ON AMPLY g-SUPPLEMENTED LATTICES

Celil Nebiyev and Hasan Hüseyin Ökten

Communicated by Nouressadat Touafek

MSC 2010 Classifications: 06C05, 06C15.

Keywords and phrases: Lattices, Essential Elements, Small Elements, g-Supplemented Lattices.

Abstract In this work, all lattices are complete modular lattices with the greatest element 1 and the smallest element 0. Let L be a lattice and $a \in L$. If for every $b \in L$ such that $a \lor b = 1$, a has a g-supplement x in L such that $x \le b$, then we say a has ample g-supplements in L. If every element of L has ample g-supplements in L, then L is called an amply g-supplemented lattice (See [7]). In this work, some properties of these lattices are investigated.

1 Introduction

Throughout this work all lattices are complete modular lattices with the smallest element 0 and the greatest element 1. Let L be a lattice, $a, b \in L$ and $a \leq b$. A sublattice $\{x \in L | a \leq x \leq b\}$ is called a *quotient* sublattice of L, denoted by b/a. Let L be a lattice and $a \in L$. If $a \wedge t \neq 0$ for every element $t \neq 0$ of L, then a is called an *essential* element of L and denoted by $a \trianglelefteq L$. $a \leq L$ if and only if t = 0 for every $t \in L$ with $a \wedge t = 0$. Let L be a lattice and $a \in L$. If t = 1for every element t of L with $a \lor t = 1$, then a is called a *small* (or *superfluous*) element of L and denoted by $a \ll L$. The meet of all maximal $(\neq 1)$ elements of L is called the *radical* of L and denoted by r(L). If L have no maximal $(\neq 1)$ elements, then we call r(L) = 1. Let L be a lattice and $a, b \in L$. If $a \lor b = 1$ and b is minimal with respect to this property, or equivalently, $a \lor b = 1$ and $a \land b \ll b/0$, then b is called a supplement of a in L. If every element of L has a supplement in L, then L is called a supplemented lattice. Let L be a lattice and $a \in L$. If for every $b \in L$ with $a \vee b = 1$, a has a supplement x in L with $x \leq b$, then we say a has ample supplements in L. If every element of L has ample supplements in L, then L is called an *amply* supplemented lattice. Let L be a lattice. If $b \ll L$ for every element b of L with $b \neq 1$, then L is called a *hollow* lattice. If L has the greatest element $(\neq 1)$, then L is called a *local* lattice. Let L be a lattice and $a \in L$. If t = 1 for every essential element t of L with $a \lor t = 1$, then a is called a generalized small (or briefly, g-small) element of L and denoted by $a \ll_q L$. Let L be a lattice and $a, b \in L$. b is called a g-supplement of a in L if $a \lor b = 1$ and t = b for every $t \trianglelefteq b/0$ with $a \lor t = 1$. b is a g-supplement of a in L if and if $a \lor b = 1$ and $a \land b \ll_q b/0$. L is said to be g-supplemented if every element of L has a g-supplement in L.

More details about (amply) supplemented lattices are in [1] and [3]. Supplemented and amply supplemented modules are studied in [2] and [9]. G-supplemented modules are studied in [4] and [5]. The definition of g-supplemented lattices and some properties of these lattices are in [8].

Lemma 1.1. Let L be a lattice and $a, b, c, d \in L$. Then the followings hold. (i) If $a \leq b$ and $b \ll_g L$, then $a \ll_g L$. (ii) If $a \ll_g b/0$, then $a \ll_g t/0$ for every $t \in L$ with $b \leq t$. (iii) If $a \ll_g L$, then $a \lor b \ll_g 1/b$. (iv) If $a \ll_g b/0$ and $c \ll_g d/0$, then $a \lor c \ll_g (b \lor d) /0$. Proof. See [8, Lemma 1].

2 Amply g-Supplemented Lattices

Definition 2.1. Let L be a lattice and $a \in L$. If for every $b \in L$ such that $a \lor b = 1$, a has a g-supplement x in L such that $x \leq b$, then we say a has ample g-supplements in L. If every

element of L has ample g-supplements in L, then L is called an amply g-supplemented lattice (See [7]).

Lemma 2.2. Every amply supplemented lattice is amply g-supplemented.

Proof. Let L be an amply supplemented lattice and $a \lor b = 1$ with $a, b \in L$. Since L is amply supplemented, a has a supplement x in L with $x \le b$. Since x is a supplement of a in L, $1 = a \lor x$ and $a \land x \ll x/0$. Since $a \land x \ll x/0$, $a \land x \ll_g x/0$. Hence x is a g-supplement of a in L. Thus L is amply g-supplemented.

Corollary 2.3. Let L be an amply supplemented lattice. Then 1/a is amply g-supplemented for every $a \in L$.

Proof. Since L is amply supplemented, 1/a is amply supplemented. Then by Lemma 2.2, 1/a is amply g-supplemented.

Corollary 2.4. *Let L be a finite lattice. Then L is amply g-supplemented.*

Proof. Since L is finite, L is amply supplemented. Then by Lemma 2.2, L is amply g-supplemented.

Proposition 2.5. Let L be an amply g-supplemented lattice. If every nonzero element of L is essential in L, then L is amply supplemented.

Proof. Clear from definitions.

Proposition 2.6. Let L be an amply g-supplemented lattice. If every nonzero element of L is essential in L, then 1/a is amply supplemented for every $a \in L$.

Proof. Since L is amply g-supplemented and every nonzero element of L is essential in L, by Proposition 2.5, L is amply supplemented. Since L is amply supplemented, 1/a is amply supplemented for every $a \in L$.

Proposition 2.7. Let L be an amply g-supplemented lattice. If every nonzero element of L is essential in L, then L is supplemented.

Proof. Since L is amply g-supplemented and every nonzero element of L is essential in L, by Proposition 2.5, L is amply supplemented. Since L is amply supplemented, L is supplemented too. \Box

Lemma 2.8. Let *M* be an amply supplemented R-module and *A* be the family of all submodules of *M*. Then *A* is an amply supplemented lattice by the operation \subset .

Proof. Clear from definitions.

Corollary 2.9. *Let* M *be an amply supplemented* R*-module and* A *be the family of all submodules of* M*. Then* A *is an amply* g*-supplemented lattice by the operation* \subset *.*

Proof. Since M is an amply supplemented R-module, by Lemma 2.8, A is an amply supplemented lattice. Then by Lemma 2.2, A is amply g-supplemented.

Corollary 2.10. Let M be a π -projective and supplemented R-module and A be the family of all submodules of M. Then A is an amply supplemented lattice by the operation \subset .

Proof. Since M is a π -projective and supplemented R-module, by [9, 41.15], M is an amply supplemented R-module. Then by Lemma 2.8, A is an amply supplemented lattice.

Corollary 2.11. Let M be a π -projective and supplemented R-module and A be the family of all submodules of M. Then A is an amply g-supplemented lattice by the operation \subset .

Proof. By Corollary 2.10, A is an amply supplemented lattice. Then by Lemma 2.2, A is amply g-supplemented. \Box

Lemma 2.12. Let M be an R-module and A be the family of all submodules of M. If every submodule of M lies above a direct summand in M, then A is an amply supplemented lattice by the operation \subset .

Proof. Since every submodule of M lies above a direct summand in M, by [9, 41.15], M is an amply supplemented R-module. Then by Lemma 2.8, A is an amply supplemented lattice. \Box

Corollary 2.13. Let M be an R-module and A be the family of all submodules of M. If every submodule of M lies above a direct summand in M, then A is an amply g-supplemented lattice by the operation \subset .

Proof. By Lemma 2.12, A is an amply supplemented lattice. Then by Lemma 2.2, A is amply g-supplemented. \Box

Lemma 2.14. Let M be a π -projective R-module and A be the family of all submodules of M. If every submodule of M is β^* equivalent to a supplement submodule in M, then A is an amply supplemented lattice by the operation \subset .

Proof. Since every submodule of M is β^* equivalent to a supplement submodule in M, by [2, Theorem 3.6], M is supplemented. Since M is π -projective and supplemented, by Corollary 2.10, A is an amply supplemented lattice by the operation \subset .

Corollary 2.15. Let M be a π -projective R-module and A be the family of all submodules of M. If every submodule of M is β^* equivalent to a supplement submodule in M, then A is an amply g-supplemented lattice by the operation \subset .

Proof. By Lemma 2.14, A is an amply supplemented lattice. Then by Lemma 2.2, A is amply g-supplemented. \Box

Corollary 2.16. Let M be a projective R-module and A be the family of all submodules of M. If every submodule of M is β^* equivalent to a supplement submodule in M, then A is an amply supplemented lattice by the operation \subset .

Proof. Clear from Lemma 2.14, since every projective module is π -projective.

Corollary 2.17. Let M be a projective R-module and A be the family of all submodules of M. If every submodule of M is β^* equivalent to a supplement submodule in M, then A is an amply g-supplemented lattice by the operation \subset .

Proof. By Corollary 2.16, A is an amply supplemented lattice. Then by Lemma 2.2, A is amply g-supplemented. \Box

Theorem 2.18. Let *L* be a lattice and $1 = a \lor b$ with $a, b \in L$. If *a* and *b* have ample *g*-supplements in *L*, then $a \land b$ has ample *g*-supplements in *L*.

Proof. Let $(a \land b) \lor t = 1$ with $t \in L$. Since $(a \land b) \lor t = 1$, $a = a \land 1 = a \land ((a \land b) \lor t) = (a \land b) \lor (a \land t)$ and $1 = a \lor b = (a \land b) \lor (a \land t) \lor b = b \lor (a \land t)$. Similarly we can see that $a \lor (b \land t) = 1$. Since $a \lor (b \land t) = 1$, by hypothesis, a has a g-supplement x in L with $x \le b \land t$. Here $1 = a \lor x$ and $a \land x \ll_g x/0$. Since $b \lor (a \land t) = 1$, by hypothesis, b has a g-supplement y in L with $y \le a \land t$. Here $1 = b \lor y$ and $b \land y \ll_g y/0$. Since $1 = b \lor y$ and $y \le a$, $a = a \land 1 = a \land (b \lor y) = (a \land b) \lor y$ and $1 = a \lor x = (a \land b) \lor x \lor y$. Since $a \land x \ll_g x/0$ and $b \land y \ll_g y/0$, by Lemma 1.1, $(a \land b) \land (x \lor y) \le a \land (x \lor (b \land y)) = (a \land x) \lor (b \land y) \ll_g (x \lor y)/0$. Hence $x \lor y$ is a g-supplement of $a \land b$ in L. Moreover, $x \lor y \le t$. Hence $a \land b$ has ample g-supplements in L.

Theorem 2.19. Let L be an amply g-supplemented lattice. Then 1/a is amply g-supplemented for every $a \in L$.

Proof. Let $a \in L$ and $1 = x \lor y$ with $x, y \in 1/a$. Since L is amply g-supplemented, x has a g-supplement c in L with $c \le y$. Since c is a g-supplement of x in L, by [8, Lemma 5], $a \lor c$ is a g-supplement of x in 1/a. Moreover, $a \lor c \le y$. Hence 1/a is amply g-supplemented, as desired.

References

- R. Alizade and E. Toksoy, Cofinitely Supplemented Modular Lattices, Arabian Journal for Science and Engineering, 36, 919–923 (2011).
- [2] G. F. Birkenmeier, F. T. Mutlu, C. Nebiyev, N. Sokmez and A. Tercan, Goldie*-Supplemented Modules, *Glasgow Mathematical Journal*, **52A**, 41–52 (2010).
- [3] G. Călugăreanu, *Lattice Concepts of Module Theory*, Kluwer Academic Publisher, Dordrecht, Boston, London, 2000.
- [4] B. Koşar, C. Nebiyev and A. Pekin, A Generalization of g-Supplemented Modules, *Miskolc Mathematical Notes*, 20 No.1, 345–352 (2019).
- [5] B. Koşar, C. Nebiyev and N. Sökmez, g-Supplemented Modules, *Ukrainian Mathematical Journal*, 67 No.6, 861–864 (2015).
- [6] C. Nebiyev and H. H. Ökten, β_* Relation on Lattices, *Miskolc Mathematical Notes*, **18 No.2**, 993–999 (2017).
- [7] C. Nebiyev and H. H. Ökten, Amply g-Supplemented Lattices, Presented in Karadeniz 1. Uluslararasu Multidisipliner Bilimsel Çalışmalar Kongresi, Giresun-Türkiye (2019).
- [8] H. H. Ökten, g-Supplemented Lattices, *Miskolc Mathematical Notes*, 22 No.1, 435–441 (2021).
- [9] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, Philadelphia, 1991.

Author information

Celil Nebiyev, Department of Mathematics, Ondokuz Mayıs University, Kurupelit-Atakum, Samsun, TURKEY.

E-mail: cnebiyev@omu.edu.tr

Hasan Hüseyin Ökten, Technical Sciences Vocational School, Amasya University, Amasya, TURKEY. E-mail: hokten@gmail.com

Received: June 29, 2021.

Accepted: September 16, 2021.