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Abstract The aim of this paper is to work out the solvability of a class of Caputo time frac-
tional problems with mixed boundary conditions (Neumann - integral). We apply the “energy
inequality” method: an a priori estimate of the solution is established, then we prove the exis-
tence which is based on the range density of the operator associated with the problem.

1 Introduction

In the rectangle Q defined by @ = (0, 1) x (0,7"), we consider the fractional equation
o m O™ omv\
ﬁv—aot’l]_‘_(_l) agjim (a(l',t) Wn) —h(.’,C,t) (11)

where m > 1 and 0§, denotes the Caputo time fractional derivative of order 0 < oo < 1 and
lower bound 0, a is a continuous function satisfying 0 < ¢y < a < ¢, subject to the initial

condition
w=v(z,0)=0¢(x), ze(0,1), (1.2)

the boundary integral conditions

fol v(z,t)dr =0,

te (0,T) (1.3)
fol zv (z,t) dz = 0,
and the Neumann conditions
8k
te(0,7),k=1,m—1. (1.4)
ak

wv(l,t):wk(t)

Recently, we studied this problem with “purely integral conditions” in [4], as well as other
authors (cited in the same reference) did for different values of m, or in the integer order case.
Note that many instances of problems described by the equation (1.1) have been investigated
(see [5], [6] and [8]), but only few of them were in the fractional order case. Here, we apply the
“energy inequality” method which is a traditional functional analysis method to show its well
posedness. The proposed problem contains the non-homogeneous Neumann conditions (1.4), so
to work out the solvability of the problem

« First, we start by the homogenization of our problem.

» Secondly, we present some preliminaries: definitions, functional spaces and other key tools
in Section 3.

« In Section 4, we establish an a priori estimate of the problem’s strong solution to ascertain
its uniqueness and data dependance in case of existence.
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- Finally, we prove the existence in Section 5 relying on the density of the generated opera-
tor’s range, and we finish by giving an example, where m=2, to illustrate the usefulness of
the obtained results.

2 Problem setting

We show that we can get an equivalent problem to ours (1.1)-(1.4), with homogeneous Neumann
conditions. To do so, we consider {py, ..., Pm—1,q1,---sgm—1} @ set of 2m — 2 polynomials of
degree 2m satisfying

pi () de = | zpy (xz)dz =0, E=1,m—1,

O\H
o —__

1 1

/ qx (z) dz
0

andfor1 <k,j<m-1

/qu.(z)dzzo, k=1,m—1,
0

6k

kP (0) = 6k.;
(1) =0
L) =b,
%Qj (0)=0

So by setting u = v — w where

m—1

wet) =3 py (0)g 0+ S a5 (@) s (1)
j=1 j=1

the problem (1.1)-(1.4) is equivalent to the following

o m O™ omu\
subject to the initial condition
tu=u(z,0) = ¢ (z),z<(0,1), 2.2)
the integral conditions
fol u(z,t)dz =0,
, (2.3)
fol azu(x,t)de =0,
and the homogeneous Newman conditions
ak
E=1,m—1, (2.4)
8k

where

ox™ @ ox™

m 87” a"YLw
f=h— - (-1) ( )
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and
©=¢—lw.

In the next section, we give some necessary definitions and tools.

3 Preliminaries

« The fractional derivative g, is defined for a differentiable function v by

o () — Tl gy v (1)
ogv (t) = 1" v(t)_F(l—a)/( ~dT,

Cdp 1 d [u(r)—(0)
_%IZ v(t)_lwch/wdT t >0,

where I is the gamma function and /¢ is the Riemann-Liouville integral operator defined for
0<a<lby

for more about fractional calculus see [7].
+ L*(0,T): the space of measurable square-integrable functions on (0, 7).

« BY(0,1) = {u/S*ue L?(0,1)} for k > 1, BY (0,1) := L*(0,1) where S%u = u and for
k>1

T

1 u (&,
Sfu(m,t): (k—l)!/(x ji)tl)kdf

0
The scalar product in B} (0, 1) is defined by

1
_ ok, ok
(“’U)B;‘(O,l) —/\swu\rmvdx
0

and the associated norm is

||UHB§(0,1) = ’|§§“HL2(0,1)'
Corollary 3.1. For k € N we have
2 1 2
lull 3 0,1) < 55 lullz20,1) - G.D
Proof. See corollary of lemma 1 in [2] for b = 1. O

Lemma 3.2. for any absolutely continuous function v (t) on the interval (0,T), we have the
inequality
20 (t) Ogv (t) > 95, (v (1))*,0 < a < 1.

Proof. See lemma 1 in [1]. O

Lemma 3.3. Let a non-negative absolutely continuous function y (t) satisfy the inequality

NByt)<cayt)+ea), O0<a<l,
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for almost all t in [0,T], where ¢ > 0 and c, (t) is an integrable non-negative function on
[0,T).Then

y(t) <y(0)Ey (e1t®) + ' () Eq o (c1t%) I% (t) .
where

o

OF ak—i—

r( ozk—i-ﬁ

OME%

are the Mittag-leffler functions.
Proof. See Lemma 2 in [1]. O

« Cauchy inequality with :
2AB < eA® + 232 (3.2)

where A and B are real numbers.

4 A priori estimate and consequences

To establish the existence and uniqueness of the solution of problem (2.1)-(2.4) we write it in an
equivalent operator form so that it can be viewed as the solution of this operator equation

Lu=F

where = (L, ¢) acts from B to H with domain of definition D,, (-¢) of functions u € L? (0, 1)
satisfying (2.3), (2.4) and

k
%’;w% e I2(0,1),k =T,m.

B is a Banach space of functions « endowed by the finite norm

2 a2 2
lullp = OE?ETII “lullo) + lullzag)

and H is the Hilbert space consisting of vector-valued functions F = (f, ) with finite norm
2 2 2
171 = 17 0.0 00 + Il 0
Theorem 4.1. There exists a positive constant c not depending on u such that
[ull g < el|Zully 4.1)

foralluin D, (Z).
Proof. We take the scalar product in space BJ" (0,1) of equation (1.1) by multiplier Mu =

o (1.,
281‘7” <a(\\5‘m 'LL>

or

(Lu, MU)Bzm(o,l) = (/, M“)Bzm (0,1) >

that is

1 1 1
1 m [ O™
2/8002 (STu) ggfudx +2(-1) / —uS;”uda: =2 / ST f—STud. 4.2)
0 0 0
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For the first term of left hand side of equation (4.2), lemma 3.2 using the positive boundness
of the function a implies the existance of a positive constant ¢, such that

1 1

1
2 / a8, (S™u) =S udz > ¢ / a8, (S7u)” da, (4.3)
a
0 0

for the second term of the left hand side, integration by parts m — 1 times using Neumann
conditions (2.4) gives
1
0

and one last integration using integral conditions (2.3) leads to

Q’\
||
I
)
o _
&
8
IS
ISH
&

1

1
m/ g Sa ude =2 / u’dz. (4.4)
0

0

For the right hand side of equation (4.2) we use the Cauchy inequality with € = ¢,, that is
1 1
Z/QZLfIS;"uda: < 02/ ST u) dx + 1 (S;”f)z dz. 4.5)
0 ¢ 0 @ 0
In light of (4.3)-(4.5), we deduce from the inequality (4.2) that
1 1 1 1
/ a5, (™) da + C% / wlds < / (S7u)? da + clz / (S7 ) d. (4.6)
2
0 0 0 0
Now, in the above inequality, we drop the positive term
1
3 / ulde
&)
0

and substitute ¢ by 7, then we integrate with respect to 7 from 0 to ¢ to obtain

1 1 1

//8% 2 dedr < // dxdT—l— // dxdT,
A

0 0 0

from which lemma 3.3 implies

Taking into consideration

a+1 m 2 £ 2
et /(Sz [) dx < T+ ||f||L2(Bzm(0,1),(O,T))
0

and

t 1
o (owm. N2 a2 ¢l 2
[ [ o8 @z dadr = 1= b0y~ =y Ieleon
0 0
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one can get, from the inequality (4.6), using corollary 3.1
) t
l—a 2 2
12l + = [l dr
0

2 2
<7 (”fHLZ(Bzm(O,l),(O,T)) + H@HH(O,[))

where

o I'(Q)Ep o (T*) T N 1 T
7= ar (1 + ) 22 (2—a) ]

since the right hand side of the above inequality does not depend on ¢, we can take the upper
bound for both sides with respect to ¢ over [0, 7] and the a priori estimate 4.1 follows where

1

gl

{13
min< 1, —
153

Proposition 4.2. The operator £ from B to H has a closure £ .

Cc =

Proof. See proposition 10 in [6]. O

Consequently the a priori estimate (4.1) can be extended to cover strong solutions by passing
to the limit.

Corollary 4.3. There exists a positive constant ¢ such that
lull g < c HyuHH 4.7

foralluin D, (?) .

The uniqueness and continuous dependence of the solution on the problem data is now guar-
anteed in case of existence.

5 Existence of the solution

We aim to show the range density of the operator .# in the Hilbert space H, thatis R (.¥) = H.
Recall that Z= (L, ¢), we use the fact that the density of a subset in a Hilbert space means that
its orthogonal complement is reduced to the singleton {0}. We start by the case u belongs to
Dy (Z) (i.e. fu = 0), after which follows the density in the general case u € D,, (.Z), taking
into consideration the fact that the operator ¢ is everywhere dense.

Theorem 5.1. Assume for all u in Dy (L)
(ﬁuvw)Lz(Bzm(O,l),(O,T)) =0, CRY

then v vanishes a.e in L* (B3 (0,1), (0,7)).

Proof. First consider the scalar product (Lu, ) By (0,1)> Assume a function 6 (z,t) € L*(0,1)
k

0
satisfies boundary conditions (2.3)-(2.4) and %6, % € L? (0,1),k = 1, m. Then we can set
x

t

M@n—/bwymf

0
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so we have 5
My
Lu, ) gmg 1y = | S0 (Opu -)"a—,37
(€ ion = (37 @) + ("0 Te)
1 t 1 t

m
= /8& /%;”9 (z,7)dr | STdx + (1) / a%;”w/ %9 (z,7)drdz (5.2)
X
0 0 0 0
We now express ¢ in terms of 0:

¢
P (z,t) = aax—mm ((11/%;”9 (z,7) dT)

0

to get from equation (5.2)

| t t
(L2, %) oo,y :/iag; (/ ™0 (,7) dT) (/ 370 (z,7) dT) dx

0 0 0

1t t
_1)m//%;"9 (x,T)dT/aame(x,T)dex. 5.3)
x
0 0 0

From lemma 3.2 we have

1 ¢ ¢ 1 ¢ 2
/153; (/ 370 (2, 7) dT) (/ S70 (2, 7) dT) dr > czz/agt (/ 370 (2, 7) dT) d,
a
0

0 0 0 0

and using boundary conditions (1.3), (2.4) one can get

1/t 2
//om@deT/aanTde :/(/G(I,T)dT) dz.
0 0

Hence, in light of the last two relations, the substitution of ¢ by 7 in equation (5.3) then
integrating with respect to 7 over [0, ¢] yields

t 2 t 2
2

?Il_o‘ /%;”9 (z,7)dr + /9(1‘,7’) dr <0,

0 L2(0,1) 0 LX(Q)
by taking the upper bound ovet [0, T'] for both sides of the above inequality yields
t 2 ¢ 2

v | sup ' /%;”9 (z,7)dr + /9 (x,7)dr <0,
0<t<T
0 L2(0,1) 0 L2(Q)

where v = min { } Consequently, § =0 and ¢y = 0 a.ein L? (B3 (0,1),(0,7)). O

2

Now consider the general case. Let % denotes the operator (Lo, 0), If we use the fact that
L — % = (L — Ly, ¢) maps continuously B into H, we conclude that R (.£) is dense in H by
means of the method of continuation along the parameter (see [3]).

Example 5.2 (m=2). Starting with the homogenization of the problem (1.1)-(1.4), we take

19 7 1 1
2 15 _ 4 2, L
o galr) = 6”5 T3 T 10

7 3
— 4 377
p(x)=2a" — g% — ¢
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and
w(z,t) =p(z)g(t) +q(z)(t)

to ensure that the problem is equivalent to the homogeneous one (2.1)-(2.4).
Now, let

by =28801In2 — 2020, b, = 3066 — 43201n2, b3 = 8161In2 — 469,

1
_ 3 2 _ .
w(z) =z’ + baa” + by 96(x+x+1),
:v:

a(z,t) =1t — 3

+1,
o(x) =2* — 22 + 2% — %
and

(=73 + 324t + 5tby + 9tby ) =
+ (=216t — 164 + 45tb; + 10tb,) 22
+ (=120t — 110 + 90tb; + 10tby) *

2
fant) = =28 4o — | 4 (=60t + 125+ 90thy + 5tby) z*
r (2 - Oé) (1’ + 1) 5
+ (259 — 12t + 45ty + thy) @
+ (162 + 9tb1) 1’6

+3627 + 1044¢ + 1152¢% + tb, — 11

Obviously, the function a is positively bounded, f is in L* (B3 (0,1),(0,7')) for any positive
value of T'. The reader can check by an elementary calculation that the function v given by

u(z,t) = ¢ () + tw(z)

satisfies the equation (2.1) and fulfills both initial and boundary conditions :

« Initial condition (2.2)
U(ZL’,O) = SO(I)’

« Integral conditions (2.3) and Neumann conditions (2.4).

Thus, it is the desired unique solution.

6 Conclusion

In this paper, we proved the existence and uniqueness of the strong solution of a class of Caputo
time fractional problems with mixed boundary conditions of type Integral-Neumann. We used
techniques related to the homogenization of the problem suggested, and worked out the solvabil-
ity relying on the “energy inequality” method. Thus, this contribution will develop the functional
anlysis methods, whether in integer order case or fractional order case. In addition of the example
given above, which we are working on its numerical solution using the Finite-Difference method,
we are looking for the solution of the same class of problems using the Riemann-Liouville frac-
tional derivative and/or with other types of nonlocal boundary conditions.
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