$\mathcal{A} ext{-Expansion } \beta^\star\mathbf{g}\alpha(\mu,\lambda)$ -continuous in Hereditary generalized topological spaces K. Baby and M. Vigneshwaran Communicated by L. Vidya Rani MSC 2020 Classifications: 54A05,54C05,54C08,54C10 Keywords and phrases: Hereditary class, $A - \mathbf{Expansion} \ \beta^* \mathbf{g} \alpha(\mu, \lambda)$ -continuous, subadditive. **Abstract** In this paper, the concept of \mathcal{A} -Expansion $\beta^*g\alpha(\mu,\lambda)$ -continuity is introduced. Also some properties and characterization of \mathcal{A} -Expansion $\beta^*g\alpha(\mu,\lambda)$ -continuity are discussed briefly. ## 1 Introduction The idea of generalized topology and hereditary class was introduced and studied by Csaszar[3, 4]. A subfamily μ of P(X) is called a generalized topology if $\Phi \in \mu$ and union of elements of μ belongs to μ . And we say a hereditary class $\mathcal H$ on X is a non-empty collection of subset of X such that $A \subset B$, $B \in \mathcal H$ implies $A \in \mathcal H$. With respect to the generalised topology μ and a hereditary class $\mathcal H$, for a subset A of X we define $A_{\mu}^{\star}(\mathcal H)$ [4] as $A_{\mu}^{\star}(\mathcal H) = \{x \in X \colon M \cap A \notin \mathcal H$ for every $M \in \mu$ such that $x \in M$ }. The closure $c_{\mu}^{\star}(A) = A \cup A_{\mu}^{\star}$. $\mathcal H$ is said to be μ -codense[4] if $\mu \cap \mathcal H = \{\phi\}$. With respect to μ we define $\mu^{\star} = \{A \subset X \colon c_{\mu^{\star}}(X - A) = X - A\}$. $i_{\mu^{\star}}(A)$ and $c_{\mu^{\star}}(A)$ will denote the interior and closure of A in (X, μ^{\star}) . The space (X, μ) with the hereditary class is called hereditary generalized topological space and denoted by $(X, \mu, \mathcal H)$. A subset A of (X, μ) is $\mu\alpha$ -open [3] (resp. μ -semi open [3], μ -pre open [[3]], μ - β -open[3]), if $A \subseteq i_{\mu}(c_{\mu}(i_{\mu}(A)))$ (resp. $A \subseteq (c_{\mu}(i_{\mu}(A)), A \subseteq i_{\mu}(c_{\mu}(A)), A \subseteq c_{\mu}(i_{\mu}(c_{\mu}(A)))$). We denote the family of all $\mu\alpha$ -open sets, μ -semiopen sets, μ -pre open sets and $\mu\beta$ -open sets by $\alpha(\mu)$, $\alpha(\mu)$, $\alpha(\mu)$ and $\beta(\mu)$ respectively. On GT, $\alpha(\mu) \subseteq \alpha(\mu) \subseteq \alpha(\mu)$. In GTS $\alpha(\mu)$ and $\alpha(\mu)$ and $\alpha(\mu)$ denotes α -closure respectively. A subset A of (X, μ) is said to be μ regular open[5] if $A = i_{\mu}(c_{\mu}(A))$. The finite union of regular open set is called $\mu\pi$ -open sets and its complement is $\mu\pi$ -closed set. A set A is said to be μg -closed [3] if $c_{\mu}(A) \subseteq U$, whenever $A \subseteq U$ and U is μ -open and its complement is μg -open. ``` Definition 1.1. For a subset A of hereditary generalized topological space (X, \mu, \mathcal{H}), i) A_{\mu_{\alpha}}^{\star}(\mathcal{H}) [4] = \{x \in X \colon M \cap A \notin \mathcal{H} \text{ for every } M \in \alpha(\mu) \text{ such that } x \in M \}. ii) A_{\mu_{\beta}}^{\star}(\mathcal{H}) [4]= \{x \in X \colon M \cap A \notin \mathcal{H} \text{ for every } M \in \beta(\mu) \text{ such that } x \in M \}. ``` ## 2 \mathcal{A} – Expansion $\beta^* g \alpha(\mu, \lambda)$ -continuous **Definition 2.1.** A subset A of (X, μ) is said to be i) $g\alpha\mu$ -closed if $c_{\mu\alpha}(A)\subseteq U$, whenever $A\subseteq U$ and U is $\mu\alpha$ -open and its complement is $g\alpha\mu$ -open. ii)* $g\alpha\mu$ -closed if $c_{\mu}(A) \subseteq U$, whenever $A \subseteq U$ and U is $\mu g\alpha$ -open and its complement is * $g\alpha\mu$ -open. iii) $\beta^* g \alpha \mu$ -closed if $c_{\mu_{\beta}}(A) \subseteq U$, whenever $A \subseteq U$ and U is $*g \alpha \mu$ -open and its complement is $\beta^* g \alpha \mu$ -open. **Definition 2.2.** [1] Let(X, μ, \mathcal{H}) be a hereditary generalised topological space. A map \mathcal{A} : $\mu \longrightarrow 2^X$ is said to be an expansion on (X, μ, \mathcal{H}) if $U \subseteq \mathcal{A}(U)$ for each $U \in \mu$. **Definition 2.3.** [1]Let(X, μ, \mathcal{H}) be a hereditary generalised topological space. A pair of expansions \mathcal{A} and \mathcal{B} is said to be mutually dual if $\mathcal{A}(U) \cap \mathcal{B}(U) = U$ for each $U \in \mu$. $\beta^* g\alpha(\mu,\lambda)$ -continuous. **Definition 2.4.** [1]Let (X,μ) be a generalized topological space. Let (Y,λ,\mathcal{H}) be a hereditary generalized topological space. Let \mathcal{A} be an expansion on Y. A map $f:(X,\mu) \longrightarrow (Y,\lambda,\mathcal{H})$ is said to be \mathcal{A} -expansion continuous if $f^{-1}(V) \subseteq i_{\mu}(f^{-1}(\mathcal{A}(V)))$ for each $V \in \lambda$. **Definition 2.5.** A map $f:(X,\mu)\longrightarrow (Y,\lambda)$ is said to be $\beta^*g\alpha(\mu,\lambda)$ -continuous iff $U\in\lambda$ implies that $f^{-1}(U)\in\beta^*g\alpha\mu$. **Definition 2.6.** Let (X,μ) be a generalized topological space. Let (Y,λ,\mathcal{H}) be a hereditary generalized topological space. Let \mathcal{A} be an expansion on Y. A map $f:(X,\mu)\longrightarrow (Y,\lambda,\mathcal{H})$ is said to be \mathcal{A} -expansion $\beta^*g\alpha(\mu,\lambda)$ -continuous if $f^{-1}(V)\subseteq\beta^*g\alpha i_\mu(f^{-1}(\mathcal{A}(V)))$ for each $V\in\lambda$. **Theorem 2.7.** Let (X,μ) be a quasi topological space and (Y,λ,\mathcal{H}) be a hereditary generalized topological space. Let \mathcal{A} and \mathcal{B} be two mutually dual expansions on (Y,λ,\mathcal{H}) . Then a map $f:(X,\mu)\longrightarrow (Y,\lambda,\mathcal{H})$ is $\beta^*g\alpha(\mu,\lambda)$ -continuous if and only if f is \mathcal{A} -expansion $\beta^*g\alpha(\mu,\lambda)$ -continuous and \mathcal{B} -expansion $\beta^*g\alpha(\mu,\lambda)$ -continuous. **Proof.** Necessity: Given that \mathcal{A} and \mathcal{B} are mutually dual expansions on (Y, \mathcal{A}) and \mathcal{B} . So $\mathcal{A}(V) \cap \mathcal{B}(V) = V$ for each $V \in \lambda$ and hence $f^{-1}(V) = f^{-1}(\mathcal{A}(V)) \cap f^{-1}(\mathcal{B}(V))$. Since f is $\beta^* g \alpha$ (μ, λ) -continuous, $f^{-1}(V) = \beta^* g \alpha i_{\mu} (f^{-1}(V))$. So, $f^{-1}(V) = \beta^* g \alpha i_{\mu} (f^{-1}(\mathcal{A}(V))) \cap \beta^* g \alpha i_{\mu} (f^{-1}(\mathcal{B}(V)))$. Thus $f^{-1}(V) \subseteq \beta^* g \alpha i_{\mu} (f^{-1}(\mathcal{A}(V)))$ and $f^{-1}(V) \subseteq \beta^* g \alpha i_{\mu} (f^{-1}(\mathcal{B}(V)))$ for every $V \in \lambda$. Hence f is \mathcal{A} -expansion $\beta^* g \alpha (\mu, \lambda)$ -continuous and \mathcal{B} -expansion $\beta^* g \alpha (\mu, \lambda)$ -continuous. Sufficiency: Let \mathcal{A} and \mathcal{B} be two mutually dual expansions on $(Y, \lambda, \mathcal{H})$ and f be \mathcal{A} -expansion $\beta^* g \alpha (\mu, \lambda)$ -continuous and \mathcal{B} -expansion $\beta^* g \alpha (\mu, \lambda)$ -continuous. Then we have $f^{-1}(V) \subseteq \beta^* g \alpha i_{\mu} (f^{-1}(\mathcal{A}(V)))$ for each $V \in \lambda$ and $f^{-1}(V) \subseteq \beta^* g \alpha i_{\mu} (f^{-1}(\mathcal{B}(V)))$ for every $V \in \lambda$. Also we have $\mathcal{A}(V) \cap \mathcal{B}(V) = V$. Therefore, $f^{-1}(\mathcal{A}(V)) \cap f^{-1}(\mathcal{B}(V)) = f^{-1}(V)$. Hence $\beta^* g \alpha i_{\mu} (f^{-1}(V)) = \beta^* g \alpha i_{\mu} (f^{-1}(\mathcal{A}(V))) \cap \beta^* g \alpha i_{\mu} (f^{-1}(\mathcal{B}(V))) \subseteq f^{-1}(V) \cap f^{-1}(V) = f^{-1}(V)$. So $\beta^* g \alpha i_{\mu} (f^{-1}(V)) \supseteq f^{-1}(V)$. But $\beta^* g \alpha i_{\mu} (f^{-1}(V)) \subseteq f^{-1}(V)$. Therefore $f^{-1}(V) = \beta^* g \alpha i_{\mu} (f^{-1}(V))$. This implies that $f^{-1}(V) \in \beta^* g \alpha \mu$ for each $V \in \lambda$. Therefore f is Let Γ be the set of all expansion on generalised topological space (X,μ) ,a partial order " < " can be defined by a relation $\mathcal{A} < \mathcal{B}$ if and only if $\mathcal{A}(V) < \mathcal{B}(V)$ for all $V \in \mu$. \square **Theorem 2.8.** Let (X,μ) be a generalised topological space and (Y,λ,\mathcal{H}) be a hereditary generalized topological space. A be an expansion on (Y,λ,\mathcal{H}) . Let $f:(X,\mu) \longrightarrow (Y,\lambda,\mathcal{H})$ be A-expansion $\beta^* g\alpha(\mu,\lambda)$ -continuous. Then f is \mathcal{B} -expansion $\beta^* g\alpha(\mu,\lambda)$ -continuous for any expansion \mathcal{B} on (Y,λ,\mathcal{H}) such that $\mathcal{A} < \mathcal{B}$ **Proof.** Given that f is \mathcal{A} -expansion $\beta^{\star}g\alpha(\mu,\lambda)$ -continuous and $\mathcal{A}<\mathcal{B}$. Then for each $V\in\lambda$, \mathcal{A} $(V)<\mathcal{B}(V)$ and $f^{-1}(V)\subseteq\beta^{\star}g\alpha i_{\mu}(f^{-1}(\mathcal{A}(V)))$ and hence $f^{-1}(V)\subseteq\beta^{\star}g\alpha i_{\mu}(f^{-1}(\mathcal{B}(V)))$. Therefore, f is mathcal B-expansion $\beta^{\star}g\alpha(\mu,\lambda)$ -continuous for any expansion \mathcal{B} on (Y,λ,\mathcal{H}) such that $\mathcal{A}<\mathcal{B}$ \square **Definition 2.9.** [1] Let (X,μ) be a generalized topological space and (Y,λ,\mathcal{H}) be a hereditary generalized topological space. Let \mathcal{B} be an expansion on (Y,λ,\mathcal{H}) . A map $f:(X,\mu)\longrightarrow (Y,\lambda,\mathcal{H})$ is said to be closed \mathcal{A} - expansion continuous if $f^{-1}((\mathcal{A}(V))^c)$ is μ -closed in (X,μ) for each $V \in \lambda$. **Definition 2.10.** Let (X,μ) be a generalized topological space and (Y,λ,\mathcal{H}) be a hereditary generalized topological space. Let \mathcal{A} be an expansion on (Y,λ,\mathcal{H}) . A map $f:(X,\mu)\longrightarrow (Y,\lambda,\mathcal{H})$ is said to be closed \mathcal{A} - expansion $\beta^{\star}g\alpha(\mu,\lambda)$ -continuous if $f^{-1}((\mathcal{A}(V))^c)$ is $\beta^{\star}g\alpha\mu$ -closed in (X,μ) for each $V \in \lambda$. **Definition 2.11.** [1] An expansion \mathcal{A} on (X,μ,\mathcal{H}) is said to be *open* if $\mathcal{A}(V) \in \mu$ for all $V \in \mu$. **Definition 2.12.** [1] An expansion \mathcal{A} on (X,μ,\mathcal{H}) is said to be idempotent if $\mathcal{A}(\mathcal{A}(V)) = \mathcal{A}(V)$ for all $V \in \mu$ **Theorem 2.13.** Let $f:(X,\mu) \longrightarrow (Y,\lambda,\mathcal{H})$, where \mathcal{H} is λ codense and \mathcal{A} be an open and idempotent on (Y,λ,\mathcal{H}) . Then f is \mathcal{A} - expansion $\beta^*g\alpha(\mu,\lambda)$ -continuous if and only if f is closed \mathcal{A} -expansion $\beta^*g\alpha(\mu,\lambda)$ -continuous **Proof.** Necessary part: Let f be \mathcal{A} - expansion $\beta^{\star}g\alpha(\mu,\lambda)$ -continuous, where \mathcal{A} is idempotent and $V \in \lambda$. Since \mathcal{A} is open and idempotent, $\mathcal{A}(V) \in \lambda$ and $\mathcal{A}(\mathcal{A}(V)) = \mathcal{A}(V)$. Then $f^{-1}(\mathcal{A}(V)) \subseteq \beta^{\star}g\alpha i_{\mu}(f^{-1}(\mathcal{A}(\mathcal{A}(V)))) = \beta^{\star}g\alpha i_{\mu}(f^{-1}(\mathcal{A}(V)))$ **Sufficient part**:We prove $(f^{-1}(A(V))^c)^c = f^{-1}(A(V))$. Let $x \in (f^{-1}(A(V))^c)^c$. Then $x \notin f^{-1}(A(V))^c$ and $f(x) \notin (A(V))^c$. Hence $x \in f^{-1}(A(V))$. So, $(f^{-1}(A(V))^c)^c \subseteq f^{-1}(A(V))^c$. Conversely, let $x \in f^{-1}(A(V))$. Then $f(x) \in A(V)$ and so $f(x) \notin (A(V))^c$ which implies $x \notin f^{-1}(A(V))^c$ and $x \in (f^{-1}(A(V))^c)^c$. So, $(f^{-1}(A(V))^c)^c \subseteq f^{-1}(A(V))$. Therefore, $(f^{-1}(A(V))^c)^c = f^{-1}(A(V))$. Since f is closed(A)- expansion $f^*(a)$ -continuous, $f^{-1}(A(V))^c$ is $f^*(a)$ - $f^*(a)$ -continuous, $f^{-1}(A(V))^c$ is $f^*(a)$ - $f^*(a)$ -continuous, $f^{-1}(A(V))^c = f^*(A(V))^c f^*(A(V))^$ **Definition 2.14.** Let \mathcal{A} be an expansion on a hereditary generalized topological space (X,μ,\mathcal{H}) , \mathcal{A} and \mathcal{B} be expansions on (X,μ) and (Y,λ,\mathcal{H}) respectively. We say that the map $f:(X,\mu) \longrightarrow (Y,\lambda,\mathcal{H})$ is $(\mathcal{A},\mathcal{B})$ weakly-continuous if and only if \mathcal{A} $(f^{-1}(V)) \subseteq i_{\mu}(f^{-1}(\mathcal{B}(V)))$ for every $V \in \lambda$. **Definition 2.15.** Let \mathcal{A} be an expansion on hereditary generalized topological space (X,μ,\mathcal{H}) , \mathcal{A} and \mathcal{B} be expansions on (X,μ) and (Y,λ,\mathcal{H}) respectively. We say that the map $f:(X,\mu) \longrightarrow (Y,\lambda,\mathcal{H})$ is $(\mathcal{A},\mathcal{B})$ weakly $\beta^*g\alpha$ -continuous if and only if $\mathcal{A}(f^{-1}(V)) \subseteq \beta^*g\alpha i_{\mu}(f^{-1}(\mathcal{B}(V)))$ for every $V \in \lambda$. The expansion $\mathcal{A}(V) = V$ is called the identity expansion and it is denoted by $\mathcal{I}d$ -expansion. **Definition 2.16.** Let (X,μ,\mathcal{H}) be a hereditary generalized topological space. An expansion \mathcal{A} on (X,μ,\mathcal{H}) is said to be *subadditive* if for every collection of μ - open set $\{U_\alpha:\alpha\in\triangle\}$, $\mathcal{A}(U_{\alpha\in\triangle}U_\alpha)\subseteq U_{\alpha\in\triangle}\mathcal{A}(U_\alpha)$. **Definition 2.17.** Let (X,μ,\mathcal{H}) be a hereditary generalised topological space. An expansion \mathcal{A} on (X,μ,\mathcal{H}) is said to be $\beta^*g\alpha\text{-subadditive}$ if for every collection of $\beta^*g\alpha\mu\text{-}open$ set $\{U_\alpha:\alpha\in\triangle\}$, $\mathcal{A}(U_{\alpha\in\triangle}U_\alpha)\subseteq U_{\alpha\in\triangle}\mathcal{A}(U_\alpha)$ **Theorem 2.18.** Let (X,μ) be a quasi topological space and (Y,λ,\mathcal{H}) be a hereditary generalized topological space and \mathcal{A} be an expansion on (X,μ) . If \mathcal{B} and \mathcal{B}^* are two mutually dual expansions on (Y,λ,\mathcal{H}) then a map $f:(X,\mu)\longrightarrow (Y,\lambda,\mathcal{H})$ is $(\mathcal{A}\ \mathcal{I}d)$ weakly $\beta^*g\alpha$ -continuous if and only if f is both $(\mathcal{A},\mathcal{B})$ weakly $\beta^*g\alpha$ -continuous and $(\mathcal{A},\mathcal{B}^*)$ weakly $\beta^*g\alpha$ -continuous **Proof.** Suppose f is $(\mathcal{A}, \mathcal{I}d)$ weakly $\beta^*g\alpha\text{-}continuous$. Then for every $V \in \lambda$, we have $\mathcal{A}(f^{-1}(V)) \subseteq \beta^*g\alpha i_\mu(f^{-1}(V)) \subseteq \beta^*g\alpha i_\mu(f^{-1}(\mathcal{B}(V))) \cap \beta^*g\alpha i_\mu(f^{-1}(\mathcal{B}^*(V)))$. This implies that f is $(\mathcal{A},\mathcal{B})$ weakly $\beta^*g\alpha\text{-}continuous$ and $(\mathcal{A},\mathcal{B}^*)$ weakly $\beta^*g\alpha\text{-}continuous$. Conversely, suppose f is $(\mathcal{A},\mathcal{B})$ weakly $\beta^*g\alpha\text{-}continuous$ and $(\mathcal{A},\mathcal{B}^*)$ weakly $\beta^*g\alpha\text{-}continuous$. Then for every $V \in \lambda$, we have $\mathcal{A}(f^{-1}(V)) \subseteq \beta^*g\alpha i_\mu(f^{-1}(\mathcal{B}(V)))$ and $\mathcal{A}(f^{-1}(V)) \subseteq \beta^*g\alpha i_\mu(f^{-1}(\mathcal{B}^*(V)))$. Thus $\mathcal{A}(f^{-1}(V)) \subseteq \beta^*g\alpha i_\mu(f^{-1}(V)) \subseteq \beta^*g\alpha i_\mu(f^{-1}(\mathcal{B}(V))) \cap \beta^*g\alpha i_\mu(f^{-1}(\mathcal{B}^*(V))) = \beta^*g\alpha i_\mu(f^{-1}(\mathcal{B}(V)))$. Since \mathcal{B} and \mathcal{B}^* are mutually dual expansions on $(Y, \lambda, \mathcal{H})$, we get $\mathcal{A}(f^{-1}(V)) \subseteq \beta^*g\alpha i_\mu(f^{-1}(V))$, which implies that f is $(\mathcal{A}, \mathcal{I}d)$ weakly $\beta^*g\alpha\text{-}continuous$. \square **Definition 2.19.** Let \mathcal{A} be an expansion on (X, μ, \mathcal{H}) . A subset A of X is said to be \mathcal{A} -open if for each $x \in A$ there exist $U \in \mu(x)$ such that $\mathcal{A}(U) \subseteq A$ and \mathcal{A} -closed if X - A is \mathcal{A} -open. **Definition 2.20.** Let \mathcal{A} be an expansion on (X, μ, \mathcal{H}) . A subset A of X is said to be $\beta^*g\alpha\mu$ \mathcal{A} -open if for each $x \in A$ there exist $U \in \beta^*g\alpha\mu(x)$ such that $\mathcal{A}(U) \subseteq A$ and $\beta^*g\alpha\mu$ \mathcal{A} -closed if X - A is $\beta^*g\alpha\mu$ \mathcal{A} -open. **Theorem 2.21.** Let $f:(X, \mu) \longrightarrow (Y, \lambda, \mathcal{H})$, where \mathcal{H} is λ -codense and \mathcal{B} be an open and idempotent expansion on $(Y, \lambda, \mathcal{H})$ and if \mathcal{A} is subadditive and monotone expansion on (X, μ) . Then f is $(\mathcal{A}, \mathcal{B})$ -weakly $\beta^* g \alpha$ -continuous if and only if closed $(\mathcal{A}, \mathcal{B})\beta^* g \alpha$ -continuous. **Proof.** Necessary part: Let f be $(\mathcal{A},\mathcal{B})$ -weakly $\beta^*g\alpha\text{-}continuous$, where \mathcal{B} is open and idempotent, then $\mathcal{A}(f^{-1}(V)) \subseteq \beta^*g\alpha i_\mu(f^{-1}(\mathcal{B}(V)))$ for each $V \in \lambda$. Since \mathcal{B} is open and idempotent, $\mathcal{B}(V) \in \lambda$ and $\mathcal{B}(\mathcal{B}(V)) = \mathcal{B}(V)$. Then $f^{-1}(\mathcal{B}(V)) \subseteq \mathcal{A}(f^{-1}(\mathcal{B}(V))) \subseteq \beta^*g\alpha i_\mu(f^{-1}(\mathcal{B}(\mathcal{B}(V)))) = \beta^*g\alpha i_\mu(f^{-1}(\mathcal{B}(V)))$. Thus $f^{-1}(\mathcal{B}(V)) \in \beta^*g\alpha\mu$ and $\mathcal{A}(f^{-1}(\mathcal{B}(V))) = f^{-1}(\mathcal{B}(V))$ and hence $(f^{-1}(\mathcal{B}(V)))^c = f^{-1}((\mathcal{B}(V))^c)$ is $\beta^*g\alpha\mu$ \mathcal{A} -closed. Therefore f is closed $(\mathcal{A},\mathcal{B})\beta^*g\alpha\text{-}continuous$. Sufficient part: Let $f:(X,\mu) \longrightarrow (Y,\lambda,\mathcal{H})$ be $closed\ (\mathcal{A},\mathcal{B})\beta^*g\alpha$ -continuous and let $V \in \lambda$. We prove $(f^{-1}(\mathcal{B}(V))^c)^c = f^{-1}(\mathcal{B}(V))$. Let $x \in (f^{-1}(\mathcal{B}(V))^c)^c$. Then $x \notin f^{-1}(\mathcal{B}(V))^c$ and $f(x) \notin (\mathcal{B}(V))^c$. Hence $x \in f^{-1}(\mathcal{B}(V))$. So, $(f^{-1}(\mathcal{B}(V))^c)^c \subseteq f^{-1}(\mathcal{B}(V))$. Conversely, let $x \in f^{-1}(\mathcal{B}(V))$. Then $f(x) \in \mathcal{B}(V)$ and so $f(x) \notin (\mathcal{B}(V))^c$ which implies $x \notin f^{-1}((\mathcal{B}(V))^c)$ and $x \in (f^{-1}(\mathcal{B}(V))^c)^c$. So, $(f^{-1}(\mathcal{A}(V))^c)^c \subseteq f^{-1}(\mathcal{B}(V))$. Therefore, $(f^{-1}(\mathcal{B}(V))^c)^c = f^{-1}(\mathcal{B}(V))$. Since f is $closed\ (\mathcal{A},\mathcal{B})$ - $\beta^*g\alpha$ -continuous, $f^{-1}(\mathcal{B}(V))^c$ is $\beta^*g\alpha\mu$ A-closed in (X,μ) . This implies $(f^{-1}(\mathcal{B}(V))^c)^c \in \beta^*g\alpha\mu$. Hence $f^{-1}(\mathcal{B}(V)) \in \beta^*g\alpha\mu$ and so $f^{-1}(\mathcal{B}(V)) = \beta^*g\alpha i_\mu (f^{-1}(\mathcal{B}(V)))$. Also $V \subseteq \mathcal{B}(V)$, and this implies $f^{-1}(V) \subseteq f^{-1}(\mathcal{B}(V)) = \beta^*g\alpha i_\mu (f^{-1}(\mathcal{B}(V)))$. Therefore $\mathcal{A}(f^{-1}(V)) \subseteq \beta^*g\alpha i_\mu (f^{-1}(\mathcal{B}(V)))$ for each $V \in \lambda$. Hence f is $(\mathcal{A},\mathcal{B})$ -weakly $\beta^*g\alpha$ -continuous. \square ### References - [1] Ahmad Al-Omari, M. Rajamani and R. Ramesh, A-Expansion continuous maps and (A;B)-Weakly continuous maps in Hereditary generalized topological spaces, Vasile Alecsandri University of Bacau Faculty of Sciences Scientific Studies and Research Series Mathematics and Informatics, 23(2), (2013), 13-22. - [2] Bishwambhar Roy, On a type of generalised open sets, *Applied general topology, Universidad Politecnica de Valencia*, **12(2)**, (2011), 163-173. - [3] A.Csaszar, generalized open sets in generalized topologies, *Acta Mathematica Hungaria*, **106**, (2005), 53-66. - [4] A.Csaszar, Modifications in Generalized topologies via hereditary, *Acta Mathematica Hungaria* **115**, (2007), 29-36. - [5] R.Jamunarani and P.Jeyanthi, Regular sets in genealized topological spaces, *Acta Mathematica Hungaria*, **135**,(2012), 342-349. - [6] K.Karuppayi*, A note on RH-open sets in GTS with hereditary classes., *International Journal of Mathematical Archive*, **5(1)**, (2014), 312-316. - [7] M.Rajamani, V.Inthumathi and R.Ramesh, A decomposition of $(\mu, \lambda$ -continuity in generalized topological spaces, *Jordan J.Math.Stat.***6(1)**(2013), 15-27. - [8] J.Tong, Expansion of open sets and decomposition of continuous mappings, *Rend. Circ.Mat.Polermo*, **43(2)**, (1994), 303-308. #### **Author information** K. Baby and M. Vigneshwaran, Department of Mathematics, Kongunadu Arts and Science College, Coimbatore - 641029, India. E-mail: babyk_ma@kongunaducollege.ac.in Received: December 30, 2020 Accepted: March 25, 2021