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Abstract This paper is concerned with the distribution of waves in double walled graphene
tubule which is stimulated with the elastic shell theory. The governing equation of motion for a
graphene tubule under the effect of thermo-magnetic force is derived. The dispersed connection
of spinning graphene tubule with thermo magnetic reaction is achieved in light of outward power,
Lorentz magnetic force and thermal force. The impact of progress in temperature, rotational
and magnetic on the properties of vibrations are talked about. The quantitative estimation of
dimensionless phase velocity is figured and represented as scattered bends for symmetric and
asymmetric methods of vibrations. Also, dispersed bends of graphene tubule acquired by barring
the thermal, magnetic and rotating force are outlined and analogized with the genuine writing.
The effect of powers on the dissemination of waves in the graphene tubule might be valuable for
future plans in nano mechanical frameworks, micro electromechanical and its applications.

1 Introduction

Lijima [1] discovered the carbon nanotubes in mid 1990s prompts colossal exploration interest
in the field of nanotechnology because of its predominance in mechanical, electronic and ther-
mal conductivity measure. Li et al. [2] discussed the impact of magnetic field on the vibration
behavior of Multi Walled Carbon Nanotube (MWCNT) through vander waals force between two
layer and applied Lorentz magnetic force on each layer, the coupled conditions are acquired
and the outcomes shows that least recurrence of MWCNT diminishes nonlinearly with applied
transverse attractive field while the most noteworthy recurrence stays unaltered. Sun and Zhang
[3] investigated the material properties reliant on the length of plate structures, these outcomes
demonstrate that discrete material structure at the nanoscale can’t be homogeneized into a con-
tinuum model now the non-local elastic continuum models were considered in the investigation
of nanostructure. Ponnusamy and Amuthalaksmi [4] and [5] investigates the dispersion anal-
ysis of thermo magnetic field of Double Walled Carbon Nanotube (DWCNTs) using nonlocal
Timoshenko-beam model and also deals with dispersion analysis of thermo magnetic effect on
double layered nanoplate embedded in an elastic medium. Nonlocal shell model for propagation
of Carbon Nanotubes (CNTs) are discussed. Torkaman Asadi et al. [6] studied the free vibra-
tions and stability of high speed stability.

Yang et al. [7] investigated the distribution of waves in fluid conveying Carbon Nanotubes
(CNTs) using beam theory and gradient coupled theory. Cook et al. [8] discussed the frictions
in rotating nanotubes. Safarpour et al. [9] deals with high speed rotating nanotube reinforced
cyclindrical piezoelectrical shell. Mingo and Broido [10] studied the ballistics thermal conduc-
tance and its limits. Yu et al. [11] deals with thermal conductance and thermopower of individual
Single Walled Carbon Nanotube(SWCNT). Xue [12] investigates the model for thermal conduc-
tivity of CNT.

In this paper, the effect of thermo-magnetic vibrations in rotating graphene tubule is explored
in double walled graphene tubule. The wave engendering of turning graphene tubule with the
impact of thermal, rotating and magnetic force is investigated utilizing shell model. The scat-
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tered connection is acquired for graphene tubule by deriving the equations of motion and the
mathematical values are figured.

2 Formulation of the problem

Consider the graphene tubule under the thermal, magnetic and rotating force as shown in Figure
1. The transverse deformation behavior of each nested graphene tubule was assumed by vander
waals interaction. In shell theory, applying some suspicion, such as shear twisting can be disre-

Figure 1. Coordinate system of rotating graphene tubule under the thermal, magnetic and rotat-
ing force

garded, the strain relocations of second and higher orders are ignored and for unreformed center
surface the typical turns out to be straight line and for transformed it endures no expansion, ac-
cordingly the equation of motion for graphene tubule under the elastic shell theory is given by

∂Mx

∂x
+

1
R

∂Mθx

∂x
= ρh

∂2u

∂t2
(2.1)

1
R

∂Mθ

∂θ
+
∂Mxθ

∂x
= ρh

∂2v

∂t2
(2.2)

Mθ

R
+ q = ρh

∂2w

∂t2
(2.3)

Where x is the coordination along the shell, θ is the polar angle, R is the radius of rotating
graphene tubule, u, v and w are the decranation module of radial, longitudinal and tangential
directions, ρ is the mass thickness, q is the preeminent force, h is the thickness of the shell and
Mx and Mθ are normal stress, Mxθ and Mθx are shear stress components. In consonance with
Hooke’s Law the stress components are derived as

Mx =
Eh

1− ν2 (εx + νεθ) (2.4)

Mθ =
Eh

1− ν2 (εθ + νεx) (2.5)

Mθx =Mxθ =
Eh

2(1 + ν)
γ (2.6)

Where E and ν are tensile modulus and Poisson’s coefficient, εx and εθ denotes the axial strains
and γ denotes shear strain. The expression of axial strains and shear strain related to the dis-
placement equations are given by

εx =
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(2.7)
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) (2.8)



WAVES IN ROTATING DOUBLE WALLED GRAPHENE TUBULE 52
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Substituting Eqns (2.7)− (2.9) in Eqns (2.4)− (2.6), the normal stress and shear stress compo-
nent in view of decranation is obtained as
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Further the axial force q in-terms of thermal and rotating force is given by

q =
1
h
(T (x)−Nt)

∂2w

∂x2 (2.13)

Where Nt denotes the thermal field and T (x) denotes the revolving force[13] as follows

Nt = −
EA

1− 2ν
αxT (2.14)

T (x) = −ρAΩ2L2

2
(2.15)

Where T denotes the change in temperature, αx denotes the amount of temperature extension, Ω

denotes the revolving speed and L denotes the length. Assuming that the magnetic vulnerability
η of graphene tubule approaches to magnetic vulnerability to the whole region in all directions,
the magnetic force[14] in-terms of displacement equation is given by

fx = 0, fθ = ηA(
Hx

R2
∂2v

∂θ2 +H2
x

∂2v

∂t2
), fz = ηH2

xA
∂2w
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Where fx, fθ and fz are the components of Lorentz force exerted on graphene tubule along x, θ
and z-direction.
Substituting Eqns (2.10)− (2.16) in Eqns (2.1)− (2.3) , we get
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Eqns(2.17)− (2.19) represents the displacement equation of motion for single walled graphene
tubule.

3 Formulation for the double walled graphene tubule

Consider the double walled graphene tubule subjected to thermo-magnetic and rotating force.
Assuming the outer layer and inner layer of the graphene tubule with the effect of thermal,
magnetic and rotating force, then the governing equation of motion for double walled graphene
tubule is given by
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Where the axial force q in-terms of thermal, rotating force and vander waals interaction is given
by

qi =
1
h
pi +

1
h
(T (x)−Nt)

∂2wi
∂x2 (3.7)

in which pi denotes transverse deformation due to vander waals interaction is given by
pi =

∑2
j=1 c(wi − wj), (i 6= j).

4 Solution of the problem

Distribution of waves in graphene tubule under a extensive magnetic field, temperature and ro-
tating force is studied by considering the harmonic solutions of waves u, v and w in the form

ui = Ui cosnθ exp i(γx− ωt) (4.1)

vi = Vi sinnθ exp i(γx− ωt) (4.2)

wi =Wi cosnθ exp i(γx− ωt) (4.3)

consequently Ui, Vi and Wi denotes longitudinal, circumferential and radial amplitude of dis-
placement, n, γ, and ω denotes the mode, wave number and frequency. Using Eqns (4.1)− (4.3)
and Eqn (3.7) in Eqns(3.1)− (3.6) a set of homogeneous equation is obtained in the form
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Establishing the following dimensionless parameters namely,
c = c

cp
, γ = hγ, ω = hω

cp
, N = Nt

Eh2 , h = h
R , T (x) =

T (X)
Eh2 , η =

ηAH2
x

Eh2 , ς =
(1−ν2)c
Eh2

in Eqns (4.4)− (4.9), a set of homogeneous equations in dimensionless form is obtained in the
form
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2
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The Eqns (4.10)-(4.15) can be written in the form of matrix,

ω2 − g1 g2 g3 0 0 0
g2 −(ω2 − g4) g5 0 0 0
g3 g5 −(ω2 − g5) 0 0 0
0 0 0 ω2 − g1 g2 g3

0 0 0 g2 −(ω2 − g4) g5

0 0 0 g3 g5 −(ω2 − g5)





U1
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U2

V2

W2


=
[
0
]

(4.16)
Where,

g1 = γ2 +
(1− ν)h2
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2
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2
,

g3 = iνhγ, g4 = h
2
n2 +

(1− ν)γ2

2
+ (1− ν2)η(h

2
n2 + γ2),

g5 = nh
2
, g6 = (1− ν2)γ2(N − T (x)− η)− h2 − ς

A trivial solution is obtained by solving the matrix given in Eqn (4.16), so as to achieve a signif-
icant solution compare the coefficient of the determinant arrangement to nonexistent as follows
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∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω2 − g1 g2 g3 0 0 0
g2 −(ω2 − g4) g5 0 0 0
g3 g5 −(ω2 − g5) 0 0 0
0 0 0 ω2 − g1 g2 g3

0 0 0 g2 −(ω2 − g4) g5

0 0 0 g3 g5 −(ω2 − g5)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (4.17)

By solving the determinant given in Eqn (4.17), a twelfth order dimensionless frequency equa-
tion is obtained in the form

ω12 − a1ω
10 + a2ω

8 + a3ω
6 − a4ω

4 + a5ω
2 − a6 = 0 (4.18)

where,

a1 = s1 + g4 + g2 + g6,

a2 = s2 + s1(g4 + g6) + s1g1 + g1(g4 + g6) + (g4g6 − g2
5) + g2

2 − g2
3 ,

a3 = s1(g4 + g6) + s3 − s1(g4g6 − g2
5)− s2g1 − s1g1(g4 + g6)

− (g1g4g6 − g1g
2
5)(s1g

2
2 + g2(g2g6 − g3g5)) + s1g

2
3 + g3(g4g3 + g5),

a4 = s3(g4 + g6) + s1g1(g4 + g6) + s3g − s1g1(g4g6 − g2
5)

− (s2g
2
2 + s1g2(g2g6 − g3g5)) + s2g

2
3 + s1g3(g4g3 + g5),
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2
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2
3 ,
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5) + s3g1(g4g6 − g2

5) + s3g2(g2g6 − g3g5)− s3(g4g
2
3 + g2

5)

in which,

s1 = g4 + g6 + g1,

s2 = g4g6 + g1g4 − g2
5 + g1g6 + g2

2 + g2
3 ,

s3 = g1g
2
5 − g1g4g6

By using the relation ω = γc in Eqn (4.18) the dimensionless frequency equation can be
changed in-terms of phase velocity as follows

c12 − a7c
10 + a8c

8 + a9c
6 − a10c

4 + a11c
2 − a12 = 0 (4.19)
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Where,

a7 =
1
γ2 [s1 + g4 + g2 + g6],
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1
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2
3 + g2

5)]

5 Numerical Results

In this paper, the scattered relations of double walled graphene tubule with the magnetic, thermal
and rotating force is inferred utilizing shell theory. From Liew and Wang [15] the material
boundaries are considered as in plane solidness Eh = 360J/m2, mass thickness h = 0.34nm
and Poisson proportion ν = 0.3, temperature T = 200K and the consistent of thermal extension
αx = −1.6×10−6K−1. The scattering bends are examined for two modes of vibrations for n =
0 and n = 1. Diagrams are drawn between the dimensionless wavenumber and dimensionless

Figure 2. Scattered bends of double walled graphene tubule subjected to thermal, rotating and
magnetic force of mode n = 0

phase velocity of graphene tubule under the thermal, magnetic and rotating forces of modes
n = 0 and n = 1 and are appeared in Figures 2 and 3. From Figures 2 and 3, it is seen
that proliferation of waves in the graphene tubule under the impact of thermal, magnetic and
revolution force shows up in six modes. Also the non-dimensional phase velocity lessens as non-
dimensional wavenumber risings for all methods of vibrations. Charts are drawn between the
dimensionless wavenumber and dimensionless phase velocity of double walled graphene tubule
exposed to thermal, rotating and magnetic fields at various magnetic field of mode n = 0 and n =
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Figure 3. Scattered bends of double walled graphene tubule subjected to thermal, rotating and
magnetic force of mode n = 1

Figure 4. Scattered bends of double walled graphene tubule subjected to thermal, rotating and
magnetic force for different magnetic field of mode n = 0.

Figure 5. Scattered bends of double walled graphene tubule subjected to thermal, rotating and
magnetic force for different magnetic field of mode n = 1.
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1 and are appeared in Figures 4 and 5. From Figures 4 and 5 it is seen that fields of magnetic force
increment the dimensionless phase velocity increments in all methods of vibrations. In addition,
it is seen that the non-dimensional phase velocity diminishes as non-dimensional wave number
ascent for any vibrational modes. Scattered bends of double walled graphene tubule under

Figure 6. Scattered bends of double walled graphene tubule subjected to thermal, rotating and
magnetic force for different rotating field of mode n = 0.

Figure 7. Scattered bends of double walled graphene tubule subjected to thermal, rotating and
magnetic force for different rotating field of mode n = 1.

thermal, rotating and magnetic field at various rotating force for mode n = 0 and n = 1 are drawn
and are appeared in Figures 6 and 7. From Figures 6 and 7, it is uncovered that the huge values
of spinning speed its dimensionless wave number gets expanded. Moreover with expanding
the rotating force, the dimensionless phase velocity increments with the dimensionless wave
number for all modes of vibration. Scattered bends for double walled graphene tubule under
magnetic, thermal and rotating force at various temperature for mode n = 0 and mode n = 1
are drawn and are appeared in Figures 8 and 9. From Figures 8 and 9, it is seen that temperature
change consequentially affects dimensionless phase velocity. It is seen that dimensionless phase
velocity decline with the ascent in temperature change. Besides, dimenensionless phase velocity
is asymptotic to the dimensionless wavenumber. Scattered bends for single walled graphene
tubule under magnetic, thermal and rotating force for mode n = 0 and mode n = 1 are drawn
and are appeared in Figures 10 and 11. From Figures 10 and 11, it is seen that dimensionless
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Figure 8. Scattered bends of double walled graphene tubule subjected to thermal, rotating and
magnetic force for different thermal field of mode n = 0.

Figure 9. Scattered bends of double walled graphene tubule subjected to thermal, rotating and
magnetic force for different thermal field of mode n = 1.

Figure 10. Scattered bends of single walled graphene tubule subjected to thermal, rotating and
magnetic force for mode n = 0.
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Figure 11. Scattered bends of single walled graphene tubule subjected to thermal, rotating and
magnetic force for mode n = 1.

phase velocity decline with the ascent in dimensionless wavenumber for all modes of vibrations.
Besides, dimenensionless phase velocity approaches to a certain value 0.5917. Scattered bends

Figure 12. Scattered bends of single walled graphene tubule without the thermal, rotating and
magnetic force for mode n = 0.

of the single walled graphene tubule in the void of magnetic, rotating and thermal force for
mode n = 0 is drawn and is appeared in Figure 12. From Figure 12, it is seen that the wave
engendering of single walled graphene tubule happens in three vibrational mode. The scattered
bend of the graphene tubule in void of magnetic, rotating and thermal force matches with Figure
4.23 of Graff [16] and it displays the precision of the current paper.

6 Conclusion

In the current paper, the effect of thermo magnetic impact on the distribution of waves of double
walled graphene tubule are considered utilizing shell theory. The scattered relations between
dimensionless phase velocity and dimensionless wavenumber is derived by finding the solution
in matrix form. Also with drives it is reasoned that the non-dimensional phase velocity reduces as
dimensionless wave number climbs for any methods of vibration. Moreover, the dimensionless
stage speeds increments as expansion in the magnetic and rotating force. Likewise the non-
dimensional phase velocity decreases as expansion in temperature change.
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