A Study On $^{∗∗}gα$-compactness and $^{∗∗}gα$-connectedness in Topological Spaces

A. Singaravelan

Communicated by V. Kokilavani

AMS 2010 Classifications: 54B05, 54B10, 54C10, 54D18.

Keywords and phrases: $^{∗∗}gα$-closed set, $^{∗∗}gα$-open set, $^{∗∗}gα$-irresolute, $^{∗∗}gα$-compactness, $^{∗∗}gα$-connectedness.

Abstract In this paper we introduce new concept of $^{∗∗}gα$-compactness and $^{∗∗}gα$-connectedness in Topological space using $^{∗∗}gα$-open sets and study some of their properties of $^{∗∗}gα$-compactness and $^{∗∗}gα$-connectedness.

1 Introduction

In 1991, Balachandran, Sundharam and Maki[1] introduced a class of compact space called GO-compact space and GO-connected space using g-open cover. In 2006, A.M. Shibani[12], introduce and studied about the rg-compact spaces and rg-connected spaces. In 2011, S.S. Benchalli and Priyanka M. Bansali[2] introduced the concept of gb-compactness and gb-connectedness Topological spaces and studied their basic properties. In 2016, S. Pious Missier and M. Anto[10] introduced the concept of generalize compactness and connectedness using $g^∗s$- closed sets to obtained a weaker form of compactness and connectedness and studied the basic properties. In this paper, we introduce the $^{∗∗}gα$-compactness, $^{∗∗}gα$-connectedness in topological spaces and obtain some of its basic properties.

2 PRELIMINARIES

Let us recall the following definitions, which are useful in the sequel.

Definition 2.1. A subset A of a topological space $(X, τ)$ is called
(1) a generalized closed set (briefly g-closed) [9] if $cl(A) U$ whenever $A U$ and U is open in $(X, τ)$.
(2) a generalized $α$-closed set (briefly $gα$-closed) [6] if $αcl(A) U$ whenever $A U$ and U is $α$-open in $(X, τ)$.
(3) a gpr-closed[7] set if $pcl(A) U$ whenever $A U$ and U is open in $(X, τ)$.
(4) a $^{∗}gα$-closed set [14] if $cl(A) U$ whenever $A U$ and U is $gα$-open in $(X, τ)$.
(5) a $^{∗∗}gα$-closed set [15] if $cl(A) U$ whenever $A U$ and U is $^{∗}gα$-open in $(X, τ)$.

Definition 2.2. A function $f : (X, τ) → (Y, σ)$ is called
(1) a g-continuous[1] if $f^{-1}(V)$ is an g-closed set of $(X, τ)$ for every closed set V of $(Y, σ)$.
(2) a gpr-continuous [8] if $f^{-1}(V)$ is a gpr-closed set of $(X, τ)$ for every closed set V of $(Y, σ)$.
(3) a $^{∗}gα$-continuous [14] if $f^{-1}(V)$ is a $^{∗}gα$-closed set of $(X, τ)$ for every closed set V of $(Y, σ)$.
(4) a $^{∗∗}gα$-continuous [13] if $f^{-1}(V)$ is a $^{∗∗}gα$-closed set of $(X, τ)$ for every closed set V of $(Y, σ)$.
(5) a $^{∗∗}gα$-irresolute [13] if $f^{-1}(V)$ is a $^{∗∗}gα$-closed set of $(X, τ)$ for every $^{∗∗}gα$-closed set V of $(Y, σ)$.

3 $^{∗∗}gα$-COMPACTNESS

$^{∗}gα$-compactness is defined in this section and some of its characterizations are proved.
Definition 3.1. A collection \(\{A_i : i \in \Delta \} \) of \(*^\ast\) -open sets in a topological space \(X \) is called a \(*^\ast\) -open cover of a subset \(S \) of \(X \) if \(S \subset \bigcup \{A_i : i \in \Delta \} \) holds.

Definition 3.2. A topological space \(X \) is \(*^\ast\) -compact, if every \(*^\ast\) -open cover of \(X \) has a finite sub cover.

Definition 3.3. A subset \(S \) of a topological space \(X \) is said to be \(*^\ast\) -compact relative to \(X \), if for every collection \(\{A_i : i \in \Delta \} \) of \(*^\ast\) -open subsets of \(X \) such that \(S \subset \bigcup \{A_i : i \in \Delta \} \) there exists a finite subset \(\Delta_0 \) of \(\Delta \) such that \(S \subset \bigcup \{A_i : i \in \Delta_0 \} \).

Definition 3.4. A subset \(S \) of a topological space \(X \) is said to be \(*^\ast\) -compact, if \(S \) is \(*^\ast\) -compact as a subspace of \(X \).

Theorem 3.5. Every \(*^\ast\) -closed subset of a \(*^\ast\) -compact space is \(*^\ast\) -compact relative to \(X \).

Proof. Let \(A \) be a \(*^\ast\) -closed subset of a \(*^\ast\) -compact space \(X \). Then \(X - A \) is a \(*^\ast\) -open in \(X \). Let \(M = \{G_\alpha : \alpha \in \Delta \} \) be a cover of \(A \) by \(*^\ast\) -open sets in \(X \). Then \(M^* = M \cup A^c \) is a \(*^\ast\) -open cover of \(X \), i.e., \(X = (\bigcup \{G_\alpha : \alpha \in \Delta \}) \cup A^c \). By hypothesis, \(X \) is \(*^\ast\) -compact, hence \(M^* \) is reducible to a finite cover of \(X \), say \(X = G_\alpha \cup G_\alpha \cup G_\alpha \cup ... \cup G_\alpha \cup A^c \), \(G_\alpha \in M \). But \(A \) and \(A^c \) are disjoint, Hence \(A \subset G_\alpha \cup G_\alpha \cup G_\alpha \cup ... \cup G_\alpha \cup A^c \), \(G_\alpha \in M \). But we have shown that any \(*^\ast\) -open cover \(M \) of \(A \) contains a finite sub cover, i.e., \(A \) is \(*^\ast\) -compact relative to \(X \).

Theorem 3.6. A \(*^\ast\) -continuous image of a \(*^\ast\) -compact space is compact.

Proof. Let \(f : X \rightarrow Y \) be a \(*^\ast\) -continuous map from a \(*^\ast\) -compact space \(X \) on a topological space \(Y \). Let \(\{A_i : i \in \Delta \} \) be an open cover of \(Y \). Then \(\{f^{-1}(A_i) : i \in \Delta \} \) is a \(*^\ast\) -open cover of \(X \). Since \(X \) is \(*^\ast\) -compact, it has a finite sub cover, say \(\{f^{-1}(A_1), \ldots, f^{-1}(A_n)\} \).

Since \(f \) is onto \(\{A_1, A_2, \ldots, A_n \} \) is a cover of \(Y \) which is finite. Therefore \(Y \) is compact.

Theorem 3.7. If a map \(f : X \rightarrow Y \) is \(*^\ast\) -irresolute and a subset \(B \) of \(X \) is \(*^\ast\) -compact relative to \(X \), then the image \(f(B) \) is \(*^\ast\) -compact relative to \(Y \).

Proof. Let \(\{A_i : i \in \Delta_0 \} \) be any collection of \(*^\ast\) -open subsets of \(Y \) such that \(f(B) \subset \bigcup \{A_i : i \in \Delta \} \) holds. By hypothesis there exists a finite subset \(\Delta_0 \), such that \(B \subset \bigcup \{f^{-1}(A_i) : i \in \Delta_0 \} \). Therefore we have \(f(B) \subset \bigcup \{f^{-1}(A_i) : i \in \Delta_0 \} \), which shows that \(f(B) \) is \(*^\ast\) -compact relative to \(Y \).

Theorem 3.8. The product space of two non-empty spaces is \(*^\ast\) -compact, then each factor space is \(*^\ast\) -compact.

Proof. Let \(X \times Y \) be the product space of the non-empty spaces \(X \) and \(Y \) and suppose \(X \times Y \) is a \(*^\ast\) -compact. Then the projection \(\prod : X \times Y \rightarrow X \) is a \(*^\ast\) -irresolute map. Hence \(\prod((X \times Y)) = X \) is \(*^\ast\) -compact. Similarly we prove for the space \(Y \).

Theorem 3.9. Every \(*^\ast\) -compact space is compact.

Proof. Let \((X, \tau) \) be a \(*^\ast\) -compact space. Let \(\{B_\alpha : \alpha \in \Delta \} \) be an open cover of \(X \). Then \(X = \{B_\alpha : \alpha \in \Delta \} \). Since every open set is \(*^\ast\) -open, so \(\{B_\alpha : \alpha \in \Delta \} \) is a \(*^\ast\) -open cover of \(X \). Since \(X \) is \(*^\ast\) -compact, it has a finite subcover, say \(\{B_1, B_2, B_3, \ldots, B_n \} \). Hence, \(X \) is compact.

Theorem 3.10. A space \(X \) is \(*^\ast\) -compact if and only if each family of \(*^\ast\) -closed subsets of \(X \) with the finite intersection property has a non-empty intersection.

Proof. Given collection \(A \) of subsets of \(X \), let \(S = \{X - A : A \in \Delta \} \) be the collection of their complements. Then the following statements hold.

(i) \(A \) is a collection of \(*^\ast\) -open sets if and only if \(S \) is a collection of \(*^\ast\) -closed sets.

(ii) The collection \(A \) covers \(X \) if and only if the intersection \(\bigcap_{c \in S} S \) is empty.
(iii) The finite sub collection \(\{A_1, A_2, ..., A_n\} \) of \(A \) covers \(X \) if and only if the intersection of the corresponding elements \(S_i = X - A_i \) of \(S \) is empty. The statement (i) is trivial, while the (ii) and (iii) follow from De Morgans law. \(X - (\bigcup_{i \in J} (X - A_i)) \). The proof of the theorem now proceeds in two steps, taking contra positive of the theorem and then the complement. The statement \(X \) is \(**g_\alpha \)-compact is equivalent to: Given any collection \(A \) of \(**g_\alpha \)-open subsets of \(X \), if \(A \) covers \(X \), then some finite sub collection of \(A \) covers \(X \). This statement is equivalent to its contra positive, which is the following.

Given any collection \(S \) of \(**g_\alpha \)-closed sets, if every finite intersection of elements of \(S \) is not-empty, then the intersection of all the elements of \(S \) is not-empty. This is the just condition of our theorem.

4 **\(g_\alpha \) -CONNECTEDNESS

Definition 4.1. A topological space \(X \) is said to be \(**g_\alpha \) -connected, if \(X \) can not be written as a disjoint union of two non empty \(**g_\alpha \)-open sets. A subset of \(X \) is \(**g_\alpha \) -connected if it is \(**g_\alpha \) -connected as a subspace.

Theorem 4.2. For a topological space \(X \) the following are equivalent:

(i) \(X \) is \(**g_\alpha \) -connected.

(ii) \(X \) and \(\phi \) are the only subsets of \(X \) which are both \(**g_\alpha \) -open and \(**g_\alpha \) -closed.

(iii) Each \(**g_\alpha \) -continuous map of \(X \) into a discrete space \(Y \) with at least two points is a constant map.

Proof.

(i) \(\rightarrow \) (ii): Let \(A \) be a \(**g_\alpha \) -open and \(**g_\alpha \) -closed subset of \(X \). Then \(A^c \) is both \(**g_\alpha \) -closed and \(**g_\alpha \) -open. Since \(X \) is the disjoint union of the \(**g_\alpha \) -open sets \(A \) and \(A^c \), one of these must be empty. That is \(A = \phi \) or \(A = X \).

(ii) \(\rightarrow \) (i): Suppose that \(X = A \cup B \), where \(A \) and \(B \) are disjoint non-empty \(**g_\alpha \) -open subsets of \(X \). Then \(A \) is both \(**g_\alpha \) -open and \(**g_\alpha \) -closed. By assumption, \(A = \phi \) or \(A = X \). Therefore \(X \) is \(**g_\alpha \) -connected.

(iii) \(\rightarrow \) (ii): Let \(f : X \rightarrow Y \) be a \(**g_\alpha \) -continuous map then \(X \) is covered by \(**g_\alpha \) -open and \(**g_\alpha \) -closed covering \(\{f^{-1}(y) : y \in Y \} \). By assumption \(f^{-1}(y) = \phi \) or \(X \) for each. If \(f^{-1}(y) = \phi \) for all \(y \in Y \), then \(f \) fails to be map. Then, there exists only one point \(y \in Y \) such that \(f^{-1}(y) \neq \phi \) and hence \(f^{-1}(y) = X \). This show that \(f \) is a constant map.

(iii) \(\rightarrow \) (i): Let \(A \) be both \(**g_\alpha \) -open and \(**g_\alpha \) -closed subset of \(X \). Suppose \(A \neq \phi \). Let \(f : X \rightarrow Y \) be a \(\ast g_\alpha \) -continuous map defined by \(f(A) = y \) and \(f(A^c) = w \) for some distinct points \(y \) and \(w \) in \(Y \). By assumption \(f \) is constant. Therefore we have \(A = X \).

Theorem 4.3. Every \(**g_\alpha \) -connected space is connected but the converse need not be true.

Proof. Let \((X, \tau) \) be a \(**g_\alpha \) -connected space. Suppose that \((X, \tau) \) is not connected. Then \(X = A \cup B \), where \(A \) and \(B \) are disjoint nonempty open sets in \((X, \tau) \). We know that arbitrary union of \(**g_\alpha \) -open sets is \(**g_\alpha \) -open, and \(A \) and \(B \) are \(**g_\alpha \) -open and \(X = A \cup B \), where \(A \) and \(B \) are disjoint nonempty and \(**g_\alpha \) -open sets in \((X, \tau) \). This contradicts the fact that \((X, \tau) \) is \(**g_\alpha \) -connected and so \((X, \tau) \) is connected.

Example 4.4. Let \(X = \{a, b, c\}, \tau = \{\phi, X, \{a, b\}, \{a\}\} \), then \((X, \tau) \) is not \(**g_\alpha \) -connected, because every subsets of \(X \) is \(**g_\alpha \) -open. The only clopen sets of \(X \) are \(\phi \) and \(X \). Therefore \(X \) is connected.

Theorem 4.5. (i) If \(f : X \rightarrow Y \) is a \(**g_\alpha \) -continuous surjection and \(X \) is \(**g_\alpha \) -connected, then \(Y \) is connected.

(ii) If \(f : X \rightarrow Y \) is a \(**g_\alpha \) -irresolute surjection and \(X \) is \(**g_\alpha \) -connected, then \(Y \) is \(**g_\alpha \) -connected.

Proof. (i): Suppose that \(Y \) is not connected. Let \(Y = A \cup B \), where \(A \) and \(B \) are disjoint non-empty open sets in \(Y \). Since \(f \) is \(**g_\alpha \) -continuous and onto, \(X = f^{-1}(A) \cup f^{-1}(B) \), where \(f^{-1}(A) \) and \(f^{-1}(B) \) are disjoint non-empty and \(**g_\alpha \) -open sets in \(X \). This contradicts the fact that \(X \) is \(**g_\alpha \) -connected. Hence \(Y \) is connected.
(ii): Suppose that Y is not $^{**}g\alpha$-connected. Let $Y = A \cup B$, where A and B are disjoint non empty and $^{**}g\alpha$-open sets in Y. Since f is $^{**}g\alpha$-irresolute and onto, $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty and $^{**}g\alpha$-open sets in X. This is a contradiction to the fact that X is $^{**}g\alpha$-connected. Hence Y is $^{**}g\alpha$-connected.

References

Author information

A. Singaravelan, Department of Mathematics, Kongunadu Arts and Science College(Autonomous), Coimbatore-641029, Tamilnadu, India.
E-mail: singaravelna_ma@kongunaducollege.ac.in

Received : January 4 2021
Accepted : March 22, 2021