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Abstract The purpose of this paper is to combine two powerful methods, the natural trans-
form method and the reduced differential transform method to get a better method for solving
nonlinear time-fractional partial differential equations. This method is called the natural reduced
differential transform method (NRDTM). The time-fractional derivatives are taken in the Ca-
puto sense. Three different numerical applications are given to demonstrate the efficiency and
accuracy of the NRDTM. The obtained results show that the proposed method is very effective
and easy to use for solving nonlinear fractional differential equations arising in mathematical
sciences.

1 Introduction

Nonlinear fractional partial differential equations (NFPDEs) have played a very important role
in various fields of science and engineering such as, mechanics, electricity, chemistry, biology,
control theory, signal processing and image processing. In all of these scientific fields, it is
important to obtain exact or approximate solutions of NFPDEs. But in general, there exists no
method that gives an exact solution for NFPDEs and most of the obtained solutions are only
approximations. Searching of exact solutions of NFPDEs in mathematical and other scientific
applications is still quite challenging and needs new methods. Computing the exact solution of
these equations is of considerable importance, because the exact solutions can help to understand
the mechanism and complexity of phenomena that have been modeled by NFPDEs. [4, 7, 8, 10,
14, 16].

In the literature, there are many methods for solving NFPDEs. Among these methods: the
Adomian decomposition method (ADM) [13], homotopy perturbation method (HPM) [3], ho-
motopy analysis method (HAM) [1], generalized differential transform method (GDTM) [6],
fractional variational iteration method (FVIM) [15], fractional reduced differential transform
method (RDTM) [2], residual power series method (RPSM) [9].

The main objective of this paper is to propose a new iterative method for obtaining an analyt-
ical solution of nonlinear time-fractional partial differential equations. The new iterative method
basically illustrates how two powerful methods can be combined and used to get exact solutions
to nonlinear fractional partial differential equations arising in mathematical sciences.

The rest of this paper is organized as follows: In Section 2, we discuss the necessary defini-
tions and mathematical preliminaries of the fractional calculus theory and the natural transform.
In Section 3, we provide some important definitions and operations of the reduced differential
transform method. In Section 4, we describe the fundamental idea of the NRDTM and in Sec-
tion 5, we demonstrate the accuracy and effectiveness of the method by considering three cases
of nonlinear time-fractional partial differential equations. Finally, we present the conclusion in
Section 6.
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2 Preliminaries

For the convenience of the reader, here we present the necessary definitions and properties of the
fractional calculus theory and natural transform.

Definition 2.1. [12] Let f(t) ∈ C[0, T ] and T > 0. Then, the α order Riemann-Liouville frac-
tional integral operator is given as

Iαf(t) =
1

Γ(α)

t∫
0

(t− s)α−1f(s)ds, (2.1)

where Γ(.) denotes the gamma function, α ≥ 0 and t > 0.

Definition 2.2. [12] Let f (n)(t) ∈ C[0, T ] and T > 0. Then, the α order Caputo fractional
derivative operator is given as

Dαf(t) =
1

Γ(n− α)

t∫
0

(t− s)n−α−1f (n)(s)ds, (2.2)

where n− 1 < α ≤ n, n ∈ N and t > 0.

For the Riemann-Liouville fractional integral and Caputo fractional derivative, we have the fol-
lowing relation

IαDαf(t) = f(t)−
n−1∑
k=0

f (k)(0+)
tk

k!
, (2.3)

where t > 0.

Definition 2.3. [12] The Mittag-Leffler function is defined as follows

Eα (z) =
∞∑
i=0

zi

Γ(iα+ 1)
, α > 0, z ∈ C. (2.4)

A further generalization of (2.4) is given in the form

Eα,β (z) =
∞∑
i=0

zi

Γ(iα+ β)
, α, β > 0, z ∈ C. (2.5)

For α = 1, Eα (z) reduces to ez .

Definition 2.4. [5] The natural transform is defined over the set of functions is defined over the
set of functions

A =

{
f(t)/∃M, τ1, τ2 > 0, |f(t)| < Me

|t|
τj if t ∈ (−1)j × [0,∞) , j ∈ Z+

}
,

by the following integral

N+ [f(t)] = R+(s, v) =
1
v

+∞∫
0

e−
st
v f(t)dt, s, v ∈ (0,∞). (2.6)

Some basic properties of the natural transform are given as follows:
Property 1: The natural transform is a linear operator. That is, if λ and µ are non–zero constants,
then

N+ [λf(t)± µg(t)] = λN+ [f(t)]± µN+ [g(t)] .
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Property 2: If f (n)(t) is the n-th derivative of function f(t) w.r.t. ”t” then its natural transform
is given by

N+
[
f (n)(t)

]
=
sn

vn
R+(s, v)−

n−1∑
k=0

sn−(k+1)

vn−k
f (k)(0).

Property 3: (Convolution property) Suppose F+(s, v) and G+(s, v) are the natural transforms
of f(t) and g(t), respectively, both defined in the set A. Then the natural transform of their
convolution is given by

N+ [(f ∗ g) (t)] = vF+(s, v)G+(s, v),

where the convolution of two functions is defined by

(f ∗ g) (t) =
t∫

0

f(ξ)g(t− ξ)dξ =
t∫

0

f(t− ξ)g(ξ)dξ.

Property 4: Some special natural transforms

N+ [1] =
1
s
,

N+ [t] =
v

s2 ,

N+

[
tn−1

(n− 1)!

]
=

vn−1

sn
, n = 1, 2, ....

Property 5: If α > −1, then the natural transform of tα is given by

N+ [tα] = Γ (α+ 1)
vα

sα+1 .

Theorem 2.5. If R+(s, v) is the natural transform of f(t), then the natural transform of the
Riemann-Liouville fractional integral for f(t) of order α, is given by

N+ [Iαf(t)] =
vα

sα
R+(s, v). (2.7)

Proof. The Riemann-Liouville fractional integral for the function f(t), as in (2.1), can be ex-
pressed as the convolution

Iαf(t) =
1

Γ(α)
tα−1 ∗ f(t). (2.8)

Applying the natural transform in the Eq. (2.8) and using properties (3) and (5), we have

N+ [Iαf(t)] = N+

[
1

Γ(α)
tα−1 ∗ f(t)

]
= v

1
Γ(α)

N+
[
tα−1]N+ [f(t)]

= v
vα−1

sα
R+(s, v) =

vα

sα
R+(s, v).

The proof is complete.

Theorem 2.6. Let n ∈ N∗ and α > 0 be such that n − 1 < α ≤ n and R+(s, v) be the natural
transform of the function f(t), then the natural transform of the Caputo fractional derivative of
the function f(t) of order α, is given by

N+ [Dαf(t)] =
sα

vα
R+(s, v)−

n−1∑
k=0

sα−(k+1)

vα−k
f (k)(0). (2.9)
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Proof. Let g(t) = f (n)(t), then by the Definition 2.2 of the Caputo fractional derivative, we
obtain

Dαf(t) =
1

Γ(n− α)

t∫
0

(t− ξ)n−α−1f (n)(ξ)dξ

=
1

Γ(n− α)

t∫
0

(t− ξ)n−α−1g(ξ)dξ

= In−αg(t). (2.10)

Applying the natural transform on both sides of (2.10) using Eq. (2.7), we get

N+ [Dαf(t)] = N+
[
In−αg(t)

]
=
vn−α

sn−α
G+(s, v). (2.11)

Also, we have from the properties (1) and (2)

N+ [g(t)] = N+
[
f (n)(t)

]
,

and

G+(s, v) =
sn

vn
R+(s, v)−

n−1∑
k=0

sn−(k+1)

vn−k

[
f (k)(t)

]
t=0

.

Hence, (2.11) becomes

N+ [Dαf(t)] =
vn−α

sn−α

(
sn

vn
R+(s, v)−

n−1∑
k=0

sn−(k+1)

vn−k
f (k)(0)

)

=
sα

uα
R+(s, v)−

n−1∑
k=0

sα−(k+1)

vα−k
f (k)(0).

The proof is complete.

3 Reduced differential transform method

In this section, we present some important definitions and operations of the reduced differential
transform method in which can help to better understand of the indicated method [11].
Now, assume that the function of two variables u(x, t) will be described as a product of two
different variable functions, i.e., u(x, t) = φ(x)ψ(t). The function u(x, t) can be displayed due
to the properties of the differential transform as follows:

u(x, t) =

( ∞∑
i=0

Φ(i)xi
) ∞∑

j=0

Ψ(j)tj

 =
∞∑
k=0

Uk(x)t
k,

where Uk(x) is the converted function of the source function u(x, t).

Definition 3.1. Let u(x, t) is analytic and differentiated continuously function with regard to
space x and time t, in the domain of interest, then the reduced differential transform of u(x, t) is
given by

Uk(x) =
∞∑
k=0

1
k!

[
∂k

∂tk
u(x, t)

]
t=t0

, (3.1)

Here the lowercase u(x, t) represents the original function while the uppercase Uk(x) stands for
the reduced transformed function.
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Definition 3.2. The reduced differential inverse transform of Uk(x) is defined by

u(x, t) =
∞∑
k=0

Uk(x)(t− t0)k. (3.2)

Combining equations (3.1) and (3.2), we have

u(x, t) =
∞∑
k=0

1
k!

[
∂k

∂tk
u(x, t)

]
t=t0

(t− t0)k. (3.3)

In particular, for t0 = 0, equation (3.3) becomes

u(x, t) =
∞∑
k=0

1
k!

[
∂k

∂tk
u(x, t)

]
t=0

tk. (3.4)

From the above definitions, the fundamental operations of the reduced differential transform
method are given by the following theorems.

Theorem 3.3. Let Uk(x), Vk(x) andWk(x) be the reduced differential transform of the functions
u(x, t), v(x, t) and w(x, t) respectively, then

(1) if
w(x, t) = λu(x, t) + µv(x, t),

then
Wk(x) = λUk(x) + µVk(x), λ, µ ∈ R.

(2) if
w(x, t) = u(x, t)v(x, t),

then

Wk(x) =
k∑
r=0

Ur(x)Vk−r(x).

(3) if
w(x, t) = u1(x, t)u2(x, t)...un(x, t),

then

Wk(x) =
k∑

kn−1=0

kn−1∑
kn−2=0

...

k3∑
k2=0

k2∑
k1=0

U1
k1
(x)U2

k2−k1
(x)× ...× Un−1

kn−1−kn−2
(x)Unk−kn−1

(x).

(4) if

w(x, t) =
∂n

∂tn
u(x, t),

then

Wk(x) = (k + 1)(k + 2)...(k + n)Uk+n(x)

=
(k + n)!

k!
Uk+n(x), n = 1, 2, ....

(5) if

w(x, t) =
∂n

∂xn
u(x, t),

then
Wk(x) =

∂n

∂xn
Uk(x), n = 1, 2, ....
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4 Natural reduced differential transform method (NRDTM)

Theorem 4.1. Suppose that we have a nonlinear time-fractional partial differential equation
with initial conditions of the form

Dα
t u(x, t) = Lu(x, t) +Nu(x, t) + f(x, t), n− 1 < α ≤ n, n ∈ N∗, (4.1)

∂ku(x, 0)
∂tk

= u(k)(x, 0) = gk(x), k = 0, 1, 2, ..., n− 1, (4.2)

where Dα
t u(x, t) is the Caputo fractional derivative of the function u(x, t) of order α, L is a

linear operator which has partial derivatives, N is a nonlinear operator and f(x, t) is the source
term. Then, by NRDTM, the approximate analytical solution of equations (4.1)-(4.2) is given in
the form of infinite series which converges very rapidly to the exact solution as follows

u(x, t) =
∞∑
k=0

Uk(x),

where Uk(x) is the reduced differential transformed function of u(x, t).

Proof. In order to achieve our result, we consider the following nonlinear time-fractional partial
differential equation (4.1) with the initial conditions (4.2).
Applying the natural transform on both sides of equation (4.1), we get

N+ [Dα
t u(x, t)] = N+ [Lu(x, t) +Nu(x, t) + f(x, t)] . (4.3)

Using the Theorem 2.5 and the initial conditions in equation (4.2), we obtain

sα

vα
N+ [u(x, t)]−

n−1∑
k=0

sα−(k+1)

vα−k
u(k)(x, 0) = N+ [Lu(x, t) +Nu(x, t)] +N+ [f(x, t)] . (4.4)

Thus, we have

N+ [u(x, t)] =
n−1∑
k=0

vk

sk+1 gk(x) +
vα

sα
N+ [f(x, t)] +

vα

sα
N+ [Lu(x, t) +Nu(x, t)] . (4.5)

Operating the inverse natural transform on both sides of equation (4.5), we get

u(x, t) = G(x, t) +N−1
(
vα

sα
N+ [Lu(x, t) +Nu(x, t)]

)
. (4.6)

where G(x, t), represents the term arising from the source term and the prescribed initial condi-
tions.
Now, applying the reduced differential transform method definition, the following iteration for-
mula can be defined as

U0(x) = G(x, t),

Uk+1(x) = N−1
(
vα

sα
N+ [LUk(x) +NUk(x)]

)
, k ≥ 0, (4.7)

where LUk(x) and NUk(x) are the reduced differential transform functions of Lu(x, t) and
Nu(x, t), respectively.
From equation (4.7), we have

U0(x) = G(x, t),

U1(x) = N−1
(
vα

sα
N+ [LU0(x) +NU0(x)]

)
,

U2(x) = N−1
(
vα

sα
N+ [LU1(x) +NU1(x)]

)
,

U3(x) = N−1
(
vα

sα
N+ [LU2(x) +NU2(x)]

)
,

...
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Then, the approximate analytical solution of equations (4.1)-(4.2) is given as

u(x, t) =
∞∑
k=0

Uk(x).

The proof is complete.

5 Numerical Applications

In this section, some nonlinear time-fractional differential equations are considered to illustrate
the accuracy and efficiency of the proposed method.

Example 5.1. Consider the nonlinear time-fractional gas dynamic equation subject to the initial
condition of the form

Dα
t u(x, t) +

1
2
(
u2(x, t)

)
x
= u(x, t)− u2(x, t), 0 < α ≤ 1, (5.1)

u(x, 0) = e−x, (5.2)

where Dα
t u(x, t) is the Caputo time-fractional derivative of the function u(x, t) of order α and

(x, t) ∈ R×R+.
Applying the same methodology described in Section 4 to the equations (5.1)-(5.2), we have the
following iteration formula

U0(x) = e−x,

Uk+1(x) = N−1
(
vα

sα
N+ (Uk(x)−Ak(x)−Bk(x))

)
, (5.3)

where Ak(x) and Bk(x) are the transformed values of the nonlinear terms,
1
2
(
u2(x, t)

)
x

and

u2(x, t), respectively . For the convenience of the reader, the first few nonlinear terms are as
follows

A0(x) =
1
2
(
U2

0 (x)
)
x
,

A1(x) =
1
2
(2U0(x)U1(x))x ,

A2(x) =
1
2
(
2U0(x)U2(x) + U2

1 (x)
)
x
.

B0(x) = U2
0 (x),

B1(x) = 2U0(x)U1(x),

B2(x) = 2U0(x)U2(x) + U2
1 (x).

By iterative calculation on relationship (5.3), we have

U0(x) = e−x,

U1(x) = e−x
tα

Γ(α+ 1)
,

U2(x) = e−x
t2α

Γ(2α+ 1)
,

U3(x) = e−x
t3α

Γ(3α+ 1)
,

U4(x) = e−x
t4α

Γ(4α+ 1)
,

...
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Thus, the solution of equations (5.1)-(5.2) is given by

u(x, t) = e−x
(

1 +
tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
...

)

= e−x

( ∞∑
k=0

(
tk
)α

Γ(kα+ 1)

)
= e−xEα(t

α), (5.4)

where Eα(tα) denotes the Mittag-Leffler function defined by equation (2.4).
If we put α = 1 in equation (5.4), we obtain the exact solution in closed form

u(x, t) = et−x.
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Figure 1. 3D plots graphs of the 4−term approximate solutions by NRDTM and exact solution
for Example 5.1
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Figure 2. 2D plots graphs of the 4−term approximate solutions by NRDTM and exact solution
for Example 5.1 when x = 1
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t α = 0.7 α = 0.8 α = 0.9 α = 1 exact solution |uexact − uNRDTM |
0.01 0.38448 0.37797 0.37400 0.37158 0.37158 3.0708× 10−13

0.03 0.40495 0.39274 0.38458 0.37908 0.37908 7.4870× 10−11

0.05 0.42240 0.40606 0.39471 0.38674 0.38674 9.6606× 10−10

0.07 0.43864 0.41881 0.40471 0.39455 0.39455 5.2132× 10−9

0.09 0.45425 0.43128 0.41469 0.40252 0.40252 1.8377× 10−8

Table 1. The numerical values of the 4−term approximate solutions by NRDTM and exact
solution for Example 5.1 when x = 1

Example 5.2. Consider the nonlinear time-fractional reaction-diffusion-convection equation sub-
ject to the initial condition of the form

Dα
t u(x, t) = uxx(x, t)− ux(x, t) + u(x, t)ux(x, t)− u2(x, t) + u(x, t), 0 < α ≤ 1, (5.5)

u(x, 0) = ex, (5.6)

where Dα
t u(x, t) is the Caputo time-fractional derivative of the function u(x, t) of order α, and

(x, t) ∈ R×R+.
Applying the same methodology described in Section 4 to the equations (5.5)-(5.6), we have the
following iteration formula

U0(x) = ex,

Uk+1(x) = N−1
(
vα

sα
N+ (Ukxx(x)− Ukx(x) +Ak(x)−Bk(x) + Uk(x))

)
, (5.7)

where Ak(x) and Bk(x) are the transformed values of the nonlinear terms, u(x, t)ux(x, t) and
u2(x, t), respectively . For the convenience of the reader, the first few nonlinear terms are as
follows

A0(x) = U0(x)U0x(x),

A1(x) = U0(x)U1x(x) + U1(x)U0x(x),

A2(x) = U0(x)U2x(x) + U1(x)U1x(x) + U2(x)U0x(x).

B0(x) = U2
0 (x),

B1(x) = 2U0(x)U1(x),

B2(x) = 2U0(x)U2(x) + U2
1 (x).

By iterative calculation on relationship (5.7), we have

U0(x) = ex,

U1(x) = ex
tα

Γ(α+ 1)
,

U2(x) = ex
t2α

Γ(2α+ 1)
,

U3(x) = ex
t3α

Γ(3α+ 1)
,

U4(x) = ex
t4α

Γ(4α+ 1)
,

...
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Thus, the solution of equations (5.5)-(5.6) is given by

u(x, t) = ex
(

1 +
tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+

t3α

Γ(3α+ 1)
+ ...

)

= ex

( ∞∑
k=0

(tα)
k

Γ(kα+ 1)

)
= exEα(t

α), (5.8)

where Eα(tα) denotes the Mittag-Leffler function defined by equation (2.4).
If we put α = 1 in equation (5.8), we obtain the exact solution in closed form

u(x, t) = et+x.
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Figure 3. 3D plots graphs of the 4−term approximate solutions by NRDTM and exact solution
for Example 5.2
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Figure 4. 2D plots graphs of the 4−term approximate solutions by NRDTM and exact solution
for Example 5.2 when x = 1



FRACTIONAL PARTIAL DIFFERENTIAL EQUATIONS 123

t α = 0.7 α = 0.8 α = 0.9 α = 1 exact solution |uexact − uNRDTM |
0.01 2.8409 2.7928 2.7635 2.7456 2.7456 2.2690× 10−12

0.03 2.9922 2.9020 2.8417 2.8011 2.8011 5.5322× 10−10

0.05 3.1212 3.0004 2.9165 2.8577 2.8577 7.1383× 10−9

0.07 3.2412 3.0946 2.9904 2.9154 2.9154 3.8520× 10−8

0.09 3.3565 3.1868 3.0642 2.9743 2.9743 1.3579× 10−7

Table 2. The numerical values of the 4−term approximate solutions by NRDTM and exact
solution for Example 5.2 when x = 1

Example 5.3. Consider the nonlinear time-fractional wave-like equation with variable coeffi-
cients subject to the initial conditions of the form

Dα
t u(x, t) = x2 ∂

∂x
(ux(x, t)uxx(x, t))− x2(u2

xx(x, t))− u(x, t), 1 < α ≤ 2, (5.9)

u(x, 0) = 0, ut(x, 0) = x2, (5.10)

where Dα
t u(x, t) is the Caputo time-fractional derivative of the function u(x, t) of order α, and

(x, t) ∈ ]0, 1[×R+.
Applying the same methodology described in Section 4 to the equations (5.9)-(5.10), we have
the following iteration formula

U0(x) = tx2,

Uk+1(x) = N−1
(
vα

sα
N+

(
x2 ∂

∂x
Ak(x)− x2Bk(x)− Uk(x)

))
, (5.11)

where Ak(x) and Bk(x) are the transformed values of the nonlinear terms, ux(x, t)uxx(x, t) and
u2
xx(x, t), respectively . For the convenience of the reader, the first few nonlinear terms are as

follows

A0(x) = U0x(x)U0xx(x),

A1(x) = U0x(x)U1xx(x) + U1x(x)U0xx(x),

A2(x) = U0x(x)U2xx(x) + U1x(x)U1xx(x) + U2x(x)U0xx(x).

B0(x) = U2
0xx(x),

B1(x) = 2U0xx(x)U1xx(x),

B2(x) = 2U0xx(x)U2xx(x) + U2
1xx(x).

By iterative calculation on relationship (5.11), we have

U0(x) = tx2,

U1(x) = − tα+1

Γ(α+ 2)
x2,

U2(x) =
t2α+1

Γ(2α+ 2)
x2,

U3(x) = − t3α+1

Γ(3α+ 2)
x2,

U4(x) =
t4α+1

Γ(4α+ 2)
x2,

...
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Thus, the solution of equations (5.9)-(5.10) is given by

u(x, t) = x2
(
t− tα+1

Γ(α+ 2)
+

t2α+1

Γ(2α+ 2)
− t3α+1

Γ(3α+ 2)
+ ...

)

= x2

(
t

∞∑
k=0

(−tα)k

Γ(kα+ 2)

)
= x2 (tEα,2(−tα)) , (5.12)

where Eα,2(−tα) denotes the Mittag-Leffler function defined by equation (2.5).
If we put α = 2 in equation (5.12), we obtain the exact solution in closed form

u(x, t) = x2 sin(t).
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Figure 5. 3D plots graphs of the 4−term approximate solutions by NRDTM and exact solution
for Example 5.3
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Figure 6. 2D plots graphs of the 4−term approximate solutions by NRDTM and exact solution
for Example 5.3 when x = 0.5
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t α = 1.7 α = 1.8 α = 1.95 α = 2 exact solution |uexact − uNRDTM |
0.1 0.02488 0.02492 0.02495 0.02496 0.02496 6.8887× 10−16

0.3 0.07271 0.07319 0.07374 0.07388 0.07388 1.3549× 10−11

0.5 0.11604 0.11752 0.11934 0.11986 0.11986 1.3425× 10−9

0.7 0.15325 0.15615 0.15994 0.16105 0.16105 2.7677× 10−8

0.9 0.18327 0.18777 0.19394 0.19583 0.19583 2.6495× 10−7

Table 3. The numerical values of the 4−term approximate solutions by NRDTM and exact
solution for Example 5.3 when x = 0.5

6 Conclusion

In this paper, we have presented a combination of the natural transform method and the reduced
differential transform method to obtain the exact solution of nonlinear time-fractional partial
differential equations. This combination creates a strong method called the natural reduced
differential transfrm method (NRDTM). This method has been successfully applied to three
different numerical applications. the NRDTM is an analytical method and runs by using the
initial conditions only. Thus, it can be used to solve equations with fractional and integer order
with respect to time. An important advantage of the new approach is its low computational load.
Our goal in the future is to apply the NRDTM to other nonlinear fractional partial differential
equations that arise in other fields of science, but with different fractional derivative operators
such as: Caputo-Fabrizio fractional derivative, Atangana-Baleanu-Caputo fractional derivative,
Conformable fractional derivative, etc.
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