A Study On $**g\alpha$ -compactness and $**g\alpha$ -connectedness in Topological Spaces

A. Singaravelan

Communicated by V. Kokilavani

AMS 2010 Classifications: 54B05, 54B10, 54C10, 54D18.

Keywords and phrases: ** $g\alpha$ -closed set, ** $g\alpha$ -open set, ** $g\alpha$ -irresolute, ** $g\alpha$ -compactness, ** $g\alpha$ -connectedness.

Abstract In this paper we introduce new concept of $**g\alpha$ -compactness and $**g\alpha$ -connectedness in Topological space using $**g\alpha$ -open sets and study some of their properties of $**g\alpha$ -compactness and $**g\alpha$ -connectedness.

1 Introduction

In 1991, Balachandran, Sundharam and Maki[1] introduced a class of compact space called GOcompact space and GO-connected space using g-open cover. In 2006, A.M. Shibani[12], introduce and studied about the rg-compact spaces and rg-connected spaces. In 2011, S.S. Benchalli and Priyanka M. Bansali[2] introduced the concept of gb-compactness and gb-connectedness Topological spaces and studied their basic properties. In 2016, S. Pious Missier and M. Anto[10] introduced the concept of generalize compactness and connectedness using g^*s - closed sets to obtained a weaker form of compactness and connectedness and studied the basic properties. In this paper, we introduce the ** $g\alpha$ -compactness, ** $g\alpha$ -connectedness in topological spaces and obtain some of its basic properties.

2 PRELIMINARIES

Let us recall the following definitions, which are useful in the sequel.

Definition 2.1. A subset A of a topological space (X, τ) is called

(1) a generalized closed set (briefly g-closed) [9] if $cl \subseteq (A)$ U whenever $A \subseteq U$ and U is open in (X, τ) .

(2) a generalized α -closed set (briefly $g\alpha$ -closed) [6] if α cl(A) \subseteq U whenever A \subseteq U and U is α -open in (X, τ) .

(3) a gpr-closed[7] set if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in (X, τ) .

(4) a *g α -closed set [14] if cl(A) \subseteq U whenever A \subseteq U and U is $g\alpha$ -open in (X, τ) .

(5) a ** $g\alpha$ -closed set [15] if cl(A) \subseteq U whenever A \subseteq U and U is * $g\alpha$ -open in (X, τ) .

Definition 2.2. A function $f: (X, \tau) \longrightarrow (Y, \sigma)$ is called

(1) a g-continuous[1] if $f^{-1}(V)$ is an g-closed set of (X, τ) for every closed set V of (Y, σ) .

(2) a gpr-continuous [8] if $f^{-1}(V)$ is a gpr-closed set of (X, τ) for every closed set V of (Y, σ) .

(3) a * $g\alpha$ -continuous [14] if $f^{-1}(V)$ is a * $g\alpha$ -closed set of (X, τ) for every closed set V of (Y, σ) .

(4) a ** $g\alpha$ -continuous [13] if $f^{-1}(V)$ is a ** $g\alpha$ -closed set of (X, τ) for every closed set V of (Y, σ) .

(5) a ** $g\alpha$ -irresolute [13] if $f^{-1}(V)$ is a ** $g\alpha$ -closed set of (X, τ) for every ** $g\alpha$ -closed set V of (Y, σ) .

3 ** $g\alpha$ -COMPACTNESS

** $g\alpha$ - compactness is defined in this section and some of its characterizations are proved.

Definition 3.1. A collection $\{A_i : i \in \Delta\}$ of $**g\alpha$ -open sets in a topological space X is called a $**g\alpha$ -open cover of a subset S of X if $S \subset \bigcup \{A_i : i \in \Delta\}$ holds.

Definition 3.2. A topological space X is $**g\alpha$ -compact, if every $**g\alpha$ -open cover of X has a finite sub cover.

Definition 3.3. A subset S of a topological space X is said to be $**g\alpha$ -compact relative to X, if for every collection $\{A_i : i \in \Delta\}$ of $**g\alpha$ -open subsets of X such that $S \subset \bigcup \{A_i : i \in \Delta\}$ there exists a finite subset Δ_o of Δ such that $S \subset \bigcup \{A_i : i \in \Delta_o\}$.

Definition 3.4. A subset S of a topological space X is said to be $**g\alpha$ -compact, if S is $**g\alpha$ -compact as a subspace of X.

Theorem 3.5. Every ** $g\alpha$ -closed subset of a ** $g\alpha$ -compact space is ** $g\alpha$ -compact relative to *X*.

Proof. Let A be a ** $g\alpha$ -closed subset of a ** $g\alpha$ -compact space X. Then X - A is a ** $g\alpha$ -open in X. Let $M = \{G_{\alpha} : \alpha \in \Delta\}$ be a cover of A by ** $g\alpha$ -open sets in X. Then $M^* = M \cup A^c$ is a ** $g\alpha$ -open cover of X, i.e., $X = (\bigcup \{G_{\alpha} : \alpha \in \Delta\}) \cup A^c$. By hypothesis, X is ** $g\alpha$ -compact, hence M^* is reducible to a finite cover of X, say $X = G\alpha_1 \cup G\alpha_2 \cup G\alpha_3 \cup ... \cup G_m \cup A^c$, $G\alpha_k \in$ M. But A and A^c are disjoint, Hence $A \subset G\alpha_1 \cup G\alpha_2 \cup G\alpha_3 \cup ... \cup G_m \cup A^c$, $G\alpha_k \in$ M. But we have shown that any ** $g\alpha$ -open cover M of A contains a finite sub cover, i.e., A is ** $g\alpha$ -compact relative to X.

Theorem 3.6. $A^{**}g\alpha$ -continuous image of $a^{**}g\alpha$ -compact space is compact.

Proof. Let $f : X \longrightarrow Y$ be a ** $g\alpha$ -continuous map from a ** $g\alpha$ -compact space X on a topological space Y. Let $\{A_i : i \in \Delta\}$ be an open cover of Y. Then $\{f^{-1}(A_i) : i \in \Delta\}$ is a ** $g\alpha$ -open cover of X. Since X is ** $g\alpha$ -compact, it has a finite sub cover, say $\{f^{-1}(A_1), \ldots, f^{-1}(A_n)\}$. Since f is onto $\{A_1, A_2, \ldots, A_n\}$ is a cover of Y which is finite. Therefore Y is compact.

Theorem 3.7. If a map $f : X \longrightarrow Y$ is $**g\alpha$ -irresolute and a subset B of X is $**g\alpha$ -compact relative to X, then the image f(B) is $**g\alpha$ -compact relative to Y.

Proof. Let $\{A_i : i \in \Delta_0\}$ be any collection of $**g\alpha$ -open subsets of Y such that $f(B) \subset \bigcup \{A_i : i \in \Delta\}$. Then $B \subset \bigcup \{f^{-1}(A_i) : i \in \Delta\}$ holds. By hypothesis there exists a finite subset Δ_o such that $B \subset \bigcup \{f^{-1}(A_i) : i \in \Delta_o\}$. Therefore we have $f(B) \subset \bigcup \{(A_i : i \in \Delta_o)\}$, which shows that f(B) is a $**g\alpha$ -compact relative to Y.

Theorem 3.8. The product space of two non empty spaces is $**g\alpha$ -compact, then each factor space is $**g\alpha$ -compact.

Proof. Let $X \times Y$ be the product space of the non empty spaces X and Y and suppose $X \times Y$ is a $**g\alpha$ -compact. Then the projection $\prod : X \times Y \longrightarrow X$ is a $**g\alpha$ -irresolute map. Hence $\prod(X \times Y) = X$ is $**g\alpha$ -compact. Similarly we prove for the space Y.

Theorem 3.9. Every $**g\alpha$ -compact space is compact.

Proof. Let (X, τ) be a ** $g\alpha$ -compact space. Let $\{B_{\alpha} : \alpha \in \Delta\}$ be an open cover of X. Then $X = \{B_{\alpha} : \alpha \in \Delta\}$. Since every open set is ** $g\alpha$ -open, so $\{B_{\alpha} : \alpha \in \Delta\}$ is a ** $g\alpha$ -open cover of X. Since X is ** $g\alpha$ -compact, it has a finite subcover, say $\{B_1, B_2, B_3, ..., B_n\}$. Hence, X is compact.

Theorem 3.10. A space X is $**g\alpha$ -compact if and only if each family of $**g\alpha$ -closed subsets of X with the finite intersection property has a non-empty intersection.

Proof. Given collection A of subsets of X, let $S = \{X - A : A \in \Delta\}$ be the collection of their complements. Then the following statements hold.

(i) A is a collection of $**g\alpha$ -open sets if and only if S is a collection of $**g\alpha$ -closed sets. (ii) The collection A covers X if and only if the intersection $\bigcap_{\alpha \in \alpha} g S$ of all the elements of

(ii) The collection A covers X if and only if the intersection $\bigcap_{c \in S} S$ of all the elements of S is empty.

(iii) The finite sub collection $\{A_1, A_2, ..., A_n\}$ of A covers X if and only if the intersection of the corresponding elements $S_i = X - A_i$ of S is empty. the statement (i) is trivial, while the (ii) and (iii) follow from De Morgans law. X - $(\bigcup_{\alpha \in J}) = \bigcap_{\alpha \in J} (X - A_{\alpha})$. The proof of the theorem now proceeds in two steps, taking contra positive of the theorem and then the complement. the statement X is ** $g\alpha$ -compact is equivalent to: Given any collection A of ** $g\alpha$ -open subsets of X, if A covers X, then some finite sub collection of A covers X. This statement is equivalent to its contra positive, which is the following.

Given any collection S of $**g\alpha$ -closed sets, if every finite intersection of elements of S is notempty, then the intersection of all the elements of S is non-empty. This is the just condition of our theorem.

4 ** $g\alpha$ -CONNECTEDNESS

Definition 4.1. A topological space X is said to be $**g\alpha$ -connected, if X canot be written as a disjoint union of two non empty $**g\alpha$ -open sets. A subset of X is $**g\alpha$ -connected if it is $**g\alpha$ -connected as a subspace.

Theorem 4.2. For a topological space X the following are equivalent: (i) X is $**g\alpha$ -connected.

(ii) X and ϕ are the only subsets of X which are both $**g\alpha$ -open and $**g\alpha$ -closed. (iii) Each $**g\alpha$ -continuous map of X into a discrete space Y with at least two points is a constant

Proof.

map.

 $(i) \rightarrow (ii)$: Let A be a ** $g\alpha$ -open and ** $g\alpha$ -closed subset of X. Then A^c is both ** $g\alpha$ -closed and ** $g\alpha$ -open. Since X is the disjoint union of the ** $g\alpha$ -open sets A and A^c , one of these must be empty. That is $A = \phi$ or A = X.

 $(ii) \rightarrow (i)$: Suppose that $X = A \cup B$, where A and B are disjoint non-empty ** $g\alpha$ -open subsets of X. Then A is both ** $g\alpha$ -open and ** $g\alpha$ -closed. By assumption, $A = \phi$ or A = X. Therefore X is ** $g\alpha$ -connected.

 $(ii) \rightarrow (iii)$: Let $f : X \longrightarrow Y$ is a ** $g\alpha$ -continuous map then X is covered by ** $g\alpha$ -open and ** $g\alpha$ -closed covering $\{f^{-1}(y) : y \in Y\}$. By assumption $f^{-1}(y) = \phi$ or X for each. If $f^{-1}(y) = \phi$ for all $y \in Y$, then f fails to be map. Then, there exists only one point $y \in Y$ such that $f^{-1}(y) \neq \phi$ and hence $f^{-1}(y) = X$. This show that f is a constant map.

 $(iii) \rightarrow (ii)$: Let A by both $**g\alpha$ -open and $**g\alpha$ -closed set in X. Suppose $A \neq \phi$. Let $f: X \longrightarrow Y$ is a $**g\alpha$ -continuous map defined by f(A) = y and $f(A^c) = w$ for some distinct points y and w in Y. By assumption f is constant. Therefore we have A = X.

Theorem 4.3. Every $**g\alpha$ -connected space is connected but the converse need not be true.

Proof. Let (X, τ) be a ** $g\alpha$ - connected space. Suppose that (X, τ) is not connected. Then $X = A \cup B$, where A and B are disjoint nonempty open sets in (X, τ) . We know that arbitrary union of ** $g\alpha$ -open sets is ** $g\alpha$ -open, A and B are ** $g\alpha$ -open and $X = A \cup B$, where A and B are disjoint nonempty and ** $g\alpha$ -open sets in (X, τ) . This contradicts the fact that (X, τ) is ** $g\alpha$ -connected and so (X, τ) is connected.

Example 4.4. Let $X = \{a, b, c\}, \tau = \{\phi, X, \{a, b\}, \{a\}\}$, then (X, τ) is not $**g\alpha$ -connected, because every subsets of X is $**g\alpha$ -open. The only clopen sets of X are ϕ and X. Therefore X is connected.

Theorem 4.5. (i) If $f: X \longrightarrow Y$ is a $**g\alpha$ -continuous surjection and X is $**g\alpha$ -connected, then Y is connected. (ii) If $f: X \longrightarrow Y$ is a $**g\alpha$ -irresolute surjection and X is $**g\alpha$ -connected, then Y is $**g\alpha$ -connected.

Proof. (i): Suppose that Y is not connected. Let $Y = A \cup B$, where A and B are disjoint non-empty open sets in Y. Since f is $**g\alpha$ -continuous and onto, $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty and $**g\alpha$ -open sets in X. This contradicts the fact that X is $**g\alpha$ connected. Hence Y is connected.

(ii): Suppose that Y is not ** $g\alpha$ -connected. Let Y = A \cup B, where A and B are disjoint non empty and ** $g\alpha$ -open sets in Y. Since f is ** $g\alpha$ -irresolute and onto, $X = f^{-1}(A) \cup f^{-1}(B)$, where $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint non-empty and ** $g\alpha$ -open sets in X. This is a contradiction to the fact that X is ** $g\alpha$ -connected. Hence Y is ** $g\alpha$ -connected.

References

- Balachandran K., Sundaram P and Maki H., On generalized continuous maps in topological spaces, *Mem. Fac. Sci. Kochi Univ. Ser.A. Math.*, 12, 5-13(1991).
- [2] S.S. Benchalli and Priyanka M. Bansali, gb- Compactness and gb-Connectedness Topological Spaces, *Int. J. Contemp. Math. Sciences*, 6(10), 465-475(2011).
- [3] M. Caldas, Semi-generalized continuous maps in topological spaces, Port. Math., 52(4) 339-407(1995).
- [4] R. Devi, H. Maki and K. Balachandran, Semi-generalized closed maps and generalized semi-closed maps, *Mem. Fac. Sci. Kochi Univ.*, 14, 41-54(1993).
- [5] R. Devi, K. Balachandran and H. Maki, on generalized α -continuous maps, *Far. East J. math.*, **16**, 35-48(1995).
- [6] R.Devi, K.Balachandran and H.Maki, Generalized α-closed maps and α-generalized closed maps, *Indian J. Pure. Appl. Math.*, 29(1),37-49(1998).
- [7] Y.Ganambal, On generalized preregular closed sets in topological spaces, *Indian J. Pure Appl. Math.*, 28(3),351-360(1997).
- [8] Y.Gnanambal and K.Balachandran, On gpr-Continuous Functions in Topological spaces, Indian J.Pure appl.Math., 30(6), 581-593(1999).
- [9] N. Levine, Generalized closed sets in topological spaces, Rend. Circ. sMat. Palermo., 19, 89-96(1970).
- [10] S. Pious Missier and M. Anto, On g*s- connected and g*s-compact spaces, IOSR Journal of Mathematics(IOSR-JM)., 12(4), 17-21(2016).
- [11] S. Sekar and B. Jothilakshmi, On semi generalized star b Connectedness and Semi generalized star b -Compactness in Topological Spaces, Malya J. Mat., 5(1), 143-148(2017).
- [12] A.M. Shibani, rg-compact spaces and rg-connected spaces, Mathemaica Pannonica., 17, 61-68(2006).
- [13] A. Singaravelan, $**g\alpha$ -continuous and $**g\alpha$ -irresolute maps in Topological spaces, IOSR Journal of Mathematics., **5**(11), 74-81(2015).
- [14] M. Vigneshwaran and R. Devi, On G α O-kernel in the digital plane, International Journal of Mathematical Archive., **3(6)**, 2358-2373 (2012).
- [15] M. Vigneshwaran and A.Singaravelan, On properties of $**g\alpha$ -closed sets and some application, International Journal of Mathematical Archive., **5(10)**, 139-150(2014).

Author information

A. Singaravelan, Department of Mathematics, Kongunadu Arts and Science College(Autonomous), Coimbatore-641029, Tamilnadu, India. E-mail: singaravelna_ma@kongunaducollege.ac.in

Received : January 4 2021 Accepted : March 22, 2021