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Abstract Topological indices of a molecular structure are numerical variables that signifi-
cantly correlate various biological activity, physico-chemical properties and chemical reactivity.
Representing molecular structure with M-Polynomial and computing the degree-based topolog-
ical indices via M-polynomial of a graph network is a recent trade. In this article, we deter-
mine a closed-form of M-Polynomial for 2-dimensional Silicon-Carbons namely Si2C3-I[p, q],
Si2C3-II[p, q] and Si2C3-III[p, q], and hence compute various degree-based topological indices.
Additionally, we visualize the graphical representation of M-Polynomials and all the related
degree-based topological indices of the above-mentioned Silicon-Carbons.

1 Introduction

Let us consider an undirected simple connected graph G = (V,E), where V = V (G) represents
the set of vertex ofG and E = E(G) represents the set of edges ofG. In a graphG, the degree of
a vertex u ∈ V (G), denoted by d(u), is the total number of vertices adjacent to the vertex u [40].

A combination of chemistry and graph theory produces an interesting branch of mathematical
chemistry which is known as Chemical Graph Theory (CGT). Mathematical modeling and phys-
ical properties of chemical structures are being studied in CGT. Here, the atoms and chemical
bonds between them of a chemical compound are represented by vertices and edges of a graph,
respectively. In [2,9,13,19], the utilization of graph theory with chemistry and a variety of chem-
ical applications has been discussed. A topological index (also known as a graph-theoretic index
or connectivity index) is essentially a numerical parameter that correlates the physical properties
of a molecular structure. It is a mathematical representation of a chemical compound, which
plays a vital role in the investigation of Quantitative Structure Activity Relationships (QSARs)
and Quantitative Structure Property Relationships (QSPRs)1. For more details see [14, 38].

Literature Review of Topological Indices and M-polynomial

There is a standard classification of the topological indices such as degree-based topological
indices [17], distance-based topological indices [3], degree and distance-based topological in-
dices [35] and counting related topological indices [23] which are associated with many bio-
logical and physico-chemical properties of chemical structure like melting point, boiling point,
strain energy, etc. Instead of evaluating numerical values of above mentioned topological indices
by using definition separately, the concept of polynomials [15] is being introduced which is a
general approach to evaluate topological indices at once. By differentiating or integrating (or
combination of both) the polynomial of a given structure, we can drive its topological indices.

Several chemical relevant polynomials are described in past, some of which are: match-
ing polynomial [10], the Clar covering polynomial (also known as the Zhang-Zhang polyno-
mial) [41], the Schultz polynomial [16], the Tutte polynomial [22], the Hosoya polynomial [20],
etc. Recently, Deutsch and Klavžar in [8] introduced the M-polynomial to calculate several

1In the area of mathematical chemistry, QSAR and QSPR are used to forecast the physico-chemical and biological prop-
erties of a chemical compound.
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degree-based topological indices. The M-Polynomials and related degree-based topological in-
dices of several chemical structures are calculated in [5, 6, 24, 29, 30].

Definition 1.1 ([8]). For a simple connected directed graph G, the expression

M(G;x, y) =
∑

δ≤i≤j≤∆

mi,j(G) x
iyj

is known as the M-polynomial of a graphG, where δ = min{d(u)|u ∈ V (G)}, ∆ = max{d(u)|u ∈
V (G)} and mi,j(G) (i, j ≥ 1) is the number of edges uv ∈ E(G) such that d(u) = i, d(v) = j.

As mentioned in [7], a degree-based topological index of a graph G is a kind of graph invari-
ant, which is denoted as I(G) and can be written as

I(G) =
∑
i≤j

mi,j(G)f(i, j).

Theorem 1.2 ( [8], Theorems 2.1, 2.2). Let G be a simple connected graph.

(1) If I(G) =
∑

e=uv∈E(G)

f(d(u), d(v)), where f(x, y) is a polynomial in x and y, then

I(G) = f(Dx, Dy)(M(G;x, y))|x=y=1.

(2) If I(G) =
∑

e=uv∈E(G)

f(d(u), d(v)), where f(x, y) =
∑
i,j∈Z

αi,jx
iyj , then I(G) can be ob-

tained from M(G;x, y) using the operators Dx, Dy, Sx, and Sy.

(3) If I(G) =
∑

e=uv∈E(G)

f(d(u), d(v)), where f(x, y) = xrys

(x+y+α)t , where r, s ≥ 0, t ≥ 1 and

α ∈ Z, then
I(G) = StxQαJD

r
xD

s
y(M(G;x, y))|x=1.

Survey of Degree-based Topological Indices

In this section, we discuss some degree-based topological indices which are related to the context
of this paper. The Zagreb indices were proposed by Gutman and Trinajstić [18] in 1972. The
Zagreb indices are helpful in determining the total π-electron energy of molecules which is
correlated to their thermodynamic stability. The Zagreb indices give higher weight to the interior
edges and vertices rather than the terminal edges and vertices. Conversely, being inspired by
the idea of the Zagreb indices, modified Zagreb indices [28] are introduced. The Randić index
was introduced by Milan Randić [36] in 1975 which is also recognized as branching index or
connectivity index. The Randić index has immense applications in the field of pharmacology
and drug design. After a couple of decades, seeing the success of Randić index, the generalized
version of Randić index2 (for an arbitrary real number α) was introduced by the mathematicians
Bollobás and Erdös [4], and Amić et al. [1] in 1998, which is known as general Randić index.
In a recent investigation, the symmetric division (deg) index is introduced in [39] which is used
to calculate the total surface area of polychlorobiphenyls. The inverse sum (indeg) index [37,39]
forecasts the total surface area of octane isomers. The augmented Zagreb index [12] is useful
in the study of heat of formation of alkanes. In Table 1, the formulas of different degree-based
topological indices are listed for a graph G.

On Silicon-Carbons

Silicon has superiority over other semiconductor objects. It is of minimal effort, nontoxic, es-
sentially its accessibility is boundless, decades of research carried out about its purification,
development and device manufacturing. It is utilized in most cutting-edge electronic gadgets.

2For α = − 1
2 , Rα becomes Randić or (connectivity) index; for α = 1, Rα becomes second Zagreb index; and for

α = −1, Rα becomes modified second Zagreb index
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Table 1. Formulas for degree-based topological indices
Sl.
No.

Topological Index Notation Formula of Topological Indices

1. First Zagreb Index [18] M1(G) M1(G) =
∑

uv∈E(G)

(d(u) + d(v))

2. Second Zagreb Index [18] M2(G) M2(G) =
∑

uv∈E(G)

(d(u)d(v))

3. Modified Second Zagreb
Index [28]

mM2(G) mM2(G) =
∑

uv∈E(G)

1
d(u)d(v)

4. General Randić Index [4] Rα(G) Rα(G) =
∑

uv∈E(G)

(d(u)d(v))α

5. Inverse Randić Index [1] RRα(G) RRα(G) =
∑

uv∈E(G)

1
(d(u)d(v))α

6. Symmetric Division (Deg)
Index [39]

SDD(G) SDD(G) =
∑

uv∈E(G)

{
min(d(u),d(v))
max(d(u),d(v)) +

max(d(u),d(v))
min(d(u),d(v))

}
7. Harmonic Index [11] H(G) H(G) =

∑
uv∈E(G)

2
d(u)+d(v)

8. Inverse Sum (Indeg) In-
dex [39]

ISI(G) ISI(G) =
∑

uv∈E(G)

d(u)d(v)
d(u)+d(v)

9. Augmented Zagreb In-
dex [12]

AZ(G) AZ(G) =
∑

uv∈E(G)

{
d(u)d(v)

d(u)+d(v)−2

}3

The most stable structures of two-dimensional Silicon-Carbon monolayer mixes with different
stoichiometric blends as mentioned in [26].

The graphene sheets were constructively confined in 2004 [33]. From that point onward
honeycomb 2D material has stimulated and inspired serious research interests to a great scope
because of its exceptional electronic, mechanical, and optical properties, including its anomalous
quantum Hall impact, overwhelming electronic conductivity, and high mechanical quality [34].

The carbon and silicon have a 2 allotrope with a honeycomb structure in a particular Silicene.
Till this study, bunches of exertion have been given to open a bandgap in Silicene sheets. In
addition, 2D Silicon-Carbon (Si-C) monolayers can be seen as piece tunable materials between
the ultra-clean 2D carbon monolayer-graphene and the untainted 2D silicon monolayer-silicene.
Several attempts have been directed towards forecasting the most stable structure of the Si-C
sheet, read [21, 27, 42] for more information.

We consider three types of Si-C structure (commonly known as Silicon-Carbides) namely
Si2C3-I, Si2C3-II and Si2C3-III based on the low-energy metastable structure for each Si. These
structures represent the lowest-energy, second lowest-energy and the third-lowest energy struc-
ture respectively.

Our Contribution and Road-map

In [21, 25, 31, 32], several degree-based topological indices of Silicon-Carbons are calculated
by using formulas of topological indices mentioned in Table 1. Instead of calculating them
(degree-based topological indices) separately, in this paper, we evaluate a closed-form of M-
polynomial for Silicon-Carbons namely Si2C3-I[p, q], Si2C3-II[p, q] and Si2C3-III[p, q] in Sec-
tions 2, 3 and 4. We establish M-polynomial for Silicon-Carbons and henceforward compute the
nine related degree-based topological indices of Silicon-Carbons for different values of p and q.
Moreover, the graphical representation of the M-polynomials and related degree-based topolog-
ical indices of all the three molecular structures are shown in respective sections for different
values of p and q. Finally, we draw a conclusion in Section 5.

2 Silicon-Carbide Si2C3-I[p, q] 2D Structure

In the structure of the molecular graph of Silicon-Carbide Si2C3-I[p, q], p denotes the number of
connected unit cells in a single row (chain) and q denotes the number of connected rows each
with p number of cells. The 2D molecular graph of Silicon-Carbide Si2C3-I[p, q] is given in
Figure 1(b) for p = 4 and q = 3. In Figure 2 we have signified how the cells are connected
in a row (chain) and how one row is connected to another row. Observe that, in the graph
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of Si2C3-I[p, q], the total number of vertices is 10pq and the number of edges is 15pq− 2p− 3q.

Figure 1. (a) A chemical unit cell of Si2C3-I[p, q], (b) Molecular structure of Si2C3-I[p, q] for
p = 4 and q = 3. In the figure, the Carbon atoms Cs are colored brown and the Silicon atoms
Sis are marked blue.

Figure 2. (a) In Si2C3-I[4, 1], we have one row with p = 4 and q = 1 (b) In Si2C3-I[4, 2], two
rows are combined. Green lines (edges) connect the upper and lower rows.

2.1 Computing M-polynomial for Si2C3-I[p, q]

Theorem 2.1. Let Si2C3-I[p, q] be the Silicon-Carbide. Then the M-polynomial of Si2C3-I[p, q]
for p, q ≥ 1 is

M(Si2C3-I[p, q];x, y) = xy2+xy3+(p+2q)x2y2+(6p+8q−9)x2y3+(15pq−9p−13q+7)x3y3.

Proof. As mentioned earlier that for the structure of Silicon-Carbide Si2C3-I[p, q], we have:

|V (Si2C3-I[p, q])| = 10pq and |E(Si2C3-I[p, q])| = 15pq − 2p− 3q.
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And moreover, we can see that there are three partitions according to the degree of vertices,
namely,

V1(Si2C3-I[p, q]) = {u ∈ V (Si2C3-I[p, q]) : d(u) = 1},
V2(Si2C3-I[p, q]) = {u ∈ V (Si2C3-I[p, q]) : d(u) = 2},

and V3(Si2C3-I[p, q]) = {u ∈ V (Si2C3-I[p, q]) : d(u) = 3}.

Table 2. Vertex partition of Si2C3-I[p, q] for different values of p and q.
[p, q] [1, 1] [1, 2] [1, 3] [2, 1] [2, 2] [2, 3] [3, 1] [3, 2] [3, 3] [4, 1] [4, 2] [4, 3]

V1 2 2 2 2 2 2 2 2 2 2 2 2
V2 6 12 18 10 16 22 14 20 26 18 24 30
V3 2 6 10 8 22 36 14 38 62 20 54 88

Now we use the computed values in Table 2 and MATLAB software for generalizing the
formulas for the number of such vertices, given as: |V1(Si2C3-I[p, q])| = 2, |V2(Si2C3-I[p, q])| =
4p+ 2 + 6(q − 1) and V3(Si2C3-I[p, q]) = 10pq − 4p− 6q + 2. Also, we divide the edge set of
Si2C3-I[p, q] into five disjoint parts based on the degrees of end vertices of each edge, as follows:

E1 = E{1,2} = {e = uv ∈ E(Si2C3-I[p, q]) : d(u) = 1, d(v) = 2},
E2 = E{1,3} = {e = uv ∈ E(Si2C3-I[p, q]) : d(u) = 1, d(v) = 3},
E3 = E{2,2} = {e = uv ∈ E(Si2C3-I[p, q]) : d(u) = 2, d(v) = 2},
E4 = E{2,3} = {e = uv ∈ E(Si2C3-I[p, q]) : d(u) = 2, d(v) = 3},

and E5 = E{3,3} = {e = uv ∈ E(Si2C3-I[p, q]) : d(u) = 3, d(v) = 3}.

From the molecular graph 3 of Si2C3-I[p, q], we can observe that |E1| = 1, |E2| = 1, |E3| =
p+ 2q, |E4| = 6p− 1 + 8(q − 1), and |E5| = 15pq − 9p− 13q + 7.

Therefore by definition, the M-polynomial of Si2C3-I[p, q] is

M(Si2C3-I[p, q];x, y)

=
∑
i≤j

mi,jx
iyj , where i, j ∈ {1, 2, 3}

=
∑
1≤2

m1,2x
1y2 +

∑
1≤3

m1,3x
1y3 +

∑
2≤2

m2,2x
2y2 +

∑
2≤3

m2,3x
2y3 +

∑
3≤3

m3,3x
3y3

=
∑

uv∈E1(Si2C3-I[p,q])

m1,2x
1y2 +

∑
uv∈E2(Si2C3-I[p,q])

m1,3x
1y3 +

∑
uv∈E3(Si2C3-I[p,q])

m2,2x
2y2+

∑
uv∈E4(Si2C3-I[p,q])

m2,3x
2y3 +

∑
uv∈E5(Si2C3-I[p,q])

m3,3x
3y3

= |E{1,2}|x1y2 + |E{1,3}|x1y3 + |E{2,2}|x2y2 + |E{2,3}|x2y3 + |E{3,3}|x3y3

= xy2 + xy3 + (p+ 2q)x2y2 + (6p− 1 + 8(q − 1))x2y3 + (15pq − 9p− 13q + 7)x3y3.

To compute the degree-based topological indices of a given graph G (mentioned in Table 1)
from M-polynomial, we use the derivation formulas in terms of integral or derivative (or both)
as given in Table 3 [8].

From the M-polynomial produced in Theorem 2.1, below we derive the values of the related
degree-based topological indices of the Si2C3-I[p, q] for variables p and q.

3Also, the molecular graph of Si2C3-I[p, q] does not have any edge uv such that d(u) = 1 and d(v) = 1 and as a
consequence |E{1,1}| = 0.
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Table 3. Formulas for degree-based topological indices derived from M-polynomial.
S.
No.

Topological Index Notation f(x,y) Derivation from (M(G;x, y))

1. First Zagreb Index M1(G) x + y (Dx +Dy)(M(G;x, y))|x=y=1

2. Second Zagreb Index M2(G) xy (DxDy)(M(G;x, y))|x=y=1

3. Modified Second Zagreb
Index

mM2(G) 1
xy

(SxSy)(M(G;x, y))|x=y=1

4. General Randić Index Rα(G) (xy)α (DαxD
α
y )(M(G;x, y))|x=y=1

5. Inverse Randić Index RRα(G) 1
(xy)α

(Sαx S
α
y )(M(G;x, y))|x=y=1

6. Symmetric Division (Deg)
Index

SDD(G) x2+y2

xy
(DxSy +DySx)(M(G;x, y))|x=y=1

7. Harmonic Index H(G) 2
x+y

2SxJ(M(G;x, y))|x=1

8. Inverse Sum (Indeg) Index ISI(G) xy
x+y

SxJDxDy(M(G;x, y))|x=1

9. Augmented Zagreb Index AZ(G)
( xy
x+y−2

)3
S3
xQ−2JD

3
xD

3
y(M(G;x, y))|x=1

In the Table 3, the notations Dx = x∂(f(x,y))∂x , Dy = y ∂(f(x,y))∂y ,

Sx =
∫ x

0
f(t,y)
t dt, Sy =

∫ y
0
f(x,t)
t dt,

J(f(x, y)) = f(x, x), Qα(f(x, y)) = xαf(x, y), α 6= 0.

Theorem 2.2. Let Si2C3-I[p, q] be the Silicon-Carbide. Then

1. M1(Si2C3-I[p, q]) = 90pq − 20p− 30q + 4.

2. M2(Si2C3-I[p, q]) = 135pq − 41p− 61q + 14.

3. mM2(Si2C3-I[p, q]) = 5
3pq +

1
4p+

7
18q +

1
9 .

4. Rα(Si2C3-I[p, q]) = 2α+ 3α+ 22α(p+ 2q)+ 2α3α(6p− 1+ 8(q− 1))+ 32α(15pq− 9p−
13q + 7).

5. RRα(Si2C3-I[p, q]) = 1
2α + 1

3α + 1
22α (p+2q)+ 1

2α3α (6p−1+8(q−1))+ 1
32α (15pq−9p−

13q + 7).

6. SDD(Si2C3-I[p, q]) = 30pq − 3p− 14
3 q +

1
3 .

7. H(Si2C3-I[p, q]) = 5pq − 1
10p−

2
15q −

1
10 .

8. ISI(Si2C3-I[p, q]) = 45
2 pq −

53
10p−

79
10q +

67
60 .

9. AZ(Si2C3-I[p, q]) = 10935
64 pq − 2977

64 p−
4357

64 q +
1223
64 .

Proof. As computed in Theorem 2.1, the M-polynomial for Si2C3-I[p, q] is

M(Si2C3-I[p, q];x, y) = xy2+xy3+(p+2q)x2y2+(6p−1+8(q−1))x2y3+(15pq−9p−13q+7)x3y3.

For notational ease, we write f(x, y) =M(Si2C3-I[p, q];x, y). Therefore,

• Dx(f(x, y)) = xy2 + xy3 + 2(p+ 2q)x2y2 + 2(6p− 1 + 8(q − 1))x2y3 + 3(15pq − 9p−
13q + 7)x3y3,

• Dy(f(x, y)) = 2xy2 + 3xy3 + 2(p+ 2q)x2y2 + 3(6p− 1+ 8(q− 1))x2y3 + 3(15pq− 9p−
13q + 7)x3y3,

• DyDx(f(x, y)) = 2xy2 + 3xy3 + 4(p+ 2q)x2y2 + 6(6p− 1 + 8(q − 1))x2y3 + 9(15pq −
9p− 13q + 7)x3y3,

• Sx(f(x, y)) = xy2 + xy3 + 1
2(p+ 2q)x2y2 + 1

2(6p− 1 + 8(q − 1))x2y3 + 1
3(15pq − 9p−

13q + 7)x3y3,

• Sy(f(x, y)) =
1
2xy

2 + 1
3xy

3 + 1
2(p+ 2q)x2y2 + 1

3(6p− 1+ 8(q− 1))x2y3 + 1
3(15pq− 9p−

13q + 7)x3y3,
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• SxSy(f(x, y)) =
1
2xy

2 + 1
3xy

3 + 1
4(p+ 2q)x2y2 + 1

6(6p− 1 + 8(q − 1))x2y3 + 1
9(15pq −

9p− 13q + 7)x3y3,

• Dα
xD

α
y (f(x, y)) = 2αxy2 + 3αxy3 + 22α(p+ 2q)x2y2 + 2α3α(6p − 1 + 8(q − 1))x2y3 +

32α(15pq − 9p− 13q + 7)x3y3,

• DxSy(f(x, y)) =
1
2xy

2 + 1
3xy

3 +(p+ 2q)x2y2 + 2
3(6p− 1+ 8(q− 1))x2y3 +(15pq− 9p−

13q + 7)x3y3,

• DySx(f(x, y)) = 2xy2 + 3xy3 +(p+ 2q)x2y2 + 3
2(6p− 1+ 8(q− 1))x2y3 +(15pq− 9p−

13q + 7)x3y3,

• SαxS
α
y (f(x, y)) = 1

2αxy
2 + 1

3αxy
3 + 1

22α (p + 2q)x2y2 + 1
2α3α (6p − 1 + 8(q − 1))x2y3 +

1
32α (15pq − 9p− 13q + 7)x3y3,

• SxJ(f(x, y)) =
1
3x

3+ 1
4x

4+ 1
4(p+2q)x4+ 1

5(6p−1+8(q−1))x5+ 1
6(15pq−9p−13q+7)x6,

• SxJDxDy(f(x, y)) =
2
3x

3 + 3
4x

4 +(p+ 2q)x4 + 6
5(6p− 1+ 8(q− 1))x5 + 9

6(15pq− 9p−
13q + 7)x6,

• S3
xQ−2JD

3
xD

3
y(f(x, y)) = 23x+ 33

23x
2+23(p+2q)x2+23(6p−1+8(q−1))x3+ 36

43 (15pq−
9p− 13q + 7)x6.

Hence, the degree-based topological indices of the Si2C3-I[p, q] based on the derivation for-
mulas mentioned in Table 3 are as follows:

1. First Zagreb Index:
M1(Si2C3-I[p, q]) = (Dx +Dy)(f(x, y))|x=y=1 = 90pq − 20p− 30q + 4.

2. Second Zagreb Index:
M2(Si2C3-I[p, q]) = (DxDy)(f(x, y))|x=y=1 = 135pq − 41p− 61q + 14.

3. Modified Second Zagreb Index:
mM2(Si2C3-I[p, q]) = (SxSy)(f(x, y))|x=y=1 =

5
3pq +

1
4p+

7
18q +

1
9 .

4. General Randić Index:
Rα(Si2C3-I[p, q]) = (Dα

xD
α
y )(f(x, y))|x=y=1 = 2α + 3α + 22α(p+ 2q) + 2α3α(6p− 1 +

8(q − 1)) + 32α(15pq − 9p− 13q + 7).

5. Inverse Randić Index:
RRα(Si2C3-I[p, q]) = (SαxS

α
y )(f(x, y))|x=y=1 =

1
2α + 1

3α + 1
22α (p+ 2q) + 1

2α3α (6p− 1 +

8(q − 1)) + 1
32α (15pq − 9p− 13q + 7).

6. Symmetric Division (Deg) Index:
SDD(Si2C3-I[p, q]) = (DxSy +DySx)(f(x, y))|x=y=1 = 30pq − 3p− 14

3 q +
1
3 .

7. Harmonic Index:
H(Si2C3-I[p, q]) = 2SxJ(f(x, y))|x=1 = 5pq − 1

10p−
2
15q −

1
10 .

8. Inverse Sum (Indeg) Index:
ISI(Si2C3-I[p, q]) = SxJDxDy(f(x, y))|x=1 =

45
2 pq −

53
10p−

79
10q +

67
60 .

9. Augmented Zagreb Index:
AZ(Si2C3-I[p, q]) = S3

xQ−2JD
3
xD

3
y(f(x, y))|x=1 =

10935
64 pq − 2977

64 p−
4357

64 q +
1223
64 .

2.2 Plotting the M-polynomial and Associated Indices of Si2C3-I[p, q]

For different values of p and q of the Si2C3-I[p, q], the respective M-polynomials and several
related degree-based topological indices are tabulated in Table 4. To see the related topological
indices and the nature of M-polynomials, we vary the values of p and q from p = 2 to p = 4
and q = 1 to q = 3. The values of p and q in the table may be extended as and when required
based on Theorem 2. From the table, we can observe that the values of each of the topological
indices are increasing with the values of p and q increasing.
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Table 4. Computation of degree-based topological indices of Si2C3-I[p, q] at different values of
p and q and the respective M-polynomials.

Sl. [p, q] [2, 1] [2, 2] [2, 3] [3, 1] [3, 2] [3, 3] [4, 1] [4, 2] [4, 3]

M
-polynomial

Topological Index

xy2 +
xy3 +
4x2y2 +
11x2y3+
6x3y3

xy2 +
xy3 +
6x2y2 +
19x2y3+
23x3y3

xy2 +
xy3 +
8x2y2 +
27x2y3+
40x3y3

xy2 +
xy3 +
5x2y2 +
17x2y3+
12x3y3

xy2 +
xy3 +
7x2y2 +
25x2y3+
44x3y3

xy2 +
xy3 +
9x2y2 +
33x2y3+
76x3y3

xy2 +
xy3 +
6x2y2 +
23x2y3+
18x3y3

xy2 +
xy3 +
8x2y2 +
31x2y3+
68x3y3

xy2 +
xy3 +
10x2y2+
39x2y3+
112x3y3

1. First Zagreb Index 114 264 414 184 424 664 254 584 914
2. Second Zagreb Index 141 350 559 235 579 923 329 808 1287
3. Modified Second Za-

greb Index
4.333 8.055 11.777 6.25 11.638 17.027 8.166 15.222 22.277

4. General Randić Index
(α = 1/2)

56.0906 130.6865 205.282 90.7875 210.3835 329.979 125.484 290.0804 454.676

5. Inverse Randić Index
(α = 1/2)

9.7751 19.7078 29.6404 14.7246 29.6573 44.5899 19.6741 39.6068 59.5394

6. Symmetric Division
(Deg) Index

49.66 105 160.33 76.66 162 247.33 103.66 219 334.33

7. Harmonic Index 9.566 19.433 29.3 14.466 29.333 44.2 19.366 39.233 59.1
8. Inverse Sum (Indeg)

Index
33.2 70.3 107.4 50.4 110 169.6 67.6 149.7 231.8

9. Augmented Zagreb
Index

199.7187 473.3593 747 324.062 768.5625 1213.062 448.406 1063.7656 1679.125

Figure 3. The plot of the M-polynomial of Si2C3-I[4, 3], where −1 ≤ x, y ≤ 1.

We have drawn the M-polynomial in Maple-2020 software. Figure 3 gives the graphical rep-
resentation of the M-polynomial (as proposed in Theorem 2) of the Silicon-Carbide Si2C3-I[4, 3]
in range −1 ≤ x, y ≤ 1.

Moreover, observing the wide range of values (in Table 4) of the different degree-based
topological indices of Si2C3-I[p, q] for different values of p and q, we plot the values of first
Zagreb, second Zagreb, general Randić (α = 1/2), inverse Randić (α = 1/2), symmetric
division (deg) and augmented Zagreb indices in Figure 4, and the values of modified second
Zagreb, harmonic and inverse sum (indeg) indices in Figure 5.

3 Silicon-Carbide Si2C3-II[p, q] 2D Structure

In the 2D molecular graph of Silicon-Carbide Si2C3-II[p, q], p denotes the number of connected
unit cells (as shown in Figure 6(a)) in a single row (chain) and q denotes the number of connected
rows each with p number of cells. Please refer to Figure 6(b) for Silicon-Carbide Si2C3-II[3, 3].
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Figure 4. Red, Cyan, Yellow, Pink, Green and Royal Blue represent augmented Zagreb
index AZ(G), second Zagreb index M2(G), first Zagreb index M1(G), general Randić in-
dex R1/2(G), symmetric division (deg) index SDD(G) and inverse Randić index RR1/2(G)
of Si2C3-I[p, q] for different values of p and q (1 ≤ p, q ≤ 500) respectively.

Figure 5. Pink, Green and Cyan represent inverse sum (indeg) index ISI(G), harmonic in-
dex H(G) and modified second Zagreb index mM2(G) of Si2C3-I[p, q] for different values of p
and q (1 ≤ p, q ≤ 500) respectively.

In Figure 7, we have signified how the cells are connected in a row (chain) and how one row is
connected to another row. One can easily calculate that the total number of vertices is 10pq and
the number of edges is 15pq − 3p− 3q in Si2C3-II[p, q] graph.
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Figure 6. (a) A chemical unit cell of Si2C3-II[p, q], (b) Si2C3-II[p, q] where p = 3 and q = 3.
Here, the Carbon atoms Cs are marked brown and the Silicon atoms Sis are marked blue.

Figure 7. (a) Graphical view of Si2C3-II[5, 1], (b) Structure of Si2C3-II[5, 2], where the upper
and lower rows are connected by green lines (edges).

3.1 Computing M-polynomial for Si2C3-II[p, q]

The M-polynomial for Si2C3-II[p, q] is given by Theorem 3.1. Whereas in Theorem 3.2, we
have derived the degree-based topological indices of Si2C3-II[p, q] from the M-polynomial. The
proofs of Theorems 3.1 and 3.2 are left as an exercise to the interested readers. Although, we
have kept them in the Appendix section (Section 6, page 153) for more clarification.

Theorem 3.1. Let us consider the Silicon-Carbide Si2C3-II[p, q]. The M-polynomial of Si2C3-II[p, q]
for p, q ≥ 1 is given by

M(Si2C3-II[p, q];x, y) = 2xy2+xy3+(2p+2q)x2y2+(8p+8q−14)x2y3+(15pq−13p−13q+11)x3y3.

Theorem 3.2. Let Si2C3-II[p, q] be the Silicon-Carbide. Then

1. M1(Si2C3-II[p, q]) = 90pq − 30p− 30q + 6.

2. M2(Si2C3-II[p, q]) = 135pq − 61p− 61q + 22.

3. mM2(Si2C3-II[p, q]) = 5
3pq +

7
18p+

7
18q +

2
9 .



146 Shibsankar Das and Virendra Kumar

4. Rα(Si2C3-II[p, q]) = 2α+1 +3α+22α(2p+2q)+2α3α(8p+8q−14)+32α(15pq−13p−
13q + 11).

5. RRα(Si2C3-II[p, q]) = 1
2α−1 +

1
3α +

1
22α (2p+2q)+ 1

2α3α (8p+8q−14)+ 1
32α (15pq−13p−

13q + 11).

6. SDD(Si2C3-II[p, q]) = 30pq − 14
3 p−

14
3 q.

7. H(Si2C3-II[p, q]) = 5pq − 2
15p−

2
15q −

1
10 .

8. ISI(Si2C3-II[p, q]) = 45
2 pq −

79
10p−

79
10q +

107
60 .

9. AZ(Si2C3-II[p, q]) = 10935
64 pq − 4357

64 p−
4357
64 q +

2091
64 .

3.2 Plotting the M-polynomial and Associated Indices of Si2C3-II[p, q]

For different values of p and q of the Si2C3-II[p, q], the respective M-polynomials and associated
degree-based topological indices are mentioned in Table 5. To see the related topological indices
and the nature of M-polynomials, we vary the values of p and q of the Si2C3-II[p, q] from p = 2
to p = 4 and q = 1 to q = 3. The values of p and q in the table may be extended as and
when required based on Theorem 3.1. From the table we can observe, the values of each of the
topological indices are increasing with the values of p and q increasing.

Table 5. Computation of degree-based topological indices of Si2C3-II[p, q] at different values of
p and q and the respective M-polynomials.

Sl. [p, q] [2, 1] [2, 2] [2, 3] [3, 1] [3, 2] [3, 3] [4, 1] [4, 2] [4, 3]

M
-polynomial

Topological Index

2xy2 +
xy3 +
6x2y2 +
10x2y3+
2x3y3

2xy2 +
xy3 +
8x2y2 +
18x2y3+
19x3y3

2xy2 +
xy3 +
10x2y2+
26x2y3+
36x3y3

2xy2 +
xy3 +
8x2y2 +
18x2y3+
4x3y3

2xy2 +
xy3 +
10x2y2+
26x2y3+
36x3y3

2xy2 +
xy3 +
12x2y2+
34x2y3+
68x3y3

2xy2 +
xy3 +
10x2y2+
26x2y3+
6x3y3

2xy2 +
xy3 +
12x2y2+
34x2y3+
53x3y3

2xy2 +
xy3 +
14x2y2+
42x2y3+
100x3y3

1. First Zagreb Index 96 246 396 156 396 636 216 546 876
2. Second Zagreb Index 109 318 527 183 527 871 257 736 1215
3. Modified Second Za-

greb Index
4.722 8.444 12.166 6.777 12.1666 17.555 8.833 15.888 22.944

4. General Randić Index
(α = 1/2)

47.0553 121.6512 196.2472 76.6512 196.247 315.843 106.247 270.843 435.439

5. Inverse Randić Index
(α = 1/2)

9.7407 19.6733 29.6060 14.6733 29.6060 44.5386 19.6060 39.5386 59.4713

6. Symmetric Division
(Deg) Index

47 101.33 156.666 71.333 156.666 242 96.666 212 327.333

7. Harmonic Index 9.5 19.3666 29.233 14.366 29.233 44.1 19.233 39.1 58.966
8. Inverse Sum (Indeg)

Index
23.0833 60.183 97.283 37.683 97.2833 156.883 52.283 134.383 216.483

9. Augmented Zagreb
Index

170.1562 443.7968 717.4375 272.9375 717.4375 1161.937 375.7187 991.0781 1606.437

The graphical representation of the M-polynomial of Silicon-Carbide Si2C3-II[4, 3] is given
by Figure 8 in the range 0.5 ≤ x, y ≤ 0.5. Moreover, observing the wide range of values (in
Table 5) of the different degree-based topological indices of Si2C3-II[p, q] for different values
of p (2 ≤ p ≤ 4) and q (1 ≤ q ≤ 3), we plot the values of first Zagreb, second Zagreb, general
Randić (α = 1/2), inverse Randić (α = 1/2), symmetric division (deg) and augmented Zagreb
indices in Figure 9, and the values of modified second Zagreb, harmonic and inverse sum (indeg)
indices in Figure 10.

4 Silicon-Carbide Si2C3-III[p, q] 2D Structure

In the 2D molecular graph of Silicon-Carbide Si2C3-III[p, q], p denotes the number of connected
unit cells (as shown in Figure 11(a)) in a single row (chain) and q denotes the number of con-
nected rows each with p number of cells. Figure 11(b) is a pictorial view of the Si2C3-III[5, 4].
Figure 12 shows how the cells are connected in a row (chain) and how one row is connected to an-
other row in a structure of Silicon-Carbide Si2C3-III[p, q]. Note that the graph of Si2C3-III[p, q]
consists of 10pq vertices and 15pq − 2p− 3q edges.
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Figure 8. The geometrical representation of the M-polynomial of Si2C3-II[4, 3], where 0.5 ≤
x, y ≤ 0.5.

Figure 9. Red, Cyan, Yellow, Pink, Green and Royal Blue represent augmented Zagreb AZ(G),
second Zagreb M2(G), first Zagreb M1(G), general Randić R1/2(G), symmetric division
(deg) SDD(G) and inverse Randić RR1/2(G) indices of Si2C3-II[p, q] for different values of p
and q (1 ≤ p, q ≤ 5), respectively.

4.1 Evaluating M-polynomial for Si2C3-III[p, q]

The M-polynomial of Si2C3-III[p, q] is given by Theorem 4.1 and in Theorem 4.2, we have
derived the degree-based topological indices of Si2C3-III[p, q] from the M-polynomial. Readers
may prove Theorems 4.1 and 4.2 in a similar way as done in Section 2. Although, one can refer
to Section 6 (Appendix, in page 153) for the proofs.
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Figure 10. Pink, Green and Cyan represent inverse sum index ISI(G), harmonic index H(G)
and modified second Zagreb index mM2(G) of Si2C3-II[p, q] for different values of p and q
(1 ≤ p, q ≤ 5), respectively.

Figure 11. (a) A chemical unit cell of Si2C3-III[p, q], (b) Graph of Si2C3-III[p, q] where p = 5
and q = 4. Here, the Carbon atoms Cs are marked brown and the Silicon atoms Sis are marked
blue.

Theorem 4.1. Let us consider the Silicon-Carbide Si2C3-III[p, q]. The M-polynomial of Si2C3-III[p, q]
for p, q ≥ 1 is given by

M(Si2C3-III[p, q];x, y) = 2xy3+(2q+2)x2y2+(8p+8q−12)x2y3+(15pq−10p−13q+8)x3y3.

Theorem 4.2. For the Silicon-Carbide Si2C3-III[p, q], we have the following results.

1. M1(Si2C3-III[p, q]) = 90pq − 20p− 30q + 4.

2. M2(Si2C3-III[p, q]) = 135pq − 42p− 61q + 14.

3. mM2(Si2C3-III[p, q]) = 5
3pq +

2
9p−

5
18q +

1
18 .

4. Rα(Si2C3-III[p, q]) = 2 3α+22α(2q+2)+2α3α(8p+8q−12)+32α(15pq−10p−13q+8).
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Figure 12. (a) Graph of Si2C3-III[5, 1], (b) Structure of Si2C3-III[5, 2], where the upper and
lower rows are connected by green lines (edges).

5. RRα(Si2C3-III[p, q]) = 2
3α +

1
22α (2q+2)+ 1

2α3α (8p+8q−12)+ 1
32α (15pq−10p−13q+8).

6. SDD(Si2C3-III[p, q]) = 30pq − 8
3p−

14
3 q +

2
3 .

7. H(Si2C3-III[p, q]) = 5pq − 2
15p−

2
15q −

2
15 .

8. ISI(Si2C3-III[p, q]) = 45
2 pq −

27
5 p−

79
10q +

11
5 .

9. AZ(Si2C3-III[p, q]) = 10935
64 pq − 1597

32 p−
4357
64 q +

143
8 .

4.2 Plotting the M-polynomial and Associated Indices of Si2C3-III[p, q]

For different values of p and q of the Si2C3-III[p, q], the respective M-polynomials and several re-
lated degree-based topological indices are tabulated in Table 6. To see the related topological in-
dices and the nature of M-polynomials, we have varies the values of p and q of the Si2C3-III[p, q]
from p = 2 to p = 4 and q = 1 to q = 3. The values of p and q in the table may be extended
as and when required based on Theorem 4.1. From the table, we can observe that the values of
each of the topological indices are increasing with the values of p and q increasing.

Table 6. Computation of degree-based topological indices of Si2C3-III[p, q] at different values
of p and q and the respective M-polynomials.

Sl. [p, q] [2, 1] [2, 2] [2, 3] [3, 1] [3, 2] [3, 3] [4, 1] [4, 2] [4, 3]

M
-polynomial

Topological Index

xy3 +
4x2y2 +
12x2y3+
5x3y3

xy3 +
6x2y2 +
20x2y3+
22x3y3

xy3 +
8x2y2 +
28x2y3+
39x3y3

xy3 +
4x2y2 +
20x2y3+
10x3y3

xy3 +
6x2y2 +
28x2y3+
42x3y3

xy3 +
8x2y2 +
36x2y3+
74x3y3

xy3 +
4x2y2 +
28x2y3+
15x3y3

xy3 +
6x2y2 +
36x2y3+
62x3y3

xy3 +
8x2y2 +
44x2y3+
109x3y3

1. First Zagreb Index 114 264 414 184 424 664 254 584 914
2. Second Zagreb Index 139 348 557 232 576 920 325 804 1283
3. Modified Second Za-

greb Index
3.5555 6.611 9.666 5.444 10.1666 14.888 7.333 13.722 20.111

4. General Randić Index
(α = 1/2)

55.8579 130.4538 205.0498 90.4538 210.0498 329.6451 125.049 289.64 454.2416

5. Inverse Randić Index
(α = 1/2)

9.7203 19.6529 29.5856 14.6529 29.5856 44.5183 19.5856 39.5183 59.4509

6. Symmetric Division
(Deg) Index

50.666 106 161.333 78 163.333 248.666 105.333 220.666 336

7. Harmonic Index 9.466 19.33 29.2 14.33 29.2 44.066 19.2 39.066 58.933
8. Inverse Sum (Indeg)

Index
28.5 65.6 102.7 45.6 105.2 164.8 62.7 144.8 226.9

9. Augmented Zagreb
Index

191.7031 465.343 738.9843 312.6562 757.156 1201.656 433.6093 1048.968 1664.328
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Figure 13. The plot of the M-polynomial of Si2C3-III[4, 3], where −2 ≤ x, y ≤ 2.

Figure 14. Red, Cyan, Yellow, Pink, Green and Royal Blue represent augmented ZagrebAZ(G),
second Zagreb M2(G), first Zagreb M1(G), general Randić R1/2(G), symmetric division
(deg) SDD(G) and inverse Randić RR1/2(G) indices of Si2C3-III[p, q] for different values of p
and q (1 ≤ p, q ≤ 10) respectively.

The graphical representation of the M-polynomial of Silicon-Carbide Si2C3-III[4, 3] is given
by Figure 13 in range −2 ≤ x, y ≤ 2. Moreover, observing the wide range of values (in Table 6)
of the different degree-based topological indices of Si2C3-III[p, q] for different values of p (2 ≤
p ≤ 4) and q (1 ≤ q ≤ 3), we plot the values of first Zagreb, second Zagreb, general Randić
(α = 1/2), inverse Randić (α = 1/2), symmetric division (deg) and augmented Zagreb indices
in Figure 14, and the values of modified second Zagreb, harmonic and inverse sum (indeg)
indices in Figure 15.
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Figure 15. Pink, Green and Cyan represent inverse sum (indeg) index ISI(G), harmonic H(G)
and modified second Zagreb mM2(G) indices of Si2C3-III[p, q] for different values of p and q
(1 ≤ p, q ≤ 10) respectively.

5 Conclusion

In this paper, we have considered the molecular graph of Silicon-Carbons. Instead of calcu-
lating the various degree-based topological indices separately, we derived a closed-form of M-
polynomial to calculate directly the nine related degree-based topological indices for each of
the Si2C3-I[p, q], Si2C3-II[p, q] and Si2C3-III[p, q] for different values of p and q. We can eas-
ily see that all topological indices are in increasing order as the values of p and q increase. In
addition, we have plotted the M-polynomials and all the topological indices for different values
of p and q for each of the Si2C3-I[p, q], Si2C3-II[p, q] and Si2C3-III[p, q] structures for different
values of p and q.
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6 Appendix: Proofs of Some of the Theorems

Proof of Theorem 3.1. As mentioned earlier that for the structure of Si2C3-II[p, q], we have:

|V (Si2C3-II[p, q])| = 10pq and |E(Si2C3-II[p, q])| = 15pq − 3p− 3q.

And moreover, we can see that there are three partitions according to the degree of vertices,
namely,

V1(Si2C3-II[p, q]) = {u ∈ V (Si2C3-II[p, q]) : d(u) = 1},
V2(Si2C3-II[p, q]) = {u ∈ V (Si2C3-II[p, q]) : d(u) = 2},

and V3(Si2C3-II[p, q]) = {u ∈ V (Si2C3-II[p, q]) : d(u) = 3}.

Table 7. Vertex partition of Si2C3-II[p, q].
[p, q] [1, 1] [1, 2] [1, 3] [2, 1] [2, 2] [2, 3] [3, 1] [3, 2] [3, 3] [4, 1] [4, 2] [4, 3]

V1 3 3 3 3 3 3 3 3 3 3 3 3
V2 6 12 18 12 18 24 18 24 30 24 30 36
V3 1 5 9 5 19 33 9 33 57 13 47 81

Now we use the computed values Table 7 and MATLAB software for generalizing the for-
mulas for the number of such vertices, given as: |V1(Si2C3-II[p, q])| = 3, |V2(Si2C3-II[p, q])| =
6(p + q − 1) and V3(Si2C3-II[p, q]) = 10pq − 6p − 6q + 3 Also, we divide the edge set
of Si2C3-II[p, q] into five disjoint parts based on the degrees of end vertices of each edge, as
follows:

E1 = E{1,2} = {e = uv ∈ E(Si2C3-II[p, q]) : d(u) = 1, d(v) = 2},
E2 = E{1,3} = {e = uv ∈ E(Si2C3-II[p, q]) : d(u) = 1, d(v) = 3},
E3 = E{2,2} = {e = uv ∈ E(Si2C3-II[p, q]) : d(u) = 2, d(v) = 2},
E4 = E{2,3} = {e = uv ∈ E(Si2C3-II[p, q]) : d(u) = 2, d(v) = 3},

and E5 = E{3,3} = {e = uv ∈ E(Si2C3-II[p, q]) : d(u) = 3, d(v) = 3}.

From the molecular graph of Si2C3-II[p, q], we can observe that |E1| = 2, |E2| = 1, |E3| =
2p+ 2q, |E4| = 8p+ 8q − 14, and |E5| = 15pq − 13p− 13q + 11. Therefore by definition, the
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M-polynomial of Si2C3-II[p, q] is

M(Si2C3-II[p, q];x, y)

=
∑
i≤j

mi,jx
iyj , where i, j ∈ {1, 2, 3}

=
∑
1≤2

m1,2x
1y2 +

∑
1≤3

m1,3x
1y3 +

∑
2≤2

m2,2x
2y2 +

∑
2≤3

m2,3x
2y3 +

∑
3≤3

m3,3x
3y3

=
∑

uv∈E1(Si2C3-II[p,q])

m1,2x
1y2 +

∑
uv∈E2(Si2C3-II[p,q])

m1,3x
1y3 +

∑
uv∈E3(Si2C3-II[p,q])

m2,2x
2y2+

∑
uv∈E4(Si2C3-II[p,q])

m2,3x
2y3 +

∑
uv∈E5(Si2C3-II[p,q])

m3,3x
3y3

= |E{1,2}|x1y2 + |E{1,3}|x1y3 + |E{2,2}|x2y2 + |E{2,3}|x2y3 + |E{3,3}|x3y3

= 2xy2 + xy3 + (2p+ 2q)x2y2 + (8p+ 8q − 14)x2y3 + (15pq − 13p− 13q + 11)x3y3.

Proof of Theorem 3.2. As computed in Theorem 3.1, the M-polynomial for Si2C3-II[p, q] is
M(Si2C3-II[p, q];x, y) = 2xy2 + xy3 + (2p+ 2q)x2y2 + (8p+ 8q − 14)x2y3 + (15pq − 13p−
13q + 11)x3y3.
For notational simplicity, we write f(x, y) =M(Si2C3-II[p, q];x, y). Therefore,

• Dx(f(x, y)) = 2xy2 + xy3 + 2(2p + 2q)x2y2 + 2(8p + 8q − 14)x2y3 + 3(15pq − 13p −
13q + 11)x3y3,

• Dy(f(x, y)) = 4xy2 + 3xy3 + 2(2p+ 2q)x2y2 + 3(8p+ 8q − 14)x2y3 + 3(15pq − 13p−
13q + 11)x3y3,

• DyDx(f(x, y)) = 4xy2 +3xy3 +4(2p+2q)x2y2 +6(8p+8q−14)x2y3 +9(15pq−13p−
13q + 11)x3y3,

• Sx(f(x, y)) = 2xy2 + xy3 + 1
2(2p + 2q)x2y2 + 1

2(8p + 8q − 14)x2y3 + 1
3(15pq − 13p −

13q + 11)x3y3,

• Sy(f(x, y)) = xy2 + 1
3xy

3 + 1
2(2p + 2q)x2y2 + 1

3(8p + 8q − 14)x2y3 + 1
3(15pq − 13p −

13q + 11)x3y3,

• SxSy(f(x, y)) = xy2 + 1
3xy

3 + 1
4(2p+ 2q)x2y2 + 1

6(8p+ 8q− 14)x2y3 + 1
9(15pq− 13p−

13q + 11)x3y3,

• Dα
xD

α
y (f(x, y)) = 2α+1xy2 + 3αxy3 + 22α(2p + 2q)x2y2 + 2α3α(8p + 8q − 14)x2y3 +

32α(15pq − 13p− 13q + 11)x3y3,

• DxSy(f(x, y)) = xy2 + 1
3xy

3 + (2p+ 2q)x2y2 + 2
3(8p+ 8q − 14)x2y3 + (15pq − 13p −

13q + 11)x3y3,

• DySx(f(x, y)) = 4xy2 + 1
3xy

3 + (2p+ 2q)x2y2 + 3
2(8p+ 8q − 14)x2y3 + (15pq − 13p−

13q + 11)x3y3,

• SαxS
α
y (f(x, y)) =

2
2αxy

2+ 1
3αxy

3+ 1
22α (2p+2q)x2y2+ 1

2α3α (8p+8q−14)x2y3+ 1
32α (15pq−

13p− 13q + 11)x3y3,

• SxJ(f(x, y)) =
2
3x

3+ 1
4x

4+ 1
4(2p+2q)x4+ 1

5(8p+8q−14)x5+ 1
6(15pq−13p−13q+11)x6,

• SxJDxDy(f(x, y)) =
4
3x

3 + 3
4x

4 + (2p+ 2q)x4 + 6
5(8p+ 8q − 14)x5 + 9

6(15pq − 13p−
13q + 11)x6,

• S3
xQ−2JD

3
xD

3
y(f(x, y)) = 24x+ 33

23x
2 + 23(2p+ 2q)x2 + 23(8p+ 8q− 14)x3 + 36

43 (15pq−
13p− 13q + 11)x4.



ON M-POLYNOMIAL OF THE 2D SILICON-CARBONS 155

Hence, the degree-based topological indices of the Si2C3-II[p, q] based on the derivation formu-
las mentioned in Table 3 are as follows.

1. First Zagreb Index:
M1(Si2C3-II[p, q]) = (Dx +Dy)(f(x, y))|x=y=1 = 90pq − 30p− 30q + 6.

2. Second Zagreb Index:
M2(Si2C3-II[p, q]) = (DxDy)(f(x, y))|x=y=1 = 135pq − 61p− 61q + 22.

3. Modified Second Zagreb Index:
mM2(Si2C3-II[p, q]) = (SxSy)(f(x, y))|x=y=1 =

5
3pq +

7
18p+

7
18q +

2
9 .

4. General Randić Index:
Rα(Si2C3-II[p, q]) = (Dα

xD
α
y )(f(x, y))|x=y=1 = 2α+1 + 3α + 22α(2p+ 2q) + 2α3α(8p+

8q − 14) + 32α(15pq − 13p− 13q + 11).

5. Inverse Randić Index:
RRα(Si2C3-II[p, q]) = (SαxS

α
y )(f(x, y))|x=y=1 = 2

2α + 1
3α + 1

22α (2p + 2q) + 1
2α3α (8p +

8q − 14) + 1
32α (15pq − 13p− 13q + 11).

6. Symmetric Division (Deg) Index:
SDD(Si2C3-II[p, q]) = (DxSy +DySx)(f(x, y))|x=y=1 = 30pq − 14

3 p−
14
3 q.

7. Harmonic Index:
H(Si2C3-II[p, q]) = 2SxJ(f(x, y))|x=1 = 5pq − 2

15p−
2
15q −

1
10 .

8. Inverse Sum (Indeg) Index:
ISI(Si2C3-II[p, q]) = SxJDxDy(f(x, y))|x=1 =

45
2 pq −

79
10p−

79
10q +

107
60 .

9. Augmented Zagreb Index:
AZ(Si2C3-II[p, q]) = S3

xQ−2JD
3
xD

3
y(f(x, y))|x=1 =

10935
64 pq − 4357

64 p−
4357

64 q +
2091

64 .

Proof of Theorem 4.1. As mentioned earlier that for the structure of Si2C3-III[p, q], we have:

|V (Si2C3-III[p, q])| = 10pq and |E(Si2C3-III[p, q])| = 15pq − 2p− 3q

And moreover, we can see that there are three partitions according to the degree of vertices,
namely,

V1(Si2C3-III[p, q]) = {u ∈ V (Si2C3-III[p, q]) : d(u) = 1},
V2(Si2C3-III[p, q]) = {u ∈ V (Si2C3-III[p, q]) : d(u) = 2},

and V3(Si2C3-III[p, q]) = {u ∈ V (Si2C3-III[p, q]) : d(u) = 3}.

Table 8. Vertex partition of Si2C3-III[p, q].
[p, q] [1, 1] [1, 2] [1, 3] [2, 1] [2, 2] [2, 3] [3, 1] [3, 2] [3, 3] [4, 1] [4, 2] [4, 3]

V1 2 2 2 2 2 2 2 2 2 2 2 2
V2 6 9 12 10 13 16 14 17 20 18 21 24
V3 2 9 16 8 25 42 14 41 68 20 57 94

Now we use the computed values Table 8 and MATLAB software for generalizing the for-
mulas for the number of such vertices given as: |V1(Si2C3-III[p, q])| = 2, |V2(Si2C3-III[p, q])| =
4p + 3q − 1 and V3(Si2C3-III[p, q]) = 10pq − 4p − 3q − 1 Also, we divide the edge set of
Si2C3-III[p, q] into four disjoint parts based on the end vertices of each edge, as follows:

E1 = E{1,3} = {e = uv ∈ E(Si2C3-III[p, q]) : d(u) = 1, d(v) = 3},
E2 = E{2,2} = {e = uv ∈ E(Si2C3-III[p, q]) : d(u) = 2, d(v) = 2},
E3 = E{2,3} = {e = uv ∈ E(Si2C3-III[p, q]) : d(u) = 2, d(v) = 3},

and E4 = E{3,3} = {e = uv ∈ E(Si2C3-III[p, q]) : d(u) = 3, d(v) = 3}.
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From the molecular graph of Si2C3-III[p, q], we can observe that |E1| = 2, |E2| = 2q + 2,
|E3| = 8p+ 8q− 12, and |E4| = 15pq− 10p− 13q+ 8. Also Molecular graph of Si2C3-III[p, q]
does not have any edge uv such that d(u) = 1, d(v) = 1 and also d(u) = 1,d(v) = 2 as a
consequence |E{1,1}| = 0 and |E{1,2}| = 0.

Therefore by definition, the M-polynomial of Si2C3-III[p, q] is

M(Si2C3-III[p, q];x, y)

=
∑
i≤j

mi,jx
iyj , where i, j ∈ {1, 2, 3}

=
∑
1≤3

m1,3x
1y3 +

∑
2≤2

m2,2x
2y2 +

∑
2≤3

m2,3x
2y3 +

∑
3≤3

m3,3x
3y3

=
∑

uv∈E1(Si2C3-III[p,q])

m1,3x
1y3 +

∑
uv∈E2(Si2C3-III[p,q])

m2,2x
2y2 +

∑
uv∈E3(Si2C3-III[p,q])

m2,3x
2y3+

∑
uv∈E4(Si2C3-III[p,q])

m3,3x
3y3

= |E{1,3}|x1y3 + |E{2,2}|x2y2 + |E{2,3}|x2y3 + |E{3,3}|x3y3

= 2xy3 + (2q + 2)x2y2 + (8p+ 8q − 12)x2y3 + (15pq − 10p− 13q + 8)x3y3.

Proof of Theorem 4.2. As computed in Theorem 4.1, the M-polynomial for Si2C3-III[p, q] is
M(Si2C3-III[p, q];x, y) = 2xy3+(2q+2)x2y2+(8p+8q−12)x2y3+(15pq−10p−13q+8)x3y3.
For notational simplicity, we write f(x, y) =M(Si2C3-III[p, q];x, y). Therefore,

• Dx(f(x, y)) = 2xy3+(2(2q+2)x2y2+2(8p+8q−12)x2y3+3(15pq−10p−13q+8)x3y3,

• Dy(f(x, y)) = 6xy3 +2(2q+2)x2y2 +(8p+8q−12)x2y3 +3(15pq−10p−13q+8)x3y3,

• DyDx(f(x, y)) = 6xy3+4(2q+2)x2y2+6(8p+8q−12)x2y3+9(15pq−10p−13q+8)x3y3,

• Sx(f(x, y)) = 2xy3+ 1
2(2q+2)x2y2+ 1

2(8p+8q−12)x2y3+ 1
3(15pq−10p−13q+8)x3y3,

• Sy(f(x, y)) =
2
3xy

3+ 1
2(2q+2)x2y2+ 1

3(8p+8q−12)x2y3+ 1
3(15pq−10p−13q+8)x3y3,

• SxSy(f(x, y)) =
2
3xy

3+ 1
4(2q+2)x2y2+ 1

6(8p+8q−12)x2y3+ 1
9(15pq−10p−13q+8)x3y3,

• Dα
xD

α
y (f(x, y)) = 2 3αxy3 + 22α(2q + 2)x2y2 + 2α3α(8p+ 8q − 12)x2y3 + 32α(15pq −

10p− 13q + 8)x3y3,

• DxSy(f(x, y)) =
2
3xy

3+(2q+2)x2y2+ 2
3(8p+8q−12)x2y3+(15pq−10p−13q+8)x3y3,

• DySx(f(x, y)) = 6xy3+(2q+2)x2y2+ 3
2(8p+8q−12)x2y3+(15pq−10p−13q+8)x3y3,

• SαxS
α
y (f(x, y)) =

2
3αxy

3 + 1
22α (2q+ 2)x2y2 + 1

2α3α (8p+ 8q− 12)x2y3 + 1
32α (15pq− 10p−

13q + 8)x3y3,

• SxJ(f(x, y)) =
1
2x

4 + 1
4(2q + 2)x4 + 1

5(8p+ 8q − 12)x5 + 1
6(15pq − 10p− 13q + 8)x6,

• SxJDxDy(f(x, y)) =
3
2x

4 +(2q+2)x4 + 6
5(8p+8q−12)x5 + 3

2(15pq−10p−13q+8)x6,

• S3
xQ−2JD

3
xD

3
y(f(x, y)) =

2 33

23 x
2 + 23(2q+ 2)x2 + 23(8p+ 8q− 12)x3 + 36

43 (15pq− 10p−
13q + 8)x4.

Hence, the degree-based topological indices of the Si2C3-III[p, q] based on the derivation for-
mulas mentioned in Table 3 are as follows:

1. First Zagreb Index:
M1(Si2C3-III[p, q]) = (Dx +Dy)(f(x, y))|x=y=1 = 90pq − 20p− 30q + 4.

2. Second Zagreb Index:
M2(Si2C3-III[p, q]) = (DxDy)(f(x, y))|x=y=1 = 135pq − 42p− 61q + 14.
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3. Modified Second Zagreb Index:
mM2(Si2C3-III[p, q]) = (SxSy)(f(x, y))|x=y=1 =

5
3pq +

2
9p−

5
18q +

1
18 .

4. General Randić Index:
Rα(Si2C3-III[p, q]) = (Dα

xD
α
y )(f(x, y))|x=y=1 = 2 3α + 22α(2q + 2) + 2α3α(8p + 8q −

12) + 32α(15pq − 10p− 13q + 8).

5. Inverse Randić Index:
RRα(Si2C3-III[p, q]) = (SαxS

α
y )(f(x, y))|x=y=1 = 2

3α + 1
22α (2q + 2) + 1

2α3α (8p + 8q −
12) + 1

32α (15pq − 10p− 13q + 8).

6. Symmetric Division (Deg) Index:
SDD(Si2C3-III[p, q) = (DxSy +DySx)(f(x, y))|x=y=1 = 30pq − 8

3p−
14
3 q +

2
3 .

7. Harmonic Index:
H(Si2C3-III[p, q]) = 2SxJ(f(x, y))|x=1 = 5pq − 2

15p−
2
15q −

2
15 .

8. Inverse Sum (Indeg) Index:
ISI(Si2C3-III[p, q]) = SxJDxDy(f(x, y))|x=1 =

45
2 pq −

27
5 p−

79
10q +

11
5 .

9. Augmented Zagreb Index:
AZ(Si2C3-III[p, q]) = S3

xQ−2JD
3
xD

3
y(f(x, y))|x=1 =

10935
64 pq − 1597

32 p−
4357
64 q +

143
8 .
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