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Abstract. We intend in this article to classify the global phase portraits of quadratic poly-
nomial differential systems exhibiting reducible invariant algebraic curve of degree three, by
investigating their global phase portraits in the Poincaré disc. We realize that these systems
produce 13 topologically different phase portraits.

1 Introduction

Let R[x, y] be the ring of real polynomials in the variables x and y. A quadratic polynomial
differential system is a system of the form

ẋ = P (x, y), ẏ = Q(x, y), (1.1)

where P and Q are real polynomials form R[x, y] and max{deg(P ), deg(Q)} = 2. The variables
ẋ and ẏ are obviously the derivatives os x and y with respect to the time t. For such system, we
can always associate the quadratic vector field

X = P (x, y)∂/∂x+Q(x, y)∂/∂y.

If system (1.1) has an algebraic trajectory curve, which is defined by a zero set of a poly-
nomial H(x, y) = 0. Then it is clear that the derivative of H with respect to the time will not
change along the curve H = 0, and by the Hilbert’s Nullstellensatz we have

dH

dt
=
∂H

∂x
P +

∂H

∂y
Q = KH,

where K is a polynomial in x and y of degree at most 1, called the cofactor of the invariant
algebraic curve H(x, y) = 0. For more details on the invariant algebraic curves of a polynomial
differential system see Chapter 8 of [7].

The quadratic differential systems gained a big notoriety and has been extensively explored
using different mathematical tools and methods, for more details see the references cited in the
books of Ye [13] and Reyn [12].

In [5] Benterki and Llibre studied the global phase portraits of 14 quadratic polynomial differ-
ential systems having 14 classical quartic algebraic curves as invariant ones, which are formed
by orbits of the quadratic polynomial differential systems, and they obtained 28 global phase
portraits topologically non equivalent.

In [3] Belfar and Benterki classified the global phase portraits of six quadratic polynomial
differential systems, exhibiting as unvariant algebraic curves six well-known algebraic curves of
degree six. The same authors in [4] classified the dynamics of five quadratic differential systems
exhibiting five known different cubic invariant algebraic curves, and they realized that these
systems produced 29 topologically different phase portraits.

In this work, we aim to characterize the global phase portraits in the Poincaré disc of a
quadratic systems having reducible invariant cubic algebraic curve.
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2 Statement of the main results

Our first main result is the following.

Theorem 2.1. The algebraic curve of degree three given by: H(x, y) = 0 with H(x, y) =
(y − k)(x2 + y2 − 1) where k 6= 0, is an invariant algebraic curve with associated cofactor
K(x, y) = ax of the quadratic differential systems:

ẋ =
1
2
(a− 1)x2 +

1
2
(a− 3)y2 + ky +

1− a
2

,

ẏ = x(y − k).
(2.1)

Proof. It is immediate that the function H on the orbits of systems (2.1) satisfy

dH

dt
= ẋ

∂H

∂x
+ ẏ

∂H

∂y
= KH.

The following theorem characterize the topological classifcation of all the phase portraits of
planar polynomial diferential systems of degree 2 having the reducible invariant cubic curve
H(x, y) = (y − k)(x2 + y2 − 1) = 0 in the Poincaré disc. For a defnition of singular points
and Poincaré disc and for a defnition of a topological equivalent phase portraits of a polynomial
diferential system in the Poincaré disc see sections 2.

Theorem 2.2. The global phase portraits of the quadratic systems (2.1) are topologically equiv-
alent to the phase portrait

1 for k ∈ (0, 1) and a ∈ (1, c1) ∪ (c2, 3) ∪ (3,∞), where c1 = 2 −
√

1− k2 and c2 =
2 +
√

1− k2;

2 for k ∈ (0, 1) and a ∈ (−∞, 1);

3 for k ∈ (0, 1) and a ∈ (c1, c2);

4 for k ∈ (0, 1) and a = c1;

5 for k ∈ (0, 1) and a = c2;

6 for k ∈ (0,∞) and a = 1;

7 for k ∈ (0, 1) and a = 3;

8 for k ∈ (1,∞) and a ∈ (−∞, 1) ∪ (3,∞);

9 for k ∈ (1,∞) and a ∈ (1, 3) ;

10 for k ∈ (1,∞) and a = 3;

11 for k = 1 and a = 2;

12 for k = 1 and a = 3;

13 for k = 1 and a ∈ (−∞, 1) ∪ (1, 2) ∪ (2, 3);

14 for k = 1 and a ∈ (3,∞).

3 Preliminaries and basic results

In this section we expose the main results and concepts which are necessary for proving our
results.
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Figure 1. Phase portraits in the Poincaré disc of the systems (2.1). The invariant algebraic curves of degree
3 are drawn in red color. An orbit inside a canonical region is drawn in blue except if it is contained in
the invariant algebraic curve. The separatrices are drawn in black except if the separatrix is contained in the
invariant algebraic curve then it is of red color but its arrow is black in order to indicate that is a separatrix.
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Figure 2. Continuation of Figure 1.

3.1 Poincaré compactification

In this subsection, we present some basic results that we need to study the behavior of the trajec-

tories of a planar differential systems near infinity. Let X(x, y) = (
1
2
(a− 1)x2 +

1
2
(a− 3)y2 +

ky+
1− a

2
, x(y− k)) represent a vector field of systems (2.1) which we are going to study their

phase portraits, then for doing this we use the so called a Poincaré compactification. We consider
the Poincaré sphere 2 = {(x, y, z) ∈ R3 : x2 +y2 + z2 = 1}, and we define the central projection
f : T 2

(0,0,1) −→
2 (with T 2

(0,0,1) the tangent space of 2 at the point (0, 0, 1), such that for each point
q ∈ T 2

(0,0,1), T
2
(0,0,1)(q) associates the two intersection points of the straight line which connects

the point q and (0, 0). The equator 1 = {(x, y, z) ∈2: z = 0} represent the infinity points of R2.
In summary we get a vector field X ′ defined in 2\1, which is formed by to symmetric copies of
X , and we prolong it to a vector field p(X ) on 2. By studying the dynamics of p(X ) near 1 we
get the dynamics of X at infinity. We need to do the calculations on the Poincaré sphere near the
local charts Ui = {Y ∈2: yi > 0}, and Vi = {Y ∈2: yi < 0} for i = 1, 2, 3; with the associated
diffeomorphisms Fi : Ui −→ R2 and Gi : Vi −→ R2 for i = 1, 2, 3. After a rescaling in the
independent variable in the local chart (U1, F1) the expression for p(X ) is

u̇ = vn
[
−uP

(
1
v
,
u

v

)
+Q

(
1
v
,
u

v

)]
, v̇ = −vn+1P

(
1
v
,
u

v

)
;

in the local chart (U2, F2) the expression for p(X ) is

u̇ = vn
[
P

(
u

v
,

1
v

)
− uQ

(
u

v
,

1
v

)]
, v̇ = −vn+1Q

(
u

v
,

1
v

)
;

and for the local chart (U3, F3) the expression for p(X ) is

u̇ = P (u, v), v̇ = Q(u, v).

Due to the fact that the singular points at infinity appear in pairs diametrally opposite, then for
studying the local phase portrait of a singular point at infinity, we have to study the singular
points (u0, 0) at the local chart U1, and the origin of the chart U2.

For more details on the Poincaré compactification see Chapter 5 of [7].

3.2 Phase portraits on the Poincaré disc

In this subsection we are going to see how to characterize the global phase portraits in the
Poincaré disc of all the differential systems (2.1).

A separatrix of p(X ) is an orbit which is either a singular point, or a limit cycle, or a trajectory
which lies in the boundary of an hyperbolic sector at a singular point. Neumann [10] proved that
the set formed by all separatrices of p(X ); denoted by S(p(X )) is closed.
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The open connected components of D2 \ S(p(X )) are called canonical regions of p(X ): We
define a separatrix configuration as a union of S(p(X )) plus one solution chosen from each
canonical region. Two separatrix configurations S(p(X )) and S(p(Y)) are said to be topologi-
cally equivalent if there is an orientation preserving or reversing homeomorphism which maps
the trajectories of S(p(X )) into the trajectories of S(p(Y)).

The following result is due to Markus [9], Neumann [10] and Peixoto [11].

Theorem 3.1. The phase portraits in the Poincaré disc of the two compactified polynomial dif-
ferential systems p(X ) and p(Y) are topologically equivalent if and only if their separatrix con-
figurations S(p(X )) and S(p(Y)) are topologically equivalent.

According to this theorem and in the phase portraits in the Poincaré disc of Figures 1 and 2
we plot at least one orbit in each canonical region.

Remark 3.2. Systems (2.1) are invariant under the change (x, y, t, a, k) −→ (−x,−y, t, a,−k),
then we only need to study them for k > 0.

To characterize the phase portraits of systems (2.1) we have to:
First of all we have to describe and study the finite singular points and their local phase

portraits. Then we repeat the same process for the infnite singularities.

3.3 The finite singular points

By considering the symmetry according to Remark (3.2), the finite singular points of systems
(2.1) are given by:

Proposition 3.3. The following statements hold for the quadratic systems (2.1).

(I) Assume k ∈ (0, 1)

(i) If a ∈ (1, c1)∪(c2, 3)∪(3,∞) where c1 = 2−
√

1− k2 and c2 = 2+
√

1− k2, then sys-
tems (2.1) have four singularities, an hyperbolic stable node at p1 = (−

√
1− k2, k),

an hyperbolic unstable node at p2 = (
√

1− k2, k); the third singularity at p3 =(
0,
k +
√
a2 − 4a+ k2 + 3

3− a

)
which is an hyperbolic saddle if a ∈ (1, c1)∪(3,∞) and

a center if a ∈ (c2, 3); the fourth singular point at p4 =
(

0,
k −
√
a2 − 4a+ k2 + 3

3− a

)
which is an hyperbolic saddle if a ∈ (c2, 3) ∪ (3,∞) and a center if (1, c1).

(ii) If a ∈ (−∞, 1) systems (2.1) have four singularities, two hyperbolic saddles at p1 and
p2, and two centers at p3 and p4.

(iii) If a ∈ (c1, c2) systems (2.1) have two hyperbolic singularities, a stable node at p1 and
an unstable node at p2.

(iv) If a = c1 systems (2.1) have three singularities, an hyperbolic stable node at p1, an

hyperbolic unstable node at p2 and a nilpotent singularity at p3 =
(

0,
1−
√

1− k2

k

)
,

where its local phase portrait formed by two hyperbolic sectors.

(v) If a = c2 systems (2.1) have three singularities, an hyperbolic stable node at p1, an

hyperbolic unstable node at p2 and a nilpotent singularity at p4 =
(

0,
1 +
√

1− k2

k

)
,

where its local phase portrait formed by two hyperbolic sectors.

(vi) If a = 1 systems (2.1) have y = k as a line of singularities, and by doing the change
of variables (y − k)dt = ds we know that the system has a center at the origin.

(vii) If a = 3 systems (2.1) have three hyperbolic singularities, a stable node at p1, an

unstable node at p2 and a saddle at p4 =
(

0,
1
k

)
.
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(II) Assume k ∈ (1,∞)

(i) If a ∈ (−∞, 1) ∪ (3,∞) systems (2.1) have two singularities, a hyperbolic saddle at
p3 and a center at p4.

(ii) If a ∈ (1, 3) they have two centers at p3 and p4.

(iii) If a = 1 they have y = k as a line of singularities, and by doing the change of
variables (y − k)dt = ds we know that the system has a center at the origin.

(iv) If a = 3 they have one singularity at p4 which is a center.

(III) Assume k = 1

(i) If a = 1 system (2.1) has y = 1 as a line of singularities, and by doing the change of
variables (y − 1)dt = ds we know that it has a center at the origin.

(ii) If a = 2 the system has one finite singularity at p3 = (0, 1) which is a linearly zero,
and its local phase portrait formed by two elliptic sectors.

(iii) If a = 3 it has one finite singularity at p3 which is a nilpotent, and its local phase
portrait formed by two parabolic and one hyperbolic sectors.

(iv) If a ∈ (−∞, 1)∪ (1, 2)∪ (2, 3)∪ (3,∞) systems (2.1) have two singularities; p3 which
is nilpotent, and its local phase portrait formed by two parabolic, one elliptic and one
hyperbolic sectors if a ∈ (3,∞) and four hyperbolic sectors if a ∈ (−∞, 1)∪ (1, 2)∪

(2, 3); p4 =
(

0,
1− a
a− 3

)
which is an hyperbolic saddle if a ∈ (3,∞) and a center if

a ∈ (−∞, 1) ∪ (1, 2) ∪ (2, 3).

Proof.

Proof of statement (I). If a ∈ (1, c1)∪ (c2, 3)∪ (3,∞) the differential systems (2.1) have four
singularities, an hyperbolic stable node at p1 which has the eigenvalues λ1 = −(a− 1)

√
1− k2

and λ2 = −
√

1− k2, and an hyperbolic unstable node at p2 with its corresponding eigenvalues
λ1 =

√
1− k2 and λ2 = (a − 1)

√
1− k2, and the third singular point p3 has λ1,2 = ∓iB

such that B =
√
−S((a− 2)k + S)/(a− 3) and S =

√
(a− 4)a+ k2 + 3, then λ1.λ2 =

−S ((a− 2)k + S)

a− 3
. According to the sign of the parameter a we know that p3 is an hyperbolic

saddle if a ∈ (1, c1) ∪ (3,∞) and a center if a ∈ (c2, 3) .
The fourth singularity p4 has λ1,2 = ∓iB such that B =

√
S((a− 2)k − S)/(a− 3) and

S =
√
(a− 4)a+ k2 + 3, then λ1.λ2 =

S ((a− 2)k − S)
a− 3

. According to the sign of the param-

eter a we know that p4 is an hyperbolic sadlle if a ∈ (c2, 3) ∪ (3,∞) and a center if a ∈ (1, c1).
Then the statement (i) holds.

If a ∈ (−∞, 1) the differential systems (2.1) have four singularities, an hyperbolic stable
node at p1 which has the eigenvalues λ1 = −(a − 1)

√
1− k2 and λ2 = −

√
1− k2, and an

hyperbolic unstable node at p2 with its corresponding eigenvalues λ1 =
√

1− k2 and λ2 =
(a − 1)

√
1− k2, and the third singular point p3 has the eigenvalues λ1,2 = ∓iB such that

B =
√
−S((a− 2)k + S)/(a− 3) and S =

√
(a− 4)a+ k2 + 3. These eigenvalues are purely

imaginary such this equilibrum point is either a focus or a center, but due to the fact that sys-
tem (2.1) is symetric with respect to (xx

′
) axes, P3 is a center, and a fourth singular point p4 with

eigenvalues λ1,2 = ∓iB such thatB =
√
S((a− 2)k − S)/(a− 3) and S =

√
(a− 4)a+ k2 + 3.

This eigenvalues are imaginary purely which means that the singularity is either a focus or a cen-
ter, but due to the fact that systems (2.1) are symetric with respect to the x-axes, we know that
P4 is a center. Then the statement (ii) holds.

If a ∈ (c1, c2), then p1 are an hyperbolic stable node with eigenvalues λ1 = −(a−1)
√

1− k2

and λ2 = −
√

1− k2 and p2 is an unstable node with eigenvalues λ1 =
√

1− k2 and λ2 =
(a− 1)

√
1− k2. Then the statement (iii) holds.
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If a = c1 where c1 = 2−
√

1− k2, the differential systems (2.1) become

ẋ =
1
2

(
1−
√

1− k2
)
x2 +

1
2

(
−
√

1− k2 − 1
)
y2 + ky +

1
2

(√
1− k2 − 1

)
,

ẏ = x(y − k).
(3.1)

These systems have three singularities p1, p2 and p3, with p3 =

(
0,

1−
√

1− k2

k

)
.

At p1 we have the eigenvalues λ1 =
√

1− k2
(√

1− k2 − 1
)

and λ2 −
√

1− k2. So it’s
an hyperbolic stable node. The singularity p2 is an hyperbolic unstable node with eigenvalues
λ1 =

√
1− k2 and λ2 = −

√
1− k2

(√
1− k2 − 1

)
. The third singularity p3 is a nilpotent

singular point with eigenvalues λ1 = 0 and λ2 = 0. By applying Theorem 2.15 of [7] we know
that p3 has two hyperbolic sectors. Then the statement (iv) holds.

If a = c2 where c2 = 2 +
√

1− k2 the differential systems (2.1) become

ẋ =
1
2

(
1 +
√

1− k2
)
x2 +

1
2

(√
1− k2 − 1

)
y2 + ky +

1
2

(
−
√

1− k2 − 1
)
,

ẏ = x(y − k).
(3.2)

These systems have three singularities p1, p2 and p4, with p4 =

(
0,

1 +
√

1− k2

k

)
.

The singularity p1 has the eigenvalues λ1 = −
√

1− k2 and λ2 = −
√

1− k2
(√

1− k2 + 1
)

.
So it’s an hyperbolic stable node. The singularity p2 is an unstable node with eigenvalues λ1 =√

1− k2
(√

1− k2 + 1
)

and λ2 =
√

1− k2. The third singularity p4 is a nilpotent singular
point with eigenvalues λ1 = 0 and λ2 = 0. By applying Theorem 3.5 of [7] we know that p4 has
two hyperbolic sectors. Then the statement (v) holds.

If a = 1 the differential systems (2.1) become

ẋ = −y(y − k), ẏ = x(y − k). (3.3)

They have a line of singularities y = k. We take the change of variables ds = (y − k)dt, we get
the following system

ẋ = −y, ẏ = x. (3.4)

which has a center at the origin with its corresponding eigenvalues i and −i. Then the statement
(vi) holds.

If a = 3 the differential systems (2.1) become

ẋ = x2 + ky − 1, ẏ = x(y − k). (3.5)

They have three singularities p1, p2 and p4 where p4 =
(

0,
1
k

)
.

The singularities p1 and p2 have the eigenvalues λ1 = −2
√

1− k2 and λ2 = −
√

1− k2, and
λ1
√

1− k2 and λ2 = 2
√

1− k2, respectively. So p1 is an hyperbolic stable node and p2 is an
hyperbolic unstable node. The third singularity p4 is a saddle with eigenvalues λ1 = −

√
1− k2

and λ2 =
√

1− k2. Then the statement (vii) holds.
Proof of statement (II). If a ∈ (−∞, 1) ∪ (1, 3) ∪ (3,∞) the systems have two singulari-

ties; p3 with eigenvalues λ1,2 = ∓iB such that B =
√
−S((a− 2)k + S)/(a− 3) and S =√

(a− 4)a+ k2 + 3, then λ1.λ2 = −S ((a− 2)k + S)

a− 3
which means that p3 is an hyperbolic

saddle if a ∈ (−∞, 1)∪(3,∞) and a center if a ∈ (1, 3), and the second singular point p4 has the
eigenvalues λ1,2 = ∓iB such thatB =

√
S((a− 2)k − S)/(a− 3) and S =

√
(a− 4)a+ k2 + 3.

These eigenvalues are purely imaginary, then this equilibrum point is either a focus or a center,
but due to the fact that systems (2.1) are symetric with respect to the x–axes we know that P4 is
a center. Then two statements (i) and (ii) hold.
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If a = 1 the differential systems (2.1) become

ẋ = −y(y − k), ẏ = x(y − k). (3.6)

These systems have a line of singularities y = k. By performing the change of variables ds =
(y − k)dt, we get the following system

ẋ = −y, ẏ = x. (3.7)

This system has a center at the origin with its corresponding eigenvalues λ1 = i and λ1 = −i.
Then the statement (iii) holds.

If a = 3 the differential systems (2.1) become

ẋ = x2 + ky − 1, ẏ = x(y − k). (3.8)

These systems have one singularity at p4 which is a center with eigenvalues λ1 = −i
√

1− k2

and λ2 = i
√

1− k2. Then the statement (iv) holds.
Proof of statement (III). If a = 1 systems (2.1) become

ẋ = −y(y − 1), ẏ = x(y − 1). (3.9)

These systems have a line of singularities y = 1. We take the change of variable ds = (y− 1)dt,
we get the following system

ẋ = −y, ẏ = x, (3.10)

which has a center at the origin and its corresponding eigenvalues are λ1 = i and λ1 = −i.
Then the statement (i) holds.

If a = 2 the differential systems (2.1) become

ẋ =
x2

2
− y2

2
+ y − 1

2
, ẏ = x(y − 1). (3.11)

These systems have a linearly zero singular point at p3 = (0, 1). In order to know the nature of
this singularity. First, we put this point at the origin of coordinates by performing the translation
x = x1, y = y1 + 1, and we get

ẋ1 =
1
2
(x1 − y1)(x1 + y1), ẏ1 = x1y1. (3.12)

Second, we need to do a blow-up y1 = zx1 for describing its local phase portrait. After elim-
inating the common factor x1 of ẋ1 and ż, by doing the rescaling of the independent variable
ds = x1dt, and we obtain the system

ẋ1 =
1
2
(1− z)(1 + z), ż =

1
2
z(1 + z2). (3.13)

This system has no singularity for x1 = 0. Going back through the two changes of variables
y1 = zx1 and x1dt = ds and by taking into account the direction of the flow of the system on the
axes of coordinates, we conclud that the local phase portrait of the origin consists of two elliptic
sectors. Then the statement (ii) holds.

If a = 3 systems (2.1) become

ẋ = x2 + y − 1, ẏ = x(y − 1). (3.14)

This system has one nilpotent singularity at p3. By using Theorem 3.5 of [7] we obtain that its
local phase portrait consists of two parabolic and one hyperbolic sectors. Then the statement
(iii) holds.

If a ∈ (−∞, 1) ∪ (1, 2) ∪ (2, 3) ∪ (3,∞) systems (2.1) have two singularities; a nilpo-

tent singularity at p3 and an hyperbolic singularity at p4 with eigenvalues −
√

2

√
(a− 2)2

a− 3
and

√
2

√
(a− 2)2

a− 3
, then it is a saddle if a ∈ (3,∞) and a center if a ∈ (−∞, 1) ∪ (1, 2) ∪ (2, 3).

By using Theorem 3.5 of [7] we obtain that the local phase portrait of p3 consists of two
parabolic, one elliptic and one hyperbolic sectors if a ∈ (3,∞) and four hyperbolic sectors if
a ∈ (−∞, 1) ∪ (1, 2). Then the statement (iv) holds.
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3.4 Infinite singular points

We aim to survey the behaviour of the local phase portraits of systems (2.1) at their infinite
singular points. To investigate the infinite singular points in the Poincaré disc we analyse the
vector field at infinity.

Proposition 3.4. The local phase portraits at the infinite singular points of systems (2.1) in the
local chart U1 consists of

(i) One singular point at q1 = (0, 0) which is an hyperbolic stable node if a ∈ (−∞, 1) and
k ∈ (0,∞), an hyperbolic unstable node if a ∈ (3,∞) and k ∈ (0,∞), a hyperbolic saddle
if a ∈ (1, 3) and k ∈ (0,∞), and a semi-hyperbolic saddle-node if a = 1 and k ∈ (0,∞);

(ii) a line of singularities if a = 3 and k ∈ (0,∞).

The origin of the local chart U2 is not a singularity for all a ∈ R and k ∈ (0,∞).

Proof. The expression of systems (2.1) in the local chart U1 is given by

u̇ =
1
2
(
−(a− 3)u3 + u

(
a
(
v2 − 1

)
− v2 + 3

)
− 2ku2v − 2kv

)
+ a(1 + v))),

v̇ = −1
2
v
(
−a
(
u2 + 1

)
+ (a− 1)v2 − 2kuv + 3u2 + 1

)
.

(3.15)

Any arbitrary infinite singular point of differential systems (3.15) take the forme (u0, 0).
If a ∈ (−∞, 3)∪ (3,∞) and k ∈ (0,∞) systems (3.15) have one singular point at q1 = (0, 0)

with eigenvalues
1− a

2
and

3− a
2

. So q1 is an hyperbolic unstable node if a ∈ (−∞, 1), an

hyperbolic stable node if a ∈ (3,∞), an hyperbolic saddle if a ∈ (1, 3), and a semi-hyperbolic
singularity if a = 1 with eigenvalues 0 and 1. In order to obtain the local phase portrait at this
point we use Theorem 2.19 of [7] and we obtain that q1 is a saddle-node.

If a = 3 and k ∈ (0,∞) systems (3.15) become

ẋ = −v
(
ku2 + k − uv

)
,

ẏ = v
(
−kuv + v2 − 1

)
.

These systems have infinity as a line of singularities. We take the change of variables ds = vdt,
we get the following systems

ẋ = −ku2 − k + uv, ẏ = −kuv + v2 − 1.

These systems have no singularity. Then the statement (ii) holds.
The differential systems (2.1) in the local chart U2 take the form:

u̇ =
1
2
(
a(u2 − v2 + 1) + u2(2kv − 3) + 2kv + v2 − 3

)
,

v̇ = uv(kv − 1).

It is clear that the origin is not a singularity for this system for all a ∈ R and k ∈ (0,∞).

4 Local and global phase portraits

If k ∈ (0, 1), a 6= 1 and from Proposition 3.3 we obtain the local phase portrait of the finite
and infinite singular points. Due to the fact that the two singular points q1 and q2 belongs
to the reducible invariant curve of the systems, we obtain some orbits on this invariant curve
connecting those singular points, these connections vary if either a ∈ (−∞, 1)∪(1, c1)∪(c1,∞),
or a ∈ (−∞, 1), or a ∈ (c1, c2), or a = c1, or a = c2, (see the local phase portraits 1, or 2,

or 3, or 4, or 5 or 7 of Figure 3, respectively). Since ẋ|x=0 =
1
2
(a − 3)y2 + ky +

1− a
2

, and
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Figure 3. Local phase portraits at the singular points. The invariant algebraic curves of degree 3 are drawn in
red color.
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13 14

Figure 4. Continuation of Figure 3.

ẏ|y=0 = −kx < 0 the separatrices for which we do not know their α- or ω-limit can be easily
determined from the mentioned figures, obtaining the global phase portrait 1, or 2, or 3, or 4, or
5 or 7 of Figure 1.

If k ∈ (0,∞) and a = 1 the systems have y = k as a line of singularities, and by doing
the change of variables (y − k)dt = ds we know that they have a center at the origin. Since
ẋ|x=0 = y(k − y), and ẏ|y=0 = 0, (see also the local phase portrait 6 of Figure 3) we get the
global phase portrait 6 of Figure 1.

If k ∈ (1,∞) and a 6= 1 we get the local phase portraits 8, 9 and 10 of Figure 3 for the

fnite and infnite singular points of the systems. Since ẋ|x=0 =
1
2
(a − 3)y2 + ky +

1− a
2

, and
ẏ|y=0 = −kx < 0 we get that the global phase portrait in this case is 8, 9 and 10 of Figure 1,
respectively.

If k = 1 from Proposition 3.3 we obtain the local phase portrait of the finite and infinite
singular points. Due to the fact that the singular point p3 belongs to the reducible invariant
curve of the system, we obtain some orbits on this invariant curve connecting this singular point,
these connections vary in the interval a ∈ (−∞,∞), (see local phase portraits 11, or 12, or 13
or 14 of Figure 3 and 4). Taking into account the following directions of the vector field of the

systems in the axes ẋ|x=0 =
1
2
(a− 3)y2 + y +

1− a
2

, and ẏ|y=0 = −x < 0 we get to the global
phase portrait 11, or 12, or 13 or 14 of Figure 1 and 2.
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