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Abstract: An introduction of a new subclass of bi-univalent functions involving Sakaguchi
type functions defined by(p, q)-fractional operators using Laguerre polynomials have been ob-
tained. Further, the bounds for initial coefficients |a2|, |a3| and Fekete Szegö inequality have
been estimated.

1 Introduction and preliminaries

A function of one or more complex variables which is complex- valued is said to be analytic
if it is differentiable at every point of the domain. Every normalized analytic function can be
expressed as a series of the form

f(z) = z +
∞∑
t=2

atz
t (1.1)

in the complex variable z, that is convergent in U = {z : z ∈ C, |z| < 1}. Let A consist of every
such function. A subclass S of A be defined by S = {f(z) ∈ A : f(z1) = f(z2)⇒ z1 = z2} (i.e.)
S consists of all univalent functions.

A function f(z) ∈ A is called bi-univalent in U, if f(z) ∈ S and its inverse function has an
analytic continuation to |w| < 1. Let σ = {f ∈ S : f is bi-univalent}.

Though Lewin [5] introduced the class of bi-univalent functions, the passion on the bounds
for the coefficients of these classes was upraised by Netanyahu, Clunie, Brannan and many oth-
ers [1, 6, 10, 11, 12]. This has been a field of fascination for young researchers till date.

If, for f1(z) and f2(z) analytic in U, there exists a Schwarz function w(z) with w(0) = 0 and
|w(z)| < 1 in U such that f1(z) = f2(w(z)), then we say that f1(z) ≺ f2(z).

A subclass consisting of functions satisfying the analytic criterion Re
(

zf′(z)
f(z)−f(−z)

)
> α was in-

troduced by Sakaguchi [9] and these functions were named after him as Sakaguchi type functions
[7, 8]. Sakaguchi type functions are Starlike with respect to symmetric points. Frasin [3] general-
ized Sakaguchi type class which had functions of the form (1.1) given by Re

(
(s1−s2)zf′(z)
f(s1z)−f(s2z)

)
> α,

0 ≤ α < 1, s1, s2 ∈ C with s1 6= s2, |s2| ≤ 1,∀z ∈ U.

Definition 1.1. For q, p ∈ (0, 1] and q < p, the (p, q) derivative operator Dp,q(f(z)) [2] is defined
as

Dp,q(f(z)) =
f(pz)− f(qz)

(p− q)(z)
, z 6= 0 (1.2)
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and Dp,q(f(0)) = f′(0) provided f′(0) exists. It can be easily deduced that

Dp,q(f(z)) = 1 +
∞∑
t=2

[t]p,qatz
t−1,

where [t]p,q = pt−qt
p−q , the (p, q) bracket of t. It is also called a twin- basic number. It is to be

noted that Dp,q(zt) = [t]p,qzt−1. Also for p = 1, the(p, q) derivative operator Dp,q reduces to
the q-derivative operator Dq.

The inverse series of (1.2) is given by

Dp,q(g(w)) =
g(pw)− g(qw)

(p− q)w

= 1− [2]p,qa2w + [3]p,q(2a2
2 − a3)w

2

−[4]p,q(5a3
2 − 5a2a3 + a4)w

3 + · · · .

Consider the differential equation [4]

xy′′ + (1 + δ − x)y′ + ty = 0, (1.3)

where δ + 1 > 0, δ ∈ R and t is non negative. The polynomial solution y(x) to this differential
equation is said to be the generalized Laguerre polynomial or associated Laguerre polynomial
and it is denoted by Lδt (x). It has several applications in Mathematical physics and quantum
mechanics. For example in integration of Helmholtz’s equation in paraboloidal coordinates and
also in theory of propagation of electromagnetic oscillations. These polynomials satisfy given
recurrence relations, such as

Lδt+1(x) =
2t+ 1 + δ − x

t+ 1
Lδt (x)−

t+ δ

t+ 1
Lδt−1(x) (t ≥ 1) (1.4)

with the initial values

Lδ0(x) = 1,Lδ1(x) = 1 + δ − x,Lδ2(x) =
x2

2
− (δ + 2)x+

(δ + 1)(δ + 2)
2

(1.5)

We obtain this equation from (1.4)

Lδ3(x) =
−x3

6
+

(δ + 3)
2

x2 − (δ + 2)(δ + 3)
2

x+
(δ + 1)(δ + 2)(δ + 3)

6
,

and so on.
We can see that by putting δ = 0, in generalized Laguerre polynomial we get Laguerre polyno-
mials such as

L0
t(x) = Lt(x).

Lemma 1.2. Let F(x, z) be the generating function of the generalized Laguerre polynomial

F(x, z) =
∞∑
t=0

Lδt (x)z
t =

e
− xz

(1−z)

(1− z)δ+1 , (x ∈ R, z ∈ U). (1.6)

2 Main results

Definition 2.1. A function f ∈ σ is said to be in the class Spqσ (x, δ, s1, s2), if the following subor-
dination relations hold

(s1 − s2)zDp,q(f(z))

f(s1z)− f(s2z)
≺ F(x, z) (2.1)

and
(s1 − s2)wDp,q(g(w))

g(s1w)− g(s2w)
≺ F(x, w) (2.2)

where g(w) = f−1(w), s1, s2 ∈ C with s1 6= s2, |s2| ≤ 1.
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Theorem 2.2. Let f given by (1.1) be in the class Spqσ (x, δ, s1, s2). Then

|a2| ≤
|1+δ−x|

√
|1+δ−x|√∣∣(1+δ−x)2A−

(
x2

2 −(δ+2)x+
(δ+1)(δ+2)

2

)
B2
∣∣ (2.3)

and

|a3| ≤
∣∣∣1 + δ − x

C

∣∣∣+ (1 + δ − x)2

B2 (2.4)

where
A = [3]pq − [2]pq(s1 + s2) + s1s2,
B = [2]pq − s1 − s2,
C = [3]pq − s21 − s22 − s1s2.

Proof. Let f ∈ Spqσ (x, δ, s1, s2). Then, there exist analytic functions φ, ψ : U → U given by
equation (2.1) and (2.2) such that

(s1 − s2)zDp,q(f(z))

f(s1z)− f(s2z)
= F(x, φ(z)) (2.5)

and
(s1 − s2)wDp,q(g(w))

g(s1w)− g(s2w)
= F(x, ψ(w)) (2.6)

Define the functions φ(z) and ψ(w) as

φ(z) = d1z + d2z
2 + d3z

3 + ..., (2.7)

and
ψ(w) = e1w + e2w

2 + e3w
3 + ... (2.8)

which are analytic in U with φ(0)=0 , ψ(0) = 0 and |φ(z)| < 1, |ψ(w)| < 1, (z, w ∈ U).
We know that, if

|φ(z)| = |d1z + d2z
2 + d3z

3 + · · · | < 1 (z ∈ U)

and
|ψ(w)| = |e1w + e2w

2 + e3w
3 + · · · | < 1 (w ∈ U)

then
|di| ≤ 1, |ei| ≤ 1 (i = 1, 2, 3, ...). (2.9)

Since

(s1 − s2)zDp,q(f(z))

f(s1z)− f(s2z)
=1 + ([2]pq − s1 − s2) a2z +

{(
[3]pq − s1

2 − s2
2 − s1s2

)
a3

−
(
[2]pqs1 + [2]pqs2 − s1

2 − s2
2 − 2s1s2

)
a2

2

}
× z2 + · · ·

(2.10)

(s1 − s2)wDp,q(g(w))

g(s1w)− g(s2w)
=1− ([2]pq − s1 − s2) a2w − {

(
[3]pq − s1

2 − s2
2 − s1s2

)
a3

−
(

2[3]pq − s1
2 − s2

2 − [2]pqs1 − [2]pqs2
)
a2

2} × w2 + · · ·
(2.11)

(s1 − s2)zDp,q(f(z))

f(s1z)− f(s2z)
= [Lδ1 (x)d1]z + [Lδ1 (x)d2 + Lδ2 (x)d

2
1]z

2 + · · · (2.12)

(s1 − s2)wDp,q(g(w))

g(s1w)− g(s2w)
= [Lδ1 (x)e1]w + [Lδ1 (x)e2 + Lδ2 (x)e

2
1]w

2 + · · · (2.13)

Further from equations (2.10) to (2.13), we get following equations

[[2]pq − s1 − s2] a2 = Lδ1(x)d1 (2.14)
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[
[3]pq − s1

2 − s2
2 − s1s2

]
a3−

[
[2]pqs1 + [2]pqs2 − s1

2 − s2
2 − 2s1s2

]
a2

2

= Lδ1(x)d2 + Lδ2(x)d
2
1

(2.15)

−[[2]pq − s1 − s2]a2 = Lδ1(x)e1 (2.16)

[
2[3]pq − s1

2 − s2
2 − [2]pqs1 − [2]pqs2

]
a2

2 −
[
[3]pq − s1

2 − s2
2 − s1s2

]
a3

= Lδ1(x)e2 + Lδ2(x)e
2
1

(2.17)

Adding (2.14) and (2.16), we get the following equation

d1 = −e1 (2.18)

Further squaring and adding (2.14) and (2.16), we have

2
[
([2]pq − s1 − s2)

2] a2
2 = [Lδ1(x)]

2[d2
1 + e2

1] (2.19)

Then the addition of (2.15) and (2.17), gives

2[[3]pq − [2]pq(s1 + s2) + s1s2]a
2
2 = Lδ1(x)(d2 + e2) + Lδ2(x)(d

2
1 + e2

1) (2.20)

From the above two equations, we obtain[
2[[3]pq − [2]pq(s1 + s2) + s1s2][L

δ
1(x)]

2 − 2([2]pq − s1 − s2)
2Lδ2(x)

]
a2

2 = [Lδ1(x)]
3(d2 + e2)

(2.21)
A small computation leads to

|a2| ≤
|1+δ−x|

√
|1+δ−x|√∣∣(1+δ−x)2A−

(
x2
2 −(δ+2)x+

(δ+1)(δ+2)
2

)
B2
∣∣

Next, in order to obtain the bound for |a3|, subtracting (2.17) from (2.15) we have

2[[3]pq − s21 − s22 − s1s2][a3 − a2
2] = Lδ1 (x)(d2 − e2) + Lδ2 (x)(d

2
1 − e2

1) (2.22)

Using the equations (2.18), (2.19) in (2.22), we get

a3 =
Lδ1 (x)(d2−e2)

2C + (Lδ1 (x))
2(d2

1+e
2
1)

2B2 (2.23)

Applying equation (1.5) in the above equation and taking modulus, we have the result

|a3| ≤
∣∣∣1 + δ − x

C

∣∣∣+ (1 + δ − x)2

B2

Corollary 2.3. Let f given by (1.1) be in the class Sσ(x, δ, s1, s2). Then

|a2| ≤
|1+δ−x|

√
|1+δ−x|√∣∣(1+δ−x)2A1−

(
x2

2 −(δ+2)x+
(δ+1)(δ+2)

2

)
B1

2
∣∣

and

|a3| ≤
∣∣∣1 + δ − x

C1

∣∣∣+ (1 + δ − x)2

B1
2

where
A1 = 3− 2(s1 + s2) + s1s2,
B1 = 2− s1 − s2,
C1 = 3− s21 − s22 − s1s2.
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Corollary 2.4. Let f given by (1.1) be in the class Sσ(x, δ, 1,−1). Then

|a2| ≤
|1+δ−x|

√
|1+δ−x|√∣∣2(1+δ−x)2−4

(
x2

2 −(δ+2)x+
(δ+1)(δ+2)

2

)∣∣
and

|a3| ≤
|1 + δ − x|

2
+

(1 + δ − x)2

4

Corollary 2.5. Let f given by (1.1) be in the class Sσ(x, δ, 1, 0). Then

|a2| ≤
|1+δ−x|

√
|1+δ−x|√∣∣(1+δ−x)2−

(
x2

2 −(δ+2)x+
(δ+1)(δ+2)

2

)∣∣
and

|a3| ≤
|1 + δ − x|

2
+ (1 + δ − x)2

2.1 Fekete-Szegö Problem for the Function Class Spq
σ (x, δ, s1, s2)

In this section, for functions belonging to the class Spqσ (x, δ, s1, s2), we have estimated the bounds
for the linear functional.

Theorem 2.6. Let f ∈ σ given by (1.1) be in the class Spqσ (x, δ, s1, s2). Then

|a3 − ρa2
2| ≤


|1+δ−x|
|C| , if 0 ≤ |ρ− 1| ≤

∣∣N
C

∣∣
|1+δ−x|3|1−ρ|∣∣(1+δ−x)2A−
(

x2
2 −(δ+2)x+

(δ+1)(δ+2)
2

)
B2
∣∣ if |ρ− 1| ≥

∣∣N
C

∣∣
where
A = [3]pq − [2]pq(s1 + s2) + s1s2,
B = [2]pq − s1 − s2,
C = [3]pq − s21 − s22 − s1s2,

N = A−

(
x2

2 −(δ+2)x+
(δ+1)(δ+2)

2

)
B2

(1+δ−x)2 .

Proof. From (2.22), for ρ ∈ R, we have

a3 − ρa2
2 = (1− ρ)a2

2 +
(d2−e2)L

δ
1 (x)

2([3]pq−s21−s22−s1s2)
(2.24)

By using (2.21) in (2.24), we have

a3 − ρa2
2 = (1− ρ)

[
(d2+e2)(Lδ1 (x))

3

2(Lδ1 (x))
2(A)−2Lδ2 (x)B

2

]
+ (d2−e2)L

δ
1 (x)

2([3]pq−s21−s22−s1s2)

= (1 + δ − x)[(Ξ(ρ, x) + 1
2C)d2 + (Ξ(ρ, x)− 1

2C)e2]

where
Ξ(ρ, x) = (1−ρ)(1+δ−x)2

2(1+δ−x)2A−2
(
x2

2 −(δ+2)x+
(δ+1)(δ+2)

2

)
B2

Taking modulus, we have

|a3 − ρa2
2| ≤


|1+δ−x|
|C| , 0 ≤ |Ξ(ρ, x)| ≤ 1

2|C|

2|1 + δ − x||Ξ(ρ, x)| |Ξ(ρ, x)| ≥ 1
2|C|
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Corollary 2.7. Let f given by (1.1) be in the class Sσ(x, δ, s1, s2). Then

|a3 − ρa2
2| ≤


|1+δ−x|
|C1| , if 0 ≤ |ρ− 1| ≤

∣∣N1

C1

∣∣
|1+δ−x|3|1−ρ|∣∣(1+δ−x)2A1−
(

x2
2 −(δ+2)x+

(δ+1)(δ+2)
2

)
B1

2
∣∣ if |ρ− 1| ≥

∣∣N1

C1

∣∣ (2.25)

where
A1 = 3− 2(s1 + s2) + s1s2,
B1 = 2− s1 − s2,
C1 = 3− s21 − s22 − s1s2,

N1 = A1 −

(
x2

2 −(δ+2)x+
(δ+1)(δ+2)

2

)
B1

2

(1+δ−x)2 .

Corollary 2.8. Let f given by (1.1) be in the class Sσ(x, δ, 1,−1). Then

|a3 − ρa2
2| ≤



|1+δ−x|
2 ,

if 0 ≤ |ρ− 1| ≤
∣∣∣1− 2

(
x2

2 −(δ+2)x+
(δ+1)(δ+2)

2

)
(1+δ−x)2

∣∣
|1+δ−x|3|1−ρ|∣∣2(1+δ−x)2−4
(

x2
2 −(δ+2)x+

(δ+1)(δ+2)
2

)∣∣
if |ρ− 1| ≥

∣∣∣1− 2
(
x2

2 −(δ+2)x+
(δ+1)(δ+2)

2

)
(1+δ−x)2

∣∣
(2.26)

Corollary 2.9. Let f given by (1.1) be in the class Sσ(x, δ, 1, 0). Then

|a3 − ρa2
2| ≤



|1+δ−x|
2 ,

if 0 ≤ |ρ− 1| ≤ 1
2

∣∣∣1−
(
x2

2 −(δ+2)x+
(δ+1)(δ+2)

2

)
(1+δ−x)2

∣∣
|1+δ−x|3|1−ρ|∣∣(1+δ−x)2−
(

x2
2 −(δ+2)x+

(δ+1)(δ+2)
2

)∣∣
if |ρ− 1| ≥ 1

2

∣∣∣1−
(
x2

2 −(δ+2)x+
(δ+1)(δ+2)

2

)
(1+δ−x)2

∣∣
(2.27)

3 Conclusion

We have calculated the bounds for |a2|, |a3| and Fekete-Szegö inequality for functions of Sakaguchi-
Type function defined by (p, q)-fractional operator using Laguerre polynomials defined by us in
this paper.
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