}\right.
$$

The minimum degree is $\delta\left(P_{3} \dot{\vee} K_{1, m}\right)=2$ and maximum degree is $\Delta\left(P_{3} \dot{\vee} K_{1, m}\right)=m+3$.
Case 1: When $1 \leq r \leq m+2$.
The coloring for $r=1$ is same as given in theorem 3 .
When $2 \leq r \leq m+2$ the coloring is as follows:
When $r=2,3$.
$f\left(u_{1}, u_{2}, u_{3}\right)=\{1,3,1\}$
$f\left(a_{1}\right)=2$
$f\left(v_{1}, v_{2}, \cdots, v_{m+1}\right)=\{r+2,2,4,5,6, \cdots, r+1,2,4,5,6, \cdots, r+1, \cdots\}$
When $4 \leq r \leq m+1$.
$f\left(u_{1}, u_{2}, u_{3}\right)=\{1,3,2\}$
$f\left(a_{1}, a_{2}\right)=\{2,1\}$
$f\left(v_{1}, v_{2}, \cdots, v_{m+1}\right)=\{r+2,2,4,5,6, \cdots, r+1,2,4,5,6, \cdots, r+1, \cdots\}$
Case 2: When $r=m+3$.
$f\left(u_{1}, u_{2}, u_{3}\right)=\{1,3,2\}$
$f\left(a_{1}, a_{2}\right)=\{2,1\}$
$f\left(v_{1}, v_{2}, \cdots, v_{m+1}\right)=\{m+4,4,5,6, \cdots, m+3\}$.

References

[1] A.Ahadi, S.Akbari, A.Dehghana and M.Ghanbari, On the difference between chromatic and dynamic chromatic number of graphs, Discrete Mathematics, 312(2012), 2579-2583.
[2] S.Akbari, M.Ghanbari and S.Jahanbakam, On the dynamic chromatic number of graphs,in:Combinatorics and Graphs, in:Contemporary Mathematics,American Mathematical Society, 531(2010), 11-18.
[3] S.Akbari, M.Ghanbari and S.Jahanbakam, On the list dynamic coloring of graphs, Discrete Applied Mathematics, 157(2009), 3005-3007.
[4] Ika Hesti Augestina, Dafik and A. Y. Harsyaa, On r-dynamic coloring of some graph operations, Indonesian Journal of Combinatorics, 1 (1) (2016), 22-30.
[5] G. Indulal, Spectrum of two new join of graphs and infinite families of integral graphs, Kragujevac Journal of Mathematics, 36(2012), 133-139.
[6] H.J.Lai, B.Montgomery and H.Poon, Upper bounds of dynamic chromatic number, Ars Combinatoria, 68(2003), 193-201.
[7] N. Mohanapriya, V.J.Vernold and M.Venkatachalam, On dynamic coloring of Fan graphs, International Journal of Pure and Applied Mathematics, 106(8)(2016), 169-174.
[8] N. Mohanapriya, Ph.D thesis, A study on dynamic coloring of graphs, Bharathiar University, (2017), Coimbatore, India.
[9] B. Montgomery, Dynamic coloring of graphs, ProQuest LLC, Ann Arbor, MI, (2001), Ph.D Thesis, West Virginia University.
[10] A.Taherkhani, r-dynamic chromatic number of graphs, Discrete Applied Mathematics, 201(2016), 222227.

Author information

Aparna V, PG and Research Department of Mathematics, Kongunadu Arts and Science College, Coimbatore641 029, Tamil Nadu, India.
E-mail: aparnav18794@gmail.com
Mohanapriya N, PG and Research Department of Mathematics, Kongunadu Arts and Science College, Coimbatore-641 029, Tamil Nadu, India.
E-mail: phdmohana@gmail.com
Received : December 31, 2020
Accepted : March 10, 2021

