ON *r*-DYNAMIC COLORING OF SUBDIVISION - VERTEX JOIN OF TWO GRAPHS

Aparna V and Mohanapriya N

Communicated by Dafik

MSC 2010 Classifications: 05C15.

Keywords and phrases: r-dynamic coloring, subdivision graph, subdivision - vertex join, star graph.

Abstract Let H be a simple graph with vertex set V(H) and edge set E(H) which is connected, undirected and finite. For positive integers r, the proper k-coloring of the vertices of the graph H such that $|f(N(z))| \ge \min\{r, d(z)\}$ for each $z \in V(H)$ is referred to as r-dynamic coloring of a graph H. Here N(z) denotes the neighborhood of the vertex z and d(z) is the degree of the vertex z. The least k which permits H to have an r-dynamic coloring with k colors is called the r-dynamic chromatic number of the graph H and it is denoted as $\chi_r(H)$. The subdivision - vertex join of two graphs H_1 and H_2 denoted as $H_1 \lor H_2$ is acquired from the sub-division graph $S(H_1)$ and H_2 by connecting each old vertex of H_1 with every vertex of H_2 . In this paper we have acquired the r-dynamic chromatic number of subdivision - vertex join of path P_n with path P_m , complete graph K_m and star graph $K_{1,m}$.

1 Introduction and Preliminaries

The idea of *r*-dynamic coloring was put forward by Bruce Montgomery in [9]. By the word proper vertex coloring of a graph we mean a coloring where any two adjacent vertices receive distinct colors. Let N(z) and d(z) denotes the neighborhood set of vertex z and number of vertices adjacent to z respectively then for each positive integer r, the *r*-dynamic coloring of H is a proper vertex coloring f such that $|f(N(z))| \ge \min\{r, d(z)\}$, for every $z \in V(H)$ i.e. the neighbors of each vertex z acquires at least $\min\{r, d(z)\}$ distinct colors. The least k which permits H to have an r-dynamic coloring with k colors is referred to as the r-dynamic chromatic number[4, 10] of the graph H and it is denoted as $\chi_r(H)$. The 1-dynamic chromatic number is the normal chromatic number $\chi(H)$ and the 2-dynamic chromatic number is simply called the dynamic coloring of graphs has been analyzed in depth. $\chi_r(H) \ge \min\{r, \Delta(H)\} + 1$ is one of the most familiar lower bound for $\chi_r(H)$ and it was put forward by Montgomery and Lai in [6].

The subdivision graph S(H) of a graph H is acquired by inserting a new vertex for every edge of H. The subdivision - vertex join [5] of two graphs H_1 and H_2 denoted as $H_1 \lor H_2$ is acquired from the sub-division graph $S(H_1)$ and H_2 by connecting each old vertex of H_1 with every vertex of H_2 . Consider the graph H_1 having n vertices, t edges and H_2 having m vertices. Let the vertex set and edge set of H_1 be defined as $V(H_1) = \{u_1, u_2, \dots, u_n\}$, $E(H_1) = \{a_1, a_2, \dots, a_t\}$ and let the vertex set of H_2 be $V(H_2) = \{v_1, v_2, \dots, v_m\}$ then the vertex set of $H_1 \lor H_2$ be defined as $\{u_1, u_2, \dots, u_n\} \cup \{a_1, a_2, \dots, a_t\} \cup \{v_1, v_2, \dots, v_m\}$. The star graph $K_{1,m}$ is a complete bipartite graph with m+1 vertices in which the single vertex belongs to one set and the remaining t vertices belongs to the other set.

2 Theorems

Theorem 2.1. For positive integers n, m, the r- dynamic chromatic number of subdivision - vertex join of path P_n with path P_m is

I. When $n \ge 4, m \ge 3$ and m < n

$$\chi_r(P_n \dot{\vee} P_m) = \begin{cases} r+2 & : \ 1 \le r \le 3\\ 2r-1 & : \ 4 \le r \le m, m \ge 4\\ r+m-1 & : \ m+1 \le r \le n+1, m \ge 3\\ m+n & : \ r=n+2 \end{cases}$$

Proof. Let the edge set of P_n be $E(P_n) = \{a_1, a_2, \dots, a_{n-1}\}$. Then vertex set of $P_n \lor P_m$ is $V(P_n \lor P_m) = \{u_1, u_2, \dots, u_n\} \cup \{a_1, a_2, \dots, a_{n-1}\} \cup \{v_1, v_2, \dots, v_m\}$. The edge set of $P_n \lor P_m$ is $E(P_n \lor P_m) = \{u_i a_i : 1 \le i \le n-1\} \cup \{u_i a_{i-1} : 2 \le i \le n\} \cup \{v_j v_{j+1} : 1 \le j \le m-1\} \cup \{u_i v_j : 1 \le i \le n, 1 \le j \le m\}$. The minimum degree and maximum degree in this case is 2 and n + 2 respectively.

Case 1 : When $1 \le r \le 3$. Subcase 1 : r = 1

The presence of clique of order 3 gives us the fact we require at least 3 different colors. Hence the lower bound $\chi_r(P_n \dot{\vee} P_m) \ge 3$. We provide the upper bound using the mapping $f: V(P_n \dot{\vee} P_m) \rightarrow \{1, 2, 3\}$ as follows: $f(u_i) = 1$ for all i

 $f(a_i) = 1 \text{ for } 1 \le i \le n-1$

$$f(v_j) = \begin{cases} 2, \text{ when } j \text{ is odd} \\ 3, \text{ when } j \text{ is even} \end{cases}$$

This gives the upper bound $\chi_r(P_n \lor P_m) \le 3$ and hence $\chi_r(P_n \lor P_m) = 3 = r + 2$. Subcase 2 : $2 \le r \le 3$.

Consider the vertex a_1 which is of degree 2 inorder to satisfy its 2-adjacency provide the colors 1, 2 and 3 to u_1, a_1, u_2 respectively. Now while considering the vertex u_1 for satisfying its 2-adjacency we need to provide a new color 4 = r + 2 to any v_j since neither the color 1 and 3 can be applied to v_j . Similarly when r = 3 for satisfying the *r*-adjacency condition of u_1 we need to provide the colors 4 and 5 = r + 2 to any of the two v_j 's. Hence we require a minimum of r + 2 different colors here i.e., $\chi_r(P_n \lor P_m) \ge r + 2$. The upper bound is given by the map $f: V(P_n \lor P_m) \to \{1, 2, \dots, r+2\}$.

$$f(u_i) = \begin{cases} 1, \text{ when } i \text{ is odd} \\ 3, \text{ when } i \text{ is even} \end{cases}$$

 $\begin{array}{l} f(a_i) = 2 \mbox{ for } 1 \leq i \leq n-1 \\ f(v_1, v_2, \cdots, v_m) = \{2, 4, \cdots, r+2, 2, 4, \cdots, r+2, \cdots \} \\ \mbox{Hence } \chi_r(P_n \dot{\vee} P_m) = r+2. \end{array}$

Case 2: When $4 \le r \le m, m \ge 4$.

Here in this case we consider $m \ge 4$ and the case when m = 3 does not come under this case because in this case the value of r varies from 4 to m so it belongs to the next case. Consider the vertex u_1 and let it be assigned the color 1 also let the vertices a_1, u_2 be assigned the colors 2 and 3 respectively. Now in order to satisfy the r-adjacency condition of u_1 we provide the colors $4, \dots, r+2$ to the vertices v_j 's in order and this case ends at r = m. Now consider the vertex v_1 it is already adjacent to the vertex u_1, u_2 with colors 1 and 3 in order to satisfy the r-adjacency condition we need to provide the colors $r + 3, \dots, 2r - 1$ to the remaining vertices of u_i since n > m. Hence we have the lower bound $\chi_r(P_n \lor P_m) \ge 2r - 1$. Consider the map $f: V(P_n \lor P_m) \to \{1, 2, \dots, 2r - 1\}$ and the coloring is as below. $f(u_1, u_2, \dots, u_n) = \{1, 3, r + 3, \dots, 2r - 1, 1, 3, r + 3, \dots, 2r - 1, \dots\}$ $f(a_i) = 2$ for $1 \le i \le n - 1$

 $f(v_1, v_2, \cdots, v_m) = \{2, 4, \cdots, r+2, 2, 4, \cdots, r+2, \cdots\}$

This gives us the upper bound as $\chi_r(P_n \lor P_m) \leq 2r - 1$ and hence $\chi_r(P_n \lor P_m) = 2r - 1$.

Case 3 : When $m + 1 \le r \le n + 1, n \ge 3$.

Let us first assign the vertices u_1, a_1, u_2 with the colors 1, 2, 3 respectively. Now the vertex u_1

Figure 1. The 7-dynamic coloring of the graph $P_7 \dot{\lor} P_5$

with degree m + 1 needs m + 1 different colored neighbors hence assign the colors $4, \dots, m + 3$ colors to v_1, v_2, \dots, v_m . Now for satisfying the *r*-adjacency of the vertices v_j we provide the colors $m + 4, \dots, r + m - 1$ to the remaining u_i 's, $i \ge 3$. Thus we require a minimum of at least r + m - 1 colors in this case hence $\chi_r(P_n \lor P_m) \ge r + m - 1$. The coloring is given below using the map $f : V(P_n \lor P_m) \to \{1, 2, \dots, r + m - 1\}$.

When m = 3 and r = 4 the coloring is:

 $f(u_1, u_2, \cdots, u_n) = \{1, 3, 2, 1, 3, 2, \cdots\}$

 $f(v_1, v_2, v_3) = \{4, 5, 6\}$ and for $\{a_i : 1 \le i \le n-1\}$ provide suitable color from the set of colors $\{1, 2, 3\}$ so that each a_i satisfies 2-adjacency condition.

For all the remaining case the coloring is as below.

 $\begin{aligned} f(u_1, u_2, \cdots, u_n) &= \{1, 3, m+4, \cdots, r+m-1, 1, 3, m+4, \cdots, r+m-1, \cdots\} \\ \text{For } \{a_i : 1 \leq i \leq n-1\} \text{ provide the coloring as said for } m=3 \text{ and } r=4. \\ f(v_1, v_2, \cdots, v_m) &= \{4, 5, \cdots, m+3\} \\ \text{Thus } \chi_r(P_n \lor P_m) &= r+m-1. \end{aligned}$

Case 4 : When $r = \Delta = n + 2$.

By the case r = n + 1 the *r*-adjacencies of all the vertices will be satisfied and we no longer require any new colors other than the m + n colors used in the case r = n + 1. The coloring in this case is as below.

 $f(u_1, u_2, \dots, u_n) = \{1, 3, m + 4, \dots, m + n\}$ For the $\{a_i : 1 \le i \le n - 1\}$ provide suitable color from the set of colors $\{1, 2, 3\}$ so that each a_i satisfies 2-adjacency condition. $f(v_1, v_2, \dots, v_m) = \{4, 5, \dots, m + 3\}$ Hence $\chi_r(P_n \lor P_m) = m + n$. \Box

II. When $n \ge 4$ and $m \ge n$

$$\chi_r(P_n \dot{\vee} P_m) = \begin{cases} r+2 & : & 1 \le r \le 3\\ 2r-1 & : & 4 \le r \le n+1, m > n \text{ and } 4 \le r \le n, m = n\\ r+n & : & n+2 \le r \le m, m \ge n+2\\ m+n & : & r=m+1, m+2, m \ge n \end{cases}$$

Proof. The maximum and minimum degrees in this case are m + 2 and 2 respectively. The cases when $1 \le r \le 3$ is same as the one given in the earlier part of the theorem.

Case 2 : When $4 \le r \le n+1, m > n$ and $4 \le r \le n, m = n$.

When m = n the case ends at r = n and the coloring for r = n + 1 goes to Case 4. Let us first assign the vertices u_1, a_1, u_2 with the colors 1, 2, 3 respectively. Now in order to satisfy the *r*-adjacency condition of u_1 we provide the colors $4, \dots, r+2$ to the vertices v_j 's in order. Also while considering the vertex v_1 it is already adjacent to the vertex u_1, u_2 with colors 1 and 3 in order to satisfy the *r*-adjacency condition we need to provide the colors $r + 3, \dots, 2r - 1$ to the remaining vertices of u_i and this case ends at r = n + 1 since the degree of v_1 is n + 1. The coloring in this case is same as the one given in Case 2 of first part of the theorem. Thus $\chi_r(P_n \lor P_m) = 2r - 1$.

Figure 2. The 8-dynamic coloring of the graph $P_6 \dot{\lor} P_8$

Case 3: When $n + 2 \le r \le m, m \ge n + 2$.

The condition $m \ge n+2$ is necessary otherwise it will not be well-defined as in the case of m = n, n+1. For $m = n, r = n+2 = \Delta$ and m = n+1, r = n+2 = m+1 is provided in Case 4. Now for the remaining $m \ge n+2$, in order to satisfy the *r*-adjacency condition of u_1 and v_i we provide the colors $4, \dots, r+2$ to the vertices v_j 's in order and $1, 3, r+3, \dots, r+n$ to the vertices u_i in order. Hence we have the lower bound $\chi_r(P_n \lor P_m) \ge r+n$. The coloring is this case is defined by the mapping $f: V(P_n \lor P_m) \to \{1, 2, \dots, r+n\}$. $f(u_1, u_2, \dots, u_n) = \{1, 3, r+3, \dots, r+n, 1, 3, r+3, \dots, r+n, \dots\}$ $f(u_1, v_2, \dots, v_m) = \{2, 4, 5, \dots, r+2, 2, 4, 5, \dots, r+2, \dots\}$ Thus $\chi_r(P_n \lor P_m) = r + n$.

Case 4 : When $r = m + 1, m + 2, m \ge n$.

When r = m + 1 for satisfying the m + 1-adjacency of the vertex u_1 we first provide the colors $4, \dots, m+3$ to the *m* vertices of P_m with the assumption that u_1, a_1, u_2 are assigned the color 1, 2, 3. Now for satisfying the *r*-adjacency of v_1 assign the colors $2, m+4, \dots, m+n$ to the vertices u_3, \dots, u_n of P_n . Hence m+n colors is the minimum requirement. Also when r = m+2, m+n colors are sufficient for proper *r*-coloring. The coloring in this case is same as the one given in Case 4 of first part. Thus $\chi_r(P_n \lor P_m) = m+n$. \Box

Observation 1 For $n \ge 4$,

$$\chi_r(P_n \dot{\vee} P_2) = \begin{cases} r+2 & : \quad 1 \le r \le 3\\ r+1 & : \quad 4 \le r \le \Delta \end{cases}$$

The minimum degree is $\delta(P_n \lor P_2) = 2$ and maximum degree is $\Delta(P_n \lor P_2) = n + 1$. Case 1 : When $1 \le r \le 3$.

The coloring for r = 1 is same as the one for r = 1 of Theorem 1. When r = 2

$$f(u_i) = \begin{cases} 1, \text{ when } i \text{ is odd} \\ 3, \text{ when } i \text{ is even} \end{cases}$$

 $f(a_i) = 2$ for $1 \le i \le n - 1$ $f(v_1, v_2) = \{2, 4\}$ When r = 3 $f(u_1, u_2, \dots, u_n) = \{1, 3, 2, 1, 3, 2, \dots\}$ For $\{a_i : 1 \le i \le n - 1\}$ provide suitable color from the set of colors $\{1, 2, 3\}$ so that each a_i satisfies 2-adjacency condition. $f(v_1, v_2) = \{4, 5\}$ **Case 2 :** When $4 \le r \le \Delta = n + 1$. $f(u_1, u_2, \dots, u_n) = \{1, 3, 2, 6, \dots, r + 1, 1, 3, 2, 6, \dots, r + 1, \dots\}$. The coloring for remaining

 $f(u_1, u_2, \dots, u_n) = \{1, 3, 2, 6, \dots, r+1, 1, 3, 2, 6, \dots, r+1, \dots\}$. The coloring for remaining vertices are same as in Case 2.

Observation 2 For $m \ge 2$,

$$\chi_r(P_2 \dot{\lor} P_m) = \begin{cases} r+2 : 1 \le r \le m+1 \end{cases}$$

The minimum degree is $\delta(P_2 \lor P_m) = 2$ and maximum degree is $\Delta(P_2 \lor P_m) = m + 1$. The coloring for r = 1 is same as given in theorem 1. When $2 \le r \le m + 1$ the coloring is as follows:

 $f(u_1, u_2) = \{1, 3\}$ $f(a_1) = 2$ $f(v_1, v_2, \dots, v_m) = \{4, 5, 6, \dots, r+2, 4, 5, 6, \dots, r+2, \dots\}$

Observation 3 For $m \ge 3$,

$$\chi_r(P_3 \dot{\vee} P_m) = \begin{cases} r+2 & : & 1 \le r \le m+1 \\ m+3 & : & r=m+2 \end{cases}$$

The minimum degree is $\delta(P_3 \lor P_m) = 2$ and maximum degree is $\Delta(P_3 \lor P_m) = m + 2$. **Case 1 :** When $1 \le r \le m + 1$ the coloring is as follows: The coloring for r = 1 is same as given in theorem 1. When r = 2, 3. $f(u_1, u_2, u_3) = \{1, 3, 1\}$ $f(a_1) = 2$ $f(v_1, v_2, \dots, v_m) = \{2, 4, \dots, r + 2, 2, 4, \dots, r + 2, \dots\}$ When $4 \le r \le m + 1$. $f(u_1, u_2, u_3) = \{1, 3, 2\}$ $f(a_1, a_2) = \{2, 1\}$ $f(v_1, v_2, \dots, v_m) = \{4, \dots, r + 2, 4, \dots, r + 2, \dots\}$ **Case 2 :** When r = m + 2 the coloring is same as the one for r = m + 1.

Theorem 2.2. For positive integers $n \ge 3, m \ge 2$, the *r*-dynamic chromatic number of subdivision - vertex join of path P_n with complete graph K_m is

$$\chi_r(P_n \dot{\vee} K_m) = \begin{cases} m+1 & : \ r=1\\ m+2 & : \ 2 \le r \le m\\ m+3 & : \ m+1 \le r \le m+2\\ r+1 & : \ m+3 \le r \le \Delta, n \ge 4 \end{cases}$$

Proof. The vertex set of $P_n \lor K_m$ is $V(P_n \lor K_m) = \{u_1, u_2, \cdots, u_n\} \cup \{a_1, a_2, \cdots, a_{n-1}\} \cup \{v_1, v_2, \cdots, v_m\}$. The edge set of $P_n \lor K_m$ is $E(P_n \lor K_m) = \{u_i a_i : 1 \le i \le n-1\} \cup \{u_i a_{i-1} : 2 \le i \le n\} \cup \{v_j v_k : 1 \le j, k \le m-1 \text{ and } j \ne k\} \cup \{u_i v_j : 1 \le i \le n, 1 \le j \le m\}$. The minimum degree, $\delta(P_n \lor K_m) = 2$ and maximum degreee, $\Delta(P_n \lor K_m) = m + n - 1$. Case 1: When r = 1.

The vertices $\{u_i, v_1, v_2, \dots, v_m\}$ induces a clique of order m + 1 for all i and hence we have the lower bound $\chi_r(P_n \lor K_m) \ge m + 1$. We provide the upper bound $\chi_r(P_n \lor K_m) \le m + 1$ using the color mapping $f : V(P_n \lor K_m) \to \{1, 2, \dots, m + 1\}$ defined as follows. $f(u_i) = 1$ for all $1 \le i \le n$ $f(a_i) = 2$ for $1 \le i \le n - 1$ $f(v_1, v_2, \dots, v_m) = \{2, 3, \dots, m + 1\}$ Hence $\chi_r(P_n \lor K_m) = m + 1$.

Case 2 : When $2 \le r \le m$.

Considering the vertices $a_i : 1 \le i \le n-1$ for satisfying its 2-adjacency we need to provide two different colors to its neighbors u_i and u_{i+1} . Thus let the colors 1, 2, 3 be assigned to u_i, a_i, u_{i+1} respectively then the colors 1 and 3 cannot be assigned to any v_j 's. So in order to color K_m we use the colors 2, 4, 5, $\cdots, m+2$. And this coloring satisfies the *r*-adjacency of vertices till r = m. Thus $\chi_r(P_n \lor K_m) \ge m+2$. Let $f : V(P_n \lor K_m) \to \{1, 2, \cdots, m+2\}$ be the function

Figure 3. The 8-dynamic coloring of the graph $P_6 \lor K_4$

which defines the coloring in this case as below.

$$f(u_i) = \begin{cases} 1, \text{ when } i \text{ is odd} \\ 3, \text{ when } i \text{ is even} \end{cases}$$

 $f(a_i) = 2$ for $1 \le i \le n - 1$ $f(v_1, v_2, \cdots, v_m) = \{2, 4, \cdots, m + 2\}$ Thus the upper bound is $\chi_r(P_n \lor K_m) \le m + 2$ and we conclude that $\chi_r(P_n \lor K_m) = m + 2$.

Case 3 : When $m + 1 \le r \le m + 2$.

When r = m + 1 we have by the lemma $\chi_r(P_n \lor K_m) \ge \min\{r, \Delta(P_n \lor K_m)\} + 1 = r + 1 = m + 2$ but inorder to satisfy the *r*-adjacency of the vertices u_i we need an extra color m + 3 in this case. Hence $\chi_r(P_n \lor K_m) \ge m + 3$. Again when r = m + 2 we have by the lemma $\chi_r(P_n \lor K_m) \ge \min\{r, \Delta(P_n \lor K_m)\} + 1 = r + 1 = m + 3$. We provide the coloring in this case by the mapping $f : V(P_n \lor K_m) \to \{1, 2, \dots, m + 3\}$.

$$f(u_i) = \begin{cases} 1, \ when \ i \equiv 1(mod \ 3) \\ 3, \ when \ i \equiv 2(mod \ 3) \\ 2, \ when \ i \equiv 0(mod \ 3) \end{cases}$$

For $\{a_i : 1 \le i \le n-1\}$ provide suitable color from the set of colors $\{1, 2, 3\}$ so that each a_i satisfies 2-adjacency condition.

 $f(v_1, v_2, \dots, v_m) = \{4, 5, \dots, m+3\}$ Thus $\chi_r(P_n \lor K_m) = m+3.$

Case 4 : When $m + 3 \le r \le \Delta, n \ge 4$.

For this case $n \ge 4$ because when n = 3 the maximum degree was m + 2 and it ended in the previous case itself. By the lemma we the lower bound $\chi_r(P_n \lor K_m) \ge \min\{r, \Delta(P_n \lor K_m)\} + 1 = r + 1$. The upper bound is attained by the following coloring defined by the map $f: V(P_n \lor K_m) \to \{1, 2, \dots, r+1\}$.

 $f(u_1, u_2, \cdots, u_n) = \{1, 3, 2, m+4, \cdots, r+1, 1, 3, 2, m+4, \cdots, r+1, \cdots\}$

For $a_i : 1 \le i \le n - 1$ provide suitable color from the set of colors $\{1, 2, 3\}$ so that each a_i satisfies 2-adjacency condition.

 $f(v_1, v_2, \cdots, v_m) = \{4, 5, \cdots, m+3\}$

Hence we have the upper bound $\chi_r(P_n \lor K_m) \le r+1$ and we conclude that $\chi_r(P_n \lor K_m) = r+1$. \Box

Observation 4 For $m \ge 2$,

$$\chi_r(P_2 \dot{\vee} K_m) = \begin{cases} m+1 & : \quad r=1\\ m+2 & : \quad 2 \le r \le m\\ m+3 & : \quad r=m+1 \end{cases}$$

The minimum degree is $\delta(P_2 \lor K_m) = 2$ and maximum degree is $\Delta(P_2 \lor K_m) = m + 1$. The coloring for cases 1, 2 and 3 are same as given in Case 1, 2 and 3 of theorem 2.

Theorem 2.3. For positive integers n, m, the r- dynamic chromatic number of subdivision vertex join of path P_n with star graph $K_{1,m}$ is *I.* When $n \ge 4, m \ge 2$ and m + 1 < n

$$\chi_r(P_n \dot{\vee} K_{1,m}) = \begin{cases} r+2 & : & 1 \le r \le 3\\ 2r-1 & : & 4 \le r \le m+1, m \ge 3\\ r+m & : & m+2 \le r \le n+1, m \ge 2\\ m+n+1 & : & n+2 \le r \le m+n \end{cases}$$

Proof. Let the edge set of P_n be $E(P_n) = \{a_1, a_2, \dots, a_{n-1}\}$. Then vertex set of $P_n \lor K_{1,m}$ is $V(P_n \lor K_{1,m}) = \{u_1, u_2, \dots, u_n\} \cup \{a_1, a_2, \dots, a_{n-1}\} \cup \{v_1, v_2, \dots, v_{m+1}\}$ where v_1 is the central vertex of $K_{1,m}$ to which the *m* vertices are adjacent with. The edge set of $P_n \lor K_{1,m}$ is $E(P_n \lor K_{1,m}) = \{u_i a_i : 1 \le i \le n-1\} \cup \{u_i a_{i-1} : 2 \le i \le n\} \cup v_1 v_j : 2 \le j \le m+1 \cup \{u_i v_j : 1 \le i \le n, 1 \le j \le m+1\}$. The minimum degree and maximum degree in this case is 2 and m+n respectively.

Case 1 : When $1 \le r \le 3$. Subcase 1 : r = 1.

The presence of cycle C_3 in $P_n \lor K_{1,m}$ paves way to the fact that we require at least 3 different colors. Hence the lower bound $\chi_r(P_n \lor K_{1,m}) \ge 3$. We provide the upper bound using the mapping $f: V(P_n \lor K_{1,m}) \to \{1, 2, 3\}$ as follows:

 $f(u_i) = 1$ for all i $f(u_i) = 1$ for $1 \le i$

$$f(a_i) = 1$$
 for $1 \le i \le n-1$

 $f(v_1, v_2, \cdots, v_{m+1}) = \{3, 2, 2, \cdots\}$

This gives the upper bound $\chi_r(P_n \dot{\lor} K_{1,m}) \leq 3$ and hence $\chi_r(P_n \dot{\lor} K_{1,m}) = 3 = r + 2$. Subcase 2 : $2 \leq r \leq 3$.

Consider the vertex a_1 which is of degree 2 in order to satisfy its 2-adjacency provide the colors 1, 2 and 3 to u_1, a_1, u_2 respectively. Now while considering the vertex u_1 for satisfying its 2-adjacency we need to provide a new color 4 = r + 2 to any one v_j since neither the color 1 and 3 can be applied to v_j 's. Similarly when r = 3 for satisfying the *r*-adjacency condition of u_1 we need to provide the colors 4 and 5 = r + 2 to any of the two v_j 's. Hence we require a minimum of r + 2 different colors here i.e., $\chi_r(P_n \lor K_{1,m}) \ge r + 2$. The upper bound is given by the map $f: V(P_n \lor K_{1,m}) \to \{1, 2, \dots, r + 2\}$.

$$f(u_i) = \begin{cases} 1, \text{ when } i \text{ is odd} \\ 3, \text{ when } i \text{ is even} \end{cases}$$

 $\begin{array}{l} f(a_i) = 2 \mbox{ for } 1 \leq i \leq n-1 \\ \mbox{when } r = 2, \ f(v_1, v_2, \cdots, v_m+1) = \{4, 2, 2, \cdots\} \\ \mbox{when } r = 3, \ f(v_1, v_2, \cdots, v_m+1) = \{5, 4, 2, 2, \cdots\} \\ \mbox{Hence } \chi_r(P_n \dot{\vee} K_{1,m}) = r+2. \end{array}$

Case 2 : When $4 \le r \le m + 1, m \ge 3$.

Here in this case we consider $m \ge 3$ and the case when m = 2 does not come under this case because in this case the value of r varies from 4 to m + 1 so it belongs to the next case. Consider the vertex u_1 and let be assigned the color 1 also let the vertices a_1, u_2 be assigned the colors 2 and 3 respectively. Now in order to satisfy the r-adjacency condition of u_1 we provide the colors $r + 2, 4, \dots, r + 1$ to the vertices v_j 's in order and this case ends at r = m + 1. Now consider

Figure 4. The 5-dynamic coloring of the graph $P_6 \lor K_{1,4}$

the vertex v_1 it is already adjacent to the vertex u_1, u_2 with colors 1 and 3 in order to satisfy the *r*-adjacency condition we need to provide the colors $r + 3, \dots, 2r - 1$ to the remaining vertices of u_i since m + 1 < n. Hence we have the lower bound $\chi_r(P_n \lor K_{1,m}) \ge 2r - 1$. Consider the map $f: V(P_n \lor K_{1,m}) \to \{1, 2, \dots, 2r - 1\}$ and the coloring is as below. $f(u_1, u_2, \dots, u_n) = \{1, 3, r + 3, \dots, 2r - 1, 1, 3, r + 3, \dots, 2r - 1, \dots\}$ $f(a_i) = 2$ for $1 \le i \le n - 1$ $f(v_1, v_2, \dots, v_{m+1}) = \{r + 2, 2, 4, \dots, r + 1, 2, 4, \dots, r + 1, \dots\}$

This gives us the upper bound as $\chi_r(P_n \lor K_{1,m}) \le 2r - 1$ and hence $\chi_r(P_n \lor K_{1,m}) = 2r - 1$.

Case 3 : When $m + 2 \le r \le n + 1, m \ge 2$.

Let us first assign the vertices u_1, a_1, u_2 with the colors 1, 2, 3 respectively. Now the vertex u_1 with degree m + 2 needs m + 2 different colored neighbors hence assign the colors $4, \dots, m + 4$ colors to $v_2, v_3, \dots, v_{m+1}, v_1$. Now for satisfying the *r*-adjacency of the vertices v_j we provide the colors $m + 5, \dots, r + m$ to the remaining u_i 's, $i \ge 3$. Thus we require a minimum of at least r + m colors in this case hence $\chi_r(P_n \lor K_{1,m}) \ge r + m$. The coloring is given below using the map $f : V(P_n \lor K_{1,m}) \to \{1, 2, \dots, r + m\}$.

When m = 2 and r = 4 the coloring is:

 $f(u_1, u_2, \cdots, u_n) = \{1, 3, 2, 1, 3, 2, \cdots\}$

 $f(v_1, v_2, v_3) = \{4, 5, 6\}$ and for $\{a_i : 1 \le i \le n-1\}$ provide suitable color from the set of colors $\{1, 2, 3\}$ so that each a_i satisfies 2-adjacency condition.

For all the remaining case the coloring is as below.

 $f(u_1, u_2, \dots, u_n) = \{1, 3, m+5, \dots, r+m, 1, 3, m+5, \dots, r+m, \dots\}$ For $\{a_i : 1 \le i \le n-1\}$ provide the coloring as said for m = 2 and r = 4. $f(v_1, v_2, \dots, v_{m+1}) = \{m+4, 4, 5, \dots, m+3\}$

Thus we have the upper bound $\chi_r(P_n \lor K_{1,m}) \leq r + m$ and we conclude that $\chi_r(P_n \lor K_{1,m}) = r + m$.

Case 4 : When $n + 2 \le r \le m + n$.

By the case r = n + 1 the *r*-adjacencies of all the vertices will be satisfied and we no longer require any new colors other than the m + n colors used in the case r = n + 1. The coloring in this case is as below.

 $f(u_1, u_2, \cdots, u_n) = \{1, 3, m+5, \cdots, m+n+1\}$

For the $\{a_i : 1 \le i \le n-1\}$ provide suitable color from the set of colors $\{1, 2, 3\}$ so that each a_i satisfies 2-adjacency condition.

 $f(v_1, v_2, \cdots, v_{m+1}) = \{m + 4, 4, 5, \cdots, m + 3\}$ Hence $\chi_r(P_n \lor K_{1,m}) = m + n + 1. \square$

Figure 5. The 7-dynamic coloring of the graph $P_6 \dot{\lor} K_{1,7}$

II. When $n \ge 4$ and $m + 1 \ge n$

$$\chi_r(P_n \dot{\vee} K_{1,m}) = \begin{cases} r+2 & : \ 1 \le r \le 3\\ 2r-1 & : \ 4 \le r \le n+1, m+1 > n \text{ and } 4 \le r \le n, m+1 = n\\ r+n & : \ n+2 \le r \le m+1, m+1 \ge n+2\\ m+n+1 & : \ m+2 \le r \le \Delta, m+1 \ge n \end{cases}$$

Proof. The maximum and minimum degrees in this case are m + n and 2 respectively. The cases when $1 \le r \le 3$ is same as the one given in the earlier part of the theorem.

Case 2 : When $4 \le r \le n + 1, m + 1 > n$ and $4 \le r \le n, m + 1 = n$.

When m + 1 = n the case ends at r = n and the coloring for r = n + 1 = m + 2 goes to Case 4. Let us first assign the vertices u_1, a_1, u_2 with the colors 1, 2, 3 respectively. Now in order to satisfy the *r*-adjacency condition of u_1 we provide the colors $r + 2, 4, \dots, r + 1$ to the vertices v_j 's in order. Also while considering the vertex v_1 it is already adjacent to the vertex u_1, u_2 with colors 1 and 3 in order to satisfy the *r*-adjacency condition we need to provide the colors $r + 3, \dots, 2r - 1$ to the remaining vertices of u_i and this case ends at r = n + 1 since the degree of v_j is n + 1 for $j \ge 2$. The coloring in this case is same as the one given in Case 2 of first part of the theorem. Thus $\chi_r(P_n \lor K_{1,m}) = 2r - 1$.

Case 3 : When $n + 2 \le r \le m + 1, m + 1 \ge n + 2$.

The condition $m + 1 \ge n + 2$ is necessary otherwise it will not be well-defined as in the case of n = m + 1 and m = n. For n = m + 1, r = n + 2 = m + 3 and m = n, r = n + 2 = m + 2 is provided in Case 4. Now for the remaining $m + 1 \ge n + 2$, in order to satisfy the *r*-adjacency condition of u_1 and v_i we provide the colors $r + 2, 4, \dots, r + 1$ to the vertices v_j 's in order and $1, 3, r + 3, \dots, r + n$ to the vertices u_i in order. Hence we have the lower bound $\chi_r(P_n \lor P_m) \ge r + n$. The coloring is this case is defined by the mapping $f: V(P_n \lor K_{1,m}) \to \{1, 2, \dots, r + n\}$.

$$\begin{aligned} f(u_1, u_2, \cdots, u_n) &= \{1, 3, r+3, \cdots, r+n, 1, 3, r+3, \cdots, r+n, \cdots\} \\ f(a_i) &= 2 \\ f(v_1, v_2, \cdots, v_{m+1}) &= \{r+2, 2, 4, 5, \cdots, r+1, 2, 4, 5, \cdots, r+1, \cdots\} \\ \text{Thus } \chi_r(P_n \lor K_{1,m}) &= r+n. \end{aligned}$$

Case 4 : When $m + 2 \le r \le \Delta$, $m + 1 \ge n$. When r = m + 2 for satisfying the m + 2-adjacency of the vertex u_1 we first provide the colors $m+4, 4, \dots, m+3$ to the m+1 vertices of $K_{1,m}$ with the assumption that u_1, a_1, u_2 are assigned the color 1, 2, 3. Now for satisfying the r-adjacency of v_1 assign the colors $2, m+5, \dots, m+n+1$ to the vertices u_3, \dots, u_n of P_n . Hence m+n+1 colors is the minimum requirement. Also for all the remaining cases of r these m+n+1 colors are sufficient for proper r-coloring. The coloring in this case is same as the one given in Case 4 of first part. Thus $\chi_r(P_n \lor K_{1,m}) = m+n+1$. \Box

Observation 5 For $m \ge 2$,

$$\chi_r(P_2 \dot{\lor} K_{1,m}) = \begin{cases} r+2 : 1 \le r \le m+2 \end{cases}$$

The minimum degree is $\delta(P_2 \lor K_{1,m}) = 2$ and maximum degree is $\Delta(P_2 \lor K_{1,m}) = m + 2$. The coloring for r = 1 is same as given for r = 1 of theorem 3. When $2 \le r \le m + 2$ the coloring is as follows:

 $\begin{array}{l} f(u_1, u_2) = \{\overline{1}, 3\} \\ f(a_1) = 2 \\ \text{when } 2 \leq r \leq m+1, \ f(v_1, v_2, \cdots, v_{m+1}) = \{r+2, 2, 4, 5, 6, \cdots, r+1, 2, 4, 5, 6, \cdots, r+1, \cdots\} \\ \text{when } r = m+2, \ f(v_1, v_2, \cdots, v_{m+1}) = \{r+2, 4, 5, 6, \cdots, r+1, 4, 5, 6, \cdots, r+1, \cdots\} \end{array}$

Observation 6 For $m \ge 2$,

$$\chi_r(P_3 \lor K_{1,m}) = \begin{cases} r+2 & : & 1 \le r \le m+2\\ m+4 & : & r=m+3 \end{cases}$$

The minimum degree is $\delta(P_3 \lor K_{1,m}) = 2$ and maximum degree is $\Delta(P_3 \lor K_{1,m}) = m + 3$. Case 1 : When $1 \le r \le m + 2$.

The coloring for r = 1 is same as given in theorem 3. When $2 \le r \le m + 2$ the coloring is as follows: When r = 2, 3. $f(u_1, u_2, u_3) = \{1, 3, 1\}$ $f(a_1) = 2$ $f(v_1, v_2, \dots, v_{m+1}) = \{r + 2, 2, 4, 5, 6, \dots, r + 1, 2, 4, 5, 6, \dots, r + 1, \dots\}$ When $4 \le r \le m + 1$. $f(u_1, u_2, u_3) = \{1, 3, 2\}$ $f(a_1, a_2) = \{2, 1\}$ $f(v_1, v_2, \dots, v_{m+1}) = \{r + 2, 2, 4, 5, 6, \dots, r + 1, 2, 4, 5, 6, \dots, r + 1, \dots\}$ **Case 2 :** When r = m + 3. $f(u_1, u_2, u_3) = \{1, 3, 2\}$ $f(a_1, a_2) = \{2, 1\}$ $f(u_1, v_2, \dots, v_{m+1}) = \{m + 4, 4, 5, 6, \dots, m + 3\}$.

References

- A.Ahadi, S.Akbari, A.Dehghana and M.Ghanbari, On the difference between chromatic and dynamic chromatic number of graphs, *Discrete Mathematics*, 312(2012), 2579-2583.
- [2] S.Akbari, M.Ghanbari and S.Jahanbakam, On the dynamic chromatic number of graphs, in:Combinatorics and Graphs, in:Contemporary Mathematics, American Mathematical Society, 531(2010), 11-18.
- [3] S.Akbari, M.Ghanbari and S.Jahanbakam, On the list dynamic coloring of graphs, *Discrete Applied Mathematics*, **157**(2009), 3005-3007.
- [4] Ika Hesti Augestina, Dafik and A. Y. Harsyaa, On r-dynamic coloring of some graph operations, *Indonesian Journal of Combinatorics*, **1** (1) (2016), 22-30.
- [5] G. Indulal, Spectrum of two new join of graphs and infinite families of integral graphs, *Kragujevac Journal* of Mathematics, **36**(2012), 133-139.
- [6] H.J.Lai, B.Montgomery and H.Poon, Upper bounds of dynamic chromatic number, Ars Combinatoria, 68(2003), 193-201.
- [7] N. Mohanapriya, V.J.Vernold and M.Venkatachalam, On dynamic coloring of Fan graphs, *International Journal of Pure and Applied Mathematics*, **106**(8)(2016), 169-174.

- [8] N. Mohanapriya, Ph.D thesis, A study on dynamic coloring of graphs, Bharathiar University, (2017), Coimbatore, India.
- [9] B. Montgomery, Dynamic coloring of graphs, ProQuest LLC, Ann Arbor, MI, (2001), Ph.D Thesis, West Virginia University.
- [10] A.Taherkhani, r-dynamic chromatic number of graphs, Discrete Applied Mathematics, 201(2016), 222-227.

Author information

Aparna V, PG and Research Department of Mathematics, Kongunadu Arts and Science College, Coimbatore-641 029, Tamil Nadu, India. E-mail: aparnav18794@gmail.com

Mohanapriya N, PG and Research Department of Mathematics, Kongunadu Arts and Science College, Coimbatore-641 029, Tamil Nadu, India. E-mail: phdmohana@gmail.com

Received : December 31, 2020 Accepted : March 10, 2021