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Abstract In this work, we present an interior point algorithm for linear optimization problems
based on a kernel function which has a hyperbolic-logarithmic function in its barrier term. This
kernel function was first proposed by the authors themselves for semi-definite programming
(SDP) problems in [18]. By simple analysis tools, several properties of the proposed kernel
function are used to compute the total number of iterations. We show that the worst-case iteration
complexity of our algorithm for large-update methods improves the obtained iteration bounds
based on the first trigonometric [5] as well as the classic kernel functions. For small-update
methods, we derive the best known iteration bound. Numerical tests reveal that the proposed
kernel function has promising results comparing with some existing kernel functions.

1 Introduction

After the landmark paper of Karmarkar [9], linear programming (LP) revitalized as an active area
of research. The interior-point methods (IPMs) provide a powerful tool for solving optimization
problems and are now among the most efficient methods from computational point of view.
In this paper, we are interested to solve linear programming problems (LP) by one of IPMs,
which is the primal-dual central trajectory method. Most IPMs for LP are based on the logarith-
mic barrier function [6, 16] with complexityO(n ln n

ε ), for large-update methods, where n is the
size of the problem and ε is the accuracy parameter.

Peng et al. in [12, 13, 14] were the first to analyse primal-dual IPMs for LP based on a class of
barrier functions that is defined by the so-called self-regular kernel functions. They improved the
theoritical complexity bound for large-update IPMs from O(n ln n

ε ) to the currently best known
iteration bound for these types of methods, namely, O(

√
n ln(n) ln n

ε ).
In 2004, Bai et al [1] proposed primal-dual IPMs for LP based on the so-called eligible kernel

functions which are not necessarly self-regular. Since then, several kernel functions have been
introduced. For instance, we refer to [3, 4, 7, 17, 11, 8] for recent works in this field.

Very recently, Touil and Chikouche [18, 19] introduced a new type of kernel functions for
SDP, neither trigonometric nor exponential. The proposed kernel function in [18] has the fol-
lowing expression

ψ(t) =

(
1 +

2 coth(1)
sinh2(1)

)
t2 − 1

2
+ coth2(t)− coth2(1)− log t, ∀t > 0. (1.1)

The aim of this paper is to study a large-update primal-dual interior-point algorithm for solving
LO problems based on this kernel function.

The paper is organized as follows: In section 2, we describe the linear programming problem
to be studied, thereafter we give briefly the central trajectory method based on kernel functions.
The generic interior point algorithm of this method is presented in the last of this section. In
section 3, we present our kernel function and its properties to determine an effective search di-
rection. In section 4, we analyze the complexity bound of the algorithm for both large- and
small-update methods. In section 5, we present numerical experiments to illustrate the effective-
ness of our kernel function in comparison with some existing kernel functions.
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Throughout the paper, we use the following notations. Rn,Rn+ and Rn++ denote the set of : n-
dimensional, nonnegative and positive vectors, respectively. For x, s ∈ Rn, xs and x

s denote
the component-wise product and division of the vectors x and s, respectively. For x ∈ Rn, we
denote ‖x‖ and X = diag(x) by the 2-norm of the vector x and the n diagonal matrix with
the components of the vector x, the diagonal entries, respectively. e denotes the n-dimensional
vector of ones. Finally, if f(x) ≥ 0 is a real valued function of a real nonnegative variable, we
write f(x) = O(g(x)) if f(x) ≤ cg(x) for some positive constant c, and f(x) = Θ(g(x)) if
c1x ≤ f(x) ≤ c2x for two positive constants c1 and c2.

2 The central trajectory via kernel functions

We consider the primal LP problem (P ) in the standard form

(P )


min cTx
Ax = b,

x ≥ 0,

where A ∈ Rm×n, c ∈ Rn and b ∈ Rm are given and x ∈ Rn is the vector of variables, and its
dual problem

(D)


max bT y
AT y + s = c,

s ≥ 0,

where y ∈ Rm and s ∈ Rn are the vectors of variables.
Throughout of this paper, we assume that:
(H1) : The matrix A has full ranked, i.e., rank(A) = m ≤ n.
(H2) : (P ) and (D) satisfy the interior-point condition (IPC), i.e., there exists (x0, y0, s0) such
that

Ax0 = b, x0 > 0, AT y0 + s0 = c, s0 > 0.

To study (P ), we replace it by the perturbed equivalent problem

(P )µ


min cTx− µ

n∑
i=1

lnxi

Ax = b,

x > 0, µ > 0.

We can also study (D) according to its perturbed dual

(D)µ


max bT y + µ

n∑
i=1

ln si

AT y + s = c,

s > 0, µ > 0.

The main advantage of (P )µ resides in its strict convexity, as a consequence the conditions of
optimality are necessary and sufficient. Thus, finding the optimal solutions of (P ) and (D) is
equivalent to solve the following nonlinear system by applying KKT to (P )µ and (D)µ

Ax = b, x > 0,
AT y + s = c, s > 0,
xs = µe, µ > 0.

(2.1)

Due to assumptions (H1) and (H2), system (2.1) has a unique solution for each µ > 0, denoted
(xµ, yµ, sµ).
The set of all solutions is called the µ−center (or the central path) of (P ) and (D). It has been
shown that when µ tends to zero, the limit of the central path exists and converges to the optimal
solutions of (P ) and (D) [1].
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Now, applying Newton’s method to system (2.1) for computing the search direction (∆x,∆y,∆s),
leads to the following linear system


A∆x = 0,
AT∆y + ∆s = 0,
s∆x+ x∆s = µe− xs.

(2.2)

Let us define the scaled vector v and the scaled search directions vectors dx and ds as follows

v =

√
xs

µ
, dx =

v∆x

x
, ds =

v∆s

s
. (2.3)

Using (2.3) and by simple calculations, system (2.2) is converted to


Adx = 0,
A
T

∆y + ds = 0,
dx + ds = v−1 − v = −∇Ψc(v),

(2.4)

where A = 1
µAV

−1X, V = diag(v), X = diag(x), and Ψc(v) =
∑n
i=1 ψc(vi), is the proximity

barrier function of the classical kernel function ψc(t)

ψc(t) =

(
t2 − 1

2
− log t

)
.

In this paper, we replace ψc(t) by the kernel function defined in (1.1).Note that the triple (x, y, s)
coincides with the µ-center (xµ, yµ, sµ) if and only if v = e.
System (2.4) is transformed to


Adx = 0,
A
T

∆y + ds = 0,
dx + ds = −∇Ψ(v).

(2.5)

Since rank(A) = m, then system (2.5) has a unique solution (dx,∆y, ds). Having dx and ds we
can obtain ∆x and ∆s.
The Newton iterate with step size α is constructed according to

x+ = x+ α∆x, y+ = y + α∆y, s+ = s+ α∆s, (2.6)

where the step size α ∈]0, 1] and satisfies (x+, s+) > 0.
Now, we can define the norm-based proximity measure σ(v) as

σ(v) =
1
2
‖dx + ds‖ . (2.7)
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The generic IPM outlined above can be summarized in the following algorithm.

Primal-dual algorithm for LP
Input
A threshold parameter τ ≥ 1;
an accuracy parameter ε > 0;
a fixed barrier update parameter θ ∈]0, 1[;
(x0, y0, s0) is a strictly feasible point and µ0 = 1
such that Ψ(v0) ≤ τ.
begin algorithm
x : = x0; s : = s0;µ : = µ0;
While nµ ≥ ε

begin
µ : = (1− θ)µ;
While Ψ(v) > τ

begin
Solve system (2.5) and choose a suitable step size α;
x := x+ α∆x;
y := y + α∆y;
s := s+ α∆s;
v :=

√
xs
µ ;

end
end

end algorithm

3 The kernel function and its properties

In this section, we present some technical lemmas of the kernel function defined in (1.1). For
the proves, we refer the reader to [18].

Lemma 3.1. (Lemma 3.2 in [18]) we have on the interval ]0,+∞[

(i) ψ is convex exponentially ; i.e.,

ψ(
√
t1t2) ≤

1
2
(ψ(t1) + ψ(t2)), ∀t1, t2 > 0.

(ii) tψ′′(t)− ψ′(t) > 0.

(iii) ψ′′ is monotonically decreasing.

Lemma 3.2. (Lemmas 3.3 and 3.7 in [18]) For ψ(t), we have

(i) 2(t− 1)2 ≤ ψ(t) ≤
(
ψ′(t)

2

)2

, ∀t > 0.

(ii) ψ(t) ≤ 1
2
ψ′′(1)(t− 1)2, ∀t ≥ 1.

(iii) σ2(v) ≥ Ψ(v).

Lemma 3.3. (Lemma 3.4 in [18]) Let ϕ : [0,+∞[→ [1,+∞[ be the inverse function of ψ (t) for

t ≥ 1 and ρ : [0,+∞[→ ]0, 1] be the inverse function of −1
2
ψ′ (t) for 0 < t ≤ 1, then

(i) 1 +

√
2z

ψ′′(1)
≤ ϕ (z) ≤ 1 +

√
z

2
, ∀z ∈ [0,+∞[.
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(ii) coth t ≤
√

2 (z + 1)
1
3 , z = −1

2
ψ′ (t) ≥ 0, ∀t ∈]0, 1].

Now, we derive an estimate for the effect of updating the barrier parameter µ on the value of
the proximity function during an iteration.

Theorem 3.4 ([1]). For any v > 0 and β > 1, we have

Ψ (βv) ≤ nψ
(
βϕ

(
Ψ(v)

n

))
.

Corollary 3.5. (Corollary 3.6 in [18]) Let θ be such that 0 < θ < 1. If Ψ(v) ≤ τ, then

Ψ (βv) ≤
ψ′′(1)

4(1− θ)

(
θ
√

2n+
√
τ
)2

=: Ψ0, with β =
1√

1− θ
> 1, (3.1)

where, Ψ0 is an upper bound of Ψ (βv) , during the process of the algorithm.

4 Complexity analysis of the algorithm

The aim of this section is to compute the value of the step size α such that the new iterate
(x+, y+, s+) is strictly feasible and the proximity function Ψ(v) is decreasing.
From (2.6) and by using (2.3), we have

x+ =
x

v
(v + αdx), s+ =

s

v
(v + αds).

It follows that the new v-vector is given by

v+ =

√
x+s+
µ

=
√
(v + αdx)(v + αds).

From (i) of Lemma 3.1, we have

Ψ (v+) ≤
1
2
(Ψ(v + αdx) + Ψ(v + αds)) .

For fixed µ, let us define the difference of proximities between a new iterate and a current iterate
as

f(α) = Ψ (v+)−Ψ (v) .

In the remainder of this section, we put for simplicity σ := σ(v).

Lemma 4.1. (Lemmas 4.4 and 4.7 in [18]) The largest possible value of the step size α∗ is

α∗ =
ρ (σ)− ρ (2σ)

2σ
.

Furthermore
α∗ ≥ 1

ψ′′ (ρ (2σ))
,

and we have for all α ∈ [0, α∗]
f(α) ≤ −ασ2.

The next corollary present the decrease of the proximity function in the inner iteration.

Corollary 4.2. (Lemma 4.5 in [1] and Theorem 4.8 in [18]) Let us set ᾱ =
1

ψ′′ (ρ (2σ))
, as the

default step size. Suppose that σ ≥ 1, we have

f(ᾱ) ≤ − σ2

ψ′′ (ρ (2σ))
≤ −Ψ(v)

1
3

130
. (4.1)
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We need to compute how many inner iterations are required to return to the situation where
Ψ(v) ≤ τ after µ−update. Let us define the value of Ψ(v) after µ−update as Ψ0, and the
subsequent values in the same outer iteration as Ψk, k = 1, ...,K, where K stands for the total
number of inner iterations in the outer iteration. By the definition of f(α) and according to (4.1) ,
for k = 1, ...,K − 1, we obtain

Ψk+1 ≤ Ψk −
Ψ

1
3
k

130
.

By taking tk = Ψk, β =
1

130
and γ =

2
3
, we can get the following lemma.

Lemma 4.3. (Lemma 4.9 in [18]) Let K be the total number of inner iterations in the outer
iteration. Then, we have

K ≤
[
tγ0
βγ

]
= 195 Ψ

2
3
0 ,

where Ψ0 is an upper bound of Ψ (βv) , during the process of the algorithm.

Now, we derive the complexity bounds for large and small-update methods.

Theorem 4.4. (Theorem 4.10 in [18]) The total number of iterations to obtain an approximate
solution is bounded by (

195 Ψ
2
3
0

)( log n
ε

θ

)
. (4.2)

Proof. We known that the number of outer iterations for the situation nµ ≤ ε is bounded by
1
θ (log n

ε ).Knowing that an upper bound for the total number of iterations is obtained by multiply-
ing the number of inner and outer iterations, we obtain the result thanks to the above lemma.

If τ = O(n) and θ = Θ(1), we have O
(
n

2
3 log n

ε

)
iterations for large-update IPMs.

For small-update IPMs with τ = O (1) and θ = Θ

(
1√
n

)
, we get O

(√
n log n

ε

)
iterations.

5 Numerical tests

In this section, we carry out numerical experiments of the interior point algorithm based on the
kernel functions given in Table 1. These functions differs by the type of their barrier term, fur-
thermore, their complexity bounds is greater or equal to the complexity of our kernel function.
Our experiment are implemented in MATLAB R2012b and performed on Supermicro dual-
2.80 GHz Intel Core i5 server with 4.00 Go RAM. We have taken ε = 10−8, τ = n and
θ ∈ {0.9, 0.99}.
We chose a practical step size α as in [10] i.e., α = min(αx, αs), with

αx =

min
i∈I0

(− xi
∆xi

) if I0 6= ∅,

1 elsewhere,

where
I0 = {i ∈ {1, ..., n} : ∆xi < 0}.

And

αs =

min
i∈I1

(− si
∆si

) if I1 6= ∅,

1 elsewhere,

where
I1 = {i ∈ {1, ..., n} : ∆si < 0}.
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Table 1. Proposed kernel functions.

.

Kernel function ψi Choice of p Complexity of large-update IPMs Ref & Type of problem

ψ1(t) =
t2−1

2 −
t∫

1
ep(

1
t−1), p ≥ 1 p = log(1 + n) O

(√
n logn log n

ε

)
[2, SDP]

ψ2(t) =
t2−1

2 −
t∫

1

[
sec πx

2x+2√
2

]3p
, p ≥ 2 p = log(n)

2 O
(
(1 + 2k)

√
n logn log n

ε

)
[7, LCP]

ψ3(t) =
t2−1−log t

2 + t1−p−1
2(p−1) , p ≥ 2 p = log(n)

2 O
(√
n logn log n

ε

)
[3, LP]

ψ4(t) =
t2−1

2 − log t+ 1
8 tan2

( 1−t
2+4tπ

)
- O

(
n

2
3 log n

ε

)
[15, LP]

ψ5(t) = t2 + t1−q

q−1 −
q
q−1 + 4

πp

[
tanp( π

2t+2)− 1
]
, p ≥ 2, q > 1 p = q = log(n) O

(√
n logn log n

ε

)
[4, LP]

ψnew(t) =
(

1 + 2 coth(1)
sinh2(1)

)
t2−1

2 + coth2(t)− coth2(1)− log t - O
(
n

2
3 log n

ε

)
[New, LP] [18, SDP]

Example 5.1 ([3]). The matrix A is defined as

A (i, j) =

{
1 if i = j or j = i+m,

0 elsewhere,

c(i) = −1, c(i+m) = 0 and b(i) = 2, for i = 1, ...,m.

We start by an initial point (x0, y0, s0) such that

x0 = e, y0(i) = −2 and s0(i) = 1, s0(i+m) = 2, for i = 1, ...,m.

The obtained optimal solutions for n = 2m where m ∈ {5, 25, 50, 100, 200, 400, 1000} are

x∗(i) = 2, x∗(i+m) = 0, y∗(i) = −1, s∗(i) = 0, and s∗(i+m) = 1, for i = 1, ...,m.

We present in the following table the number of iterations necessary to obtain the optimal
solution corresponding to each function given in Table 1. m represents the size of the example
and we use bold font to highlight the best, i.e., the smallest, iteration number.

Table 2. Number of iterations for Example 1 with different sizes n = 2m.
θ m ψ1 ψ2 ψ3 ψ4 ψnew ψ5,p,q

p = 4, q = 6 p = 4, q = log(n)

θ = 0.9

5
25
50
100
200
400

1000

21
23
23
24
24
24
25

58
63
63
69
69
69
69

25
15
15
16
15
16
17

16
17
17
19
19
19
20

12
13
13
14
14
14
15

44
52
52
60
60
60
61

33
19
13
33
36
54
46

θ = 0.99

5
25
50
100
200
400

1000

21
21
24
24
24
24
24

89
89
104
104
104
104
104

21
30
29
27
30
24
31

28
28
31
31
31
31
31

21
21
23
23
23
23
23

27
27
32
32
32
32
32

75
57
88
17
36
53
57
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Figure 1. Number of iterations until duality gap below to 10−8 for θ = 0.9.

Figure 2. Number of iterations until duality gap below to 10−8 for θ = 0.99.

5.1 Comments

From Table 2, we conclude that:
• For both values of θ, the algorithm based on each of the tested kernel functions converges to
the optimal solution of Example 1.
• Numerical tests prove the efficiency of our kernel function since the best iteration complexity
was achieved in all experiments.
In figures 1 and 2, we plot the number of iterations taken by each kernel function to obtain the
optimal solution below 10−8 in terms of the dimensionm for θ = 0.9 and θ = 0.99, respectively.
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