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Abstract The main objective of this paper is to find accurate solutions for linear fractional dif-
ferential equations involving the fractional Caputo-Hadamard derivative of order α > 0. There-
fore, to achieve this objective, a new method called the Finite Fractional Difference Method
(FFDM) is employed to find the numerical solution. As such, the convergence and stability of
the numerical scheme is discussed and illustrated by solving two linear fractional differential
equation problems of order 0 < α 6 1 to show the validity of our method.

1 Introduction

Fractional calculus had played a very important role in in diverse fields of science and engi-
neering. Due to its richness in theory and its various applications, many researchers have been
interested in this field, for details, see (Samko et al. 1993 [19], Podlubny 1999 [16], Kilbas et al.
2006 [7], Diethelm 2010 [4]). Fractional differential equations have been used in the study of
models of many phenomena in various fields of sciences, physics [6], fractional signal process-
ing techniques [20] and many others areas (see e.g. [18]), However, among the investigations for
fractional differential equations, the search for exact and numerical solutions of fractional dif-
ferential equations. Many methods have been proposed to obtain numerical and exact solutions
of fractional differential equations. For example, these methods include the laplace transform
method, the adomian decomposition method, the fourier transform method, the homotopy per-
turbation method, the differential transformation method and so on. In these investigations, it
should be noted that the determination of exact solutions is not an easy task, even inaccessible
for some nonlinear fractional differential equations. For more details see ([2]-[3]-[5]-[13]-[15]-
[21]).

This paper concerns the numerical solution for fractional differential equation of Caputo-
Hadamard type given by:{

CHDαa+u (t) + c(t)u(t) = f(t), 0 < a ≤ t ≤ b <∞,
u(a) = u0,

(1.1)

where CHDα denotes the Caputo-Hadamard fractional derivative operator of order α between
zero and one ([1]-[8]), defined by

CHDαa+u (t) =
1

Γ(1− α)

∫ t

a

(
log

t

s

)−α(
s
d

ds

)
u(s)

ds

s
.

The rest of this paper is organized as follows. In Section 2, we present some definitions and prop-
erties of the Caputo-Hadamard fractional integrals and fractional derivatives of various types. In
Section 3 finite difference methods (FDM) for the problem is presented. Using the discrete im-
plicit Euler formula we obtain an approximate sequence for (1.1). Convergence and stability for
the (FFDM) are discussed in 4. In Section 5, two numerical examples are presented to verify the
accuracy and efficiency of the proposed scheme. Section 6, conclusion close the paper.
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2 Preliminaries

In this section, we recall some concepts on fractional calculus and present additional properties
that will be used later.

Definition 2.1 (Hadamard fractional integral). (see [7])
The left-sided Hadamard fractional integral of order α > 0 of a function y : (a, b)→ R is given
by

Iαa+y (t) =
1

Γ (α)

∫ t

a

(
log

t

s

)α−1

y (s)
ds

s
, (2.1)

provided the right integral converges.

Similarly we can define right-sided integrals [7].

Definition 2.2 (Hadamard fractional derivative). (see [7]).
The left-sided Hadamard fractional derivative of order α ≥ 0 of a continuous function y :
(a, b)→ R is given by

Dαa+f (t) = δn In−αa+ =
1

Γ (n− α)

(
t
d

dt

)n ∫ t

a

(
log

t

s

)n−α−1

y (s)
ds

s
, (2.2)

provided the right integral converges,

where n = [α] + 1, [α] denotes the integer part of the real number α and δ = t
d

dt
.

A recent generalization introduced by Jarad and al in [8]. The authors define the generaliza-
tion of the Hadamard fractional derivatives and present properties of such derivatives. This new
generalization is now know as the Caputo-Hadamard fractional derivatives and is given by the
following definition:

Definition 2.3 (Caputo-Hadamard fractional derivative). (see [8]).
The left and right sided Hadamard fractional derivatives of order α are respectively defined by

CHDαa+y (t) = In−αa+ δny (t) =
1

Γ (n− α)

∫ t

a

(
log

t

s

)n−α−1

δny (s)
ds

s
. (2.3)

CHDαb−y (t) = I
n−α
b− δny (t) =

(−1)n

Γ (n− α)

∫ b

t

(
log

t

s

)n−α−1

δny (s)
ds

s
. (2.4)

Property 2.4. (see [8]). Let <(α) ≥ 0, and n = [<(α)] + 1 and <(β) > 0. Then

(i) CHDαa+
(

log
(
t

a

))β−1

=
Γ(β)

Γ(β − α)

(
log
(
t

a

))β−α−1

<(β) > n,

(ii) CHDαb−
(

log
(
b

t

))β−1

= Γ(β)
Γ(β−α)

(
log
(
b

t

))β−α−1

<(β) > n,

(iii) CHDαa+
(

log
(
t

a

))k
= 0, CHDαb−

(
log
(
b

t

))k
= 0, k = 0, 1, ..., n− 1,

(iv) CHDαa+1 = 0, CHDαb−1 = 0.

3 The Fractional Finite Difference Method (FFDM)

For the finite difference approximation, we equally sub-divide the intervals [a, T ] with ti =

a+ ih, i = 0, 1, . . . , N, where h =
T − a
N

is the step size.
Let u : [a, T ]→ R be a given function, un the numerical approximation of u at points tn and

fn = f(tn), our result is presented as follows.
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Theorem 3.1. Let u : [a, T ] → R such that u ∈ C2 ([a, T ] ,R) , α between zero and one, then
for N ∈ N, we have

CHDαa+u (tn) = CHDαa+un +O
(
h1−α) ,

where CHDαa+un is defined as follows:

CHDαa+un =
1

hΓ(2− α)

n∑
i=1

bi (u(ti)− u(ti−1)) , (3.1)

and

bi = ti

((
log

tn
ti−1

)1−α

−
(

log
tn
ti

)1−α
)
. (3.2)

Proof. For any N ∈ N and for each n ∈ {0, 1, . . . , N} , we have

CHDαa+u (tn) =
1

Γ(1− α)

∫ tn

a

(
log

tn
s

)−α(
s
d

ds

)
u(s)

ds

s

≈ 1
Γ(1− α)

n∑
i=1

∫ ti

ti−1

(
log

tn
s

)−α
ti

(
u(ti)− u(ti−1)

ti − ti−1

)
ds

s

=
1

Γ(1− α)

n∑
i=1

ti

(
u(ti)− u(ti−1)

h

)∫ ti

ti−1

(
log

tn
s

)−α
ds

s

=
1

hΓ(1− α)

n∑
i=1

ti (u(ti)− u(ti−1))

−
(

log
tn
s

)1−α

(1− α)


ti

ti−1

=
1

hΓ(2− α)

n∑
i=1

ti

[(
log

tn
ti−1

)1−α

−
(

log
tn
ti

)1−α
]
(u(ti)− u(ti−1))

=
1

hΓ(2− α)

n∑
i=1

bi (u(ti)− u(ti−1))

= CHDαa+un .

Set En =
∣∣CHDαa+u (tn)− CHDαa+un

∣∣ and Mi =max
∣∣u(i) (t)∣∣, i = 1, 2, hence, we can obtain

En ≤
1

Γ(1− α)

n∑
i=1

∫ ti

ti−1

(
log

tn
s

)−α ∣∣∣∣sduds − ti
(
u(ti)− u(ti−1)

ti − ti−1

)∣∣∣∣ dss .
It follows from Taylor’s theorem, one has for each i ∈ {1, . . . , N} , with s ∈ [ti−1, ti] and
η1 ∈ [ti−1, ti], η2 ∈ [ti−1, s]∣∣∣∣sduds − ti

(
u(ti)− u(ti−1)

ti − ti−1

)∣∣∣∣ = ∣∣∣∣sduds − ti
(
du (ti−1)

ds
− d(2)u (η1)

ds2
h

2!

)∣∣∣∣
≤
∣∣∣∣(sduds − ti du (ti−1)

ds

)∣∣∣∣+M2
tih

2

=

∣∣∣∣s(du (ti−1)

ds
− ti

du (ti−1)

ds
+
d(2)u (η1)

ds2 (s− ti−1)

)∣∣∣∣+M2
tih

2

≤M1 (ti − ti−1) +M2ti
3
2
h

≤
(
M1 +

3T
2
M2

)
h.
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Furthermore, for any 0 < α ≤ 1 and n ∈ {1, . . . , N} with i ≤ n, s ∈ [ti−1, ti]

0 ≤
(

log
tn
s

)−α
≤
(

log
ti
s

)−α
,

Therefore, we conclude

En ≤
1

Γ(1− α)

(
M1 +

3T
2
M2

)
h

n∑
i=1

∫ ti

ti−1

(
log

tn
s

)−α
ds

s

≤ 1
Γ(1− α)

(
M1 +

3T
2
M2

)
h

n∑
i=1

∫ ti

ti−1

(
log

ti
s

)−α
ds

s

≤ 1
Γ(2− α)

(
M1 +

3T
2
M2

)
h

n∑
i=1

(
log

ti
ti−1

)1−α

≤ 1
Γ(2− α)

(
M1 +

3T
2
M2

)
h

n∑
i=1

(
ti
ti−1

)1−α

≤ 1
Γ(2− α)

(
M1 +

3T
2
M2

)
h

N∑
i=1

h1−αT 1−α

≤ 1
Γ(2− α)

(
M1 +

3T
2
M2

)
T 1−αh1−α

N∑
i=1

h

≤ 1
Γ(2− α)

(
M1 +

3T
2
M2

)
(T − a)T 1−αh1−α,

which means
CHDαa+u (tn) = CHDαa+un + cαh

1−α.

2

Now, by using the fractional approximation (3.1), we obtain the following numerical approxi-
mation of the problem (1.1)

1
hΓ(2− α)

n∑
i=1

bi (ui − ui−1) + cnun = f(tn), (3.3)

the resulting equation can be written as(
bn + hΓ(2− α)cn

hΓ(2− α)

)
un = f(tn) +

1
hΓ(2− α)

bnun−1 −
1

hΓ(2− α)

n−1∑
i=1

bi (ui − ui−1) ,

witch gives

un =

(
bn
ωn

)
un−1 −

(
1
ωn

) n−1∑
i=1

bi (ui − ui−1) +

(
λ

ωn

)
f(tn), (3.4)

the above equation can be rewritten as the following form

un =
b1

ωn
u(t0) +

1
ωn

n−2∑
i=1

Giui +

(
bn − bn−1

ωn

)
un−1 +

λ

ωn
f(tn), (3.5)

with 
u(t0) = u(a),

ωn = (bn + λcn) ,

Gi = bi+1 − bi,
λ = hΓ(2− α).
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4 Stability and Convergence of Finite Difference Method (FFDM)

In this section, we discuss the stability and the convergence of the finite difference scheme (3.5)
for the fractional differential equation (1.1). For that, we need the following lemma

Lemma 4.1. For n = 1, 2, . . . , N , the coefficients bn in (3.2) satisfy

1. bn > 0, for n = 1, 2, . . . , N.

2. bn > bn−1, for i = 2, . . . , N.

Firstly, we consider the stability of the difference approximation (3.5). We suppose that un
and u(tn) are the approximate and the exact solution of (3.5) respectively for n = 1, 2, . . . , N.
Set εn = un − u(tn) then, from (3.5) we have

εn =
b1

ωn
ε0 +

1
ωn

n−2∑
i=1

Giε
i +

(
bn − bn−1

ωn

)
εn−1,

which can be written as

En =
b1

ωn
E0 +

1
ωn

n−2∑
i=1

GiE
i +

(
bn − bn−1

ωn

)
En−1.

Hence, the following result can be proved.

Lemma 4.2. The stability condition is equivalent to

‖En‖∞ ≤
∥∥E0∥∥

∞ , for n = 1, 2, 3, . . . , N.

Proof.We will use mathematical induction to get the above result. For n = 1 and because
b1

ω1
≤ 1, we have

∥∥E1∥∥
∞ =

∣∣ε1∣∣ ≤ b1

ω1

∥∥E0∥∥
∞

≤
∥∥E0∥∥

∞ .

Suppose that
∥∥Ei∥∥∞ ≤ ∥∥E0

∥∥
∞ for i = 1, 2, 3, . . . , n− 1, using lemma (4.1) we get

‖En‖∞ = |εn| ≤ b1

ωn

∥∥E0∥∥
∞ +

1
ωn

n−2∑
i=1

|Gi|
∥∥Ei∥∥∞ +

∣∣∣∣bn − bn−1

ωn

∣∣∣∣ ∥∥En−1∥∥
∞

≤ b1

ωn

∥∥E0∥∥
∞ +

1
ωn

n−2∑
i=1

|bi+1 − bi|
∥∥Ei∥∥∞ +

∣∣∣∣bn − bn−1

ωn

∣∣∣∣ ∥∥E0∥∥
∞

≤ b1

ωn

∥∥E0∥∥
∞ +

1
ωn

(bn−1 − b1)
∥∥E0∥∥

∞ +
bn − bn−1

ωn

∥∥E0∥∥
∞

≤ bn
ωn

∥∥E0∥∥
∞

≤
∥∥E0∥∥

∞ .

Hence, the proof is completed. 2
Secondly, we consider the convergence of the difference approximation (3.5). Define en =
u(tn)− un using e0 = 0, subtiting un = u(tn)− en into (3.5) leads to:

(u(tn)− en) =
(
bn − bn−1

ωn

)(
u(tn−1)− en−1)+ 1

ωn

n−2∑
i=1

Gi
(
u(ti)− ei

)
+

b1

ωn

(
u(t0)− e0)+ λ

ωn
fn,
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then, we get

en =u(tn)−
b1

ωn
u(t0)−

1
ωn

n−2∑
i=1

Giu(ti)−
(
bn − bn−1

ωn

)
u(tn−1)−

λ

ωn
f (tn)

+

(
bn − bn−1

ωn

)
en−1 +

1
ωn

n−2∑
i=1

Gie
i +

b1

ωn
e0

=

(
bn − bn−1

ωn

)
en−1 +

1
ωn

n−2∑
i=1

Gie
i +

b1

ωn
e0 +Rn,

where

Rn =

(
n∑
i=1

bi (u(ti)− u (ti−1)) + λc(tn)u (tn)− λf (tn)

)
= hΓ(2− α)

(
CHDαa+u (tn) + c(tn)u (tn)− f (tn) + cαh

1−α)
= cαΓ(2− α)h2−α.

Hence, there exist c′α such that
|Rn| ≤ c′αh2−α.

Consequently, using mathematical induction, we prove

‖en‖ ≤ Cαh2−α.

For n = 1, we get ∥∥e1∥∥ ≤ ∣∣R1∣∣
≤ c′αh2−α.

Suppose that
∥∥ei∥∥ ≤ c′αh2−α. for i = 1, 2, . . . , n− 1, using lemma (4.1), we have

‖en‖ ≤

∣∣∣∣∣ b1

ωn
e0 +

1
ωn

n−2∑
i=1

Gie
i +

(
bn − bn−1

ωn

)
en−1 +Rn

∣∣∣∣∣
≤ 1
ωn

n−2∑
i=1

(bi+1 − bi) ei +
(
bn − bn−1

ωn

) ∣∣en−1∣∣+ |Rn|
≤
(
bn−1 − b1

ωn

)
c′αh

2−α +

(
bn − bn−1

ωn

)
c′αh

2−α + c′αh
2−α

≤ 2c′αh
2−α

≤ Cαh2−α.

Hence, the following theorem is obtained and guarantees the stability and convergence of the
discretized scheme.

Theorem 4.3. The obtained approximation sequence un, for the discretized scheme (3.5) is sta-
ble and convergent, if Cαh2−α tends to zero.

5 Illustrative examples

In this section, we present two examples to illustrate the usefulness of our main results.

Example 5.1. Let t ∈ [1, 2] and α = 0.8 and

f(t) =
1

Γ (2− α)
(log t)1−α

+ t log
(
t

3

)
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Consider the following generalized Caputo–Hadamard fractional differential equation:
CHDαa+u (t) + tu(t) = f(t), 1 ≤ t ≤ 2,

u(1) = log
(

1
3

)
.

(5.1)

The exact solution of (5.1) is given by:

u(t) = log
(
t

3

)
.

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

t

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

u
(
t
)

Comparison of the numerical and the exact solution

 with h=0.02 and alpha = 0.8

Analytical solution

Numerical solution

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

t

-1.1

-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

u
(
t
)

Comparison of the numerical and the exact solution

 with h=0.002 and alpha = 0.8

Analytical solution

Numerical solution

Figure 1. Graphical comparison of the numerical and the exact solution.

t Exact
solution

Approx
solution

Error for
h = 0.02

1.0 -1.09861 -1.09861 0.00000e+00
1.1 -1.00330 -1.01907 1.57665e-02
1.2 -0.91629 -0.92935 1.30629e-02
1.3 -0.83625 -0.84738 1.11362e-02
1.4 -0.76214 -0.77186 9.71583e-03
1.5 -0.69315 -0.70180 8.65184e-03
1.6 -0.62861 -0.63646 7.84803e-03
1.7 -0.56798 -0.57522 7.23832e-03
1.8 -0.51083 -0.51760 6.77543e-03
1.9 -0.45676 -0.46318 6.42460e-03
2.0 -0.40547 -0.41162 6.15984e-03

t Exact
solution

Approx
solution

Error for
h = 0.002

1.0 -1.09861 -1.09861 0.00000e+00
1.1 -1.00330 -1.00486 1.56088e-03
1.2 -0.91629 -0.91759 1.29508e-03
1.3 -0.83625 -0.83735 1.10569e-03
1.4 -0.76214 -0.76311 9.66025e-04
1.5 -0.69315 -0.69401 8.61377e-04
1.6 -0.62861 -0.62939 7.82305e-04
1.7 -0.56798 -0.56871 7.22324e-04
1.8 -0.51083 -0.51150 6.76787e-04
1.9 -0.45676 -0.45740 6.42279e-04
2.0 -0.40547 -0.40608 6.16243e-04

Table 1. Comparison of the numerical and the exact solutions with h = 0.02, h =
0.002, and α = 0.8.

Example 5.2. Let t ∈ [1, 3] and α = 0.5 and

f(t) = (t+ 1) log

(√
2
t

)
− 1

Γ (2− α)
(log t)1−α

Consider the following generalized Caputo–Hadamard fractional differential equation:
CHDαa+u (t) + (t+ 1)u(t) = f(t), 1 ≤ t ≤ 3

u(1) = log
(√

2
)
.

, (5.2)
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The exact solution of this problem is given by:

u(t) = log

(√
2
t

)
.

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

t

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

u
(
t
)

Comparison of the numerical and the exact solution

 with h=0.02 and alpha = 0.5

Analytical solution

Numerical solution

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

t

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

u
(
t
)

Comparison of the numerical and the exact solution

 with h=0.002 and alpha = 0.5

Analytical solution

Numerical solution

Figure 2. Graphical comparison of the numerical and the exact solution.

t Exact
solution

Approx
solution

Error for
h = 0.02

1.0 0.34657 0.34657 0.00000e+00
1.2 0.16425 0.17993 1.56789e-02
1.4 0.01010 0.02393 1.38249e-02
1.6 -0.12343 -0.11080 1.26291e-02
1.8 -0.24121 -0.22943 1.17796e-02
2.0 -0.34657 -0.33544 1.11379e-02
2.2 -0.44188 -0.43125 1.06299e-02
2.4 -0.52890 -0.51868 1.02127e-02
2.6 -0.60894 -0.59908 9.85944e-03
2.8 -0.68305 -0.67349 9.55292e-03
3.0 -0.75204 -0.74276 9.28159e-03

t Exact
solution

Approx
solution

Error for
h = 0.002

1.0 0.34657 0.34657 0.00000e+00
1.2 0.16425 0.16581 1.55983e-03
1.4 0.01010 0.01148 1.37844e-03
1.6 -0.12343 -0.12217 1.26056e-03
1.8 -0.24121 -0.24004 1.17651e-03
2.0 -0.34657 -0.34546 1.11285e-03
2.2 -0.44188 -0.44082 1.06237e-03
2.4 -0.52890 -0.52787 1.02085e-03
2.6 -0.60894 -0.60795 9.85646e-04
2.8 -0.68305 -0.68209 9.55076e-04
3.0 -0.75204 -0.75111 9.27997e-04

Table 2. Comparison of the numerical and the exact solutions with h = 0.02, h =
0.002, and α = 0.5.

Acknowledgments

The authors wish to express their sincere thanks to the referees for their invaluable suggestions
which helped to improve the final manuscript.

6 Conclusion

In this paper we have developed a fractional finite difference Method (FFDM) for a generalized
fractional differential equation of Caputo-Hadamard type. Also, we have proved that the approx-
imate solution un is stable and convergent. The efficiency of (FFDM) has been discussed and
illustrated by solving two typical examples (Example 5.1 and Example 5.2). it is found that the
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approximate solutions produced by this method are in complete agreement with the correspond-
ing exact solutions (Figure 1, Figure 2). The results obtained show a good global approximation
and an improved convergence with an error Cα(h2−α) reaching to zero. (Table 1, Table 2).
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