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Abstract In this paper we define and describe some models to price European and American
options. We will present the both cases: the constant volatility model [6] and the stochastic
volatility model [12]. In the first, using the fractional Heston model we generate a closed-form
solution for the European option. The analytical solution to the fractional linear complement
problem of the evaluation of American options generated by the fractional Black and Scholes
model is then provided. We attempt to solve the fractional linear complementarity problem as it
relates to the evaluation of American put options generated by the fractional Heston stochastic
volatility model in the final section of this work. A numerical investigation is carried out to
validate the theoretical results using the Adomian decomposition.. The results of this paper are
published in [17], [18] and [19].

1 Introduction and Preliminaries

Pricing options is one of the most popular problems in mathematical financial literature. Euro-
pean and American options are extremely popular in global financial markets. Their evaluation
is a challenge. The second kind allow more flexibility since it can be exercised at any time, be-
tween the current time and maturity time. Over the last few decades, several papers investigated
the problem of pricing options generated by different models using many methods for instance
[3], [9], [12], [13], [15],[16], [22] and [25]. The free boundary condition problem in mathemat-
ics was related to the early exercise feature inherent in American options see [5], [10], and [14] ,
which was more complicated. For this reason, American options have no closed form solutions.
The most famous one is the Black and Scholes model [6], which is based on the idea that the
underlying asset’s stock price is log-normally distributed conditional on the current stock price
and has a constant volatility. As compared to the case of the Black and Scholes model, where the
volatility is constant, the Heston model [12] is more important since the volatility is stochastic,
as the dynamics of the volatility is fundamental to elaborate strategies for hedging and for arbi-
trage, a model based on a constant volatility cannot explain the reality of the financial markets.
So, pricing option under stochastic volatility model is then more important and required.

The fractional calculus is invested in several fields [2], [4], [7],[21], [23] and [24]. Recently,
it has been integrated in the Mathematical finance field [26], [27], and especially designed to
resolve the pricing option problem. For instance [11], [20], [17] and [28] which are devoted for
the evaluation of the European option. Refer back to [16], [18] and [29] for the American option.

Following are some definitions related to fractional calculus, which serve as the foundation
for this work. We can refer the Podlubny’s book [23] as reference.

Definition 1.1. The fractional integral of order alpha > 0 of the Riemann-Liouville equation is
defined as

Jαt0
y(t) =

1
Γ(α)

∫ t

t0

(t− τ)α−1y(τ)dτ,
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where Γ(α) =

∫ +∞

0
e−ttα−1dt.

Definition 1.2. The fractional derivative of Caputo is defined as

Dα
t0,t
x(t) =

1
Γ(m− α)

∫ t

t0

(t− τ)m−α−1 d
m

dτm
y(τ)dτ, (m− 1 < α < m).

When 0 < α < 1, then the Caputo fractional derivative of order α of g reduces to

Dα
t0,t
y(t) =

1
Γ(1− α)

∫ t

t0

(t− τ)−α d

dτ
y(τ)dτ. (1.1)

The Riemann-Liouville operator and the Caputo fractional differential operator have the fol-
lowing relationship.:

Jαt0
Dα
t0,t
g(t) = D−αt0,t

Dα
t0,t
g(t) = g(t)−

m−1∑
k=0

tk

k!
gk(0), m− 1 < α ≤ m. (1.2)

In addition to the exponential function, which is used to solve integer-order differential sys-
tems, the Mittag-Leffler function is used to solve some fractional-order differential systems.

Definition 1.3. With two parameters, the Mittag-Leffler function is defined as

Eα,β(y) =
+∞∑
k=0

yk

Γ(kα+ β)
,

where α > 0, β > 0, z ∈ C.
When β = 1, we have Eα(y) = Eα,1(y), furthermore, E1,1(y) = ey.

2 The Fractional Black and Scholes Model

2.1 Pricing American put Option under Fractional Black and Scholes Model

In the financial markets the American options are the most trendy. Since the early exercise,
pricing of American options was related to a problem of a free boundary condition see [5], [10],
and [14], which was very complicated. For this reason, there are no closed form solutions for
American options. The most famous model is the Black and Scholes model [6], which supposed
the volatility as constant. Numerous works are showed so as to solve fractional differential
equations, both linear and nonlinear. In this section, the Adomian decomposition method [1],
[7]and [8] are used. This method is a powerful tool to find solutions for both linear or non-linear
equations.

Under the hypotheses of Black and Scholes, the dynamic of the underlying asset price is
given by:

dSt = rStdt+ σStdW
S
t , (2.1)

where St is the underlying asset price at time t, σ is the volatility and r is the interest rate, both
are constants.

We obtain the following differential equation using the Ito formula:

∂C

∂t
+ rS

∂C

∂S
+

1
2
σS2 ∂

2C

∂S2 − rC = 0, (2.2)

where C is the American put price. The time boundary conditions can be written as follows:

C(St, t) = (K − St, 0)+ in the exercice case (2.3)

and
C(St, t) > (K − St, 0)+ in the otherwise . (2.4)
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So, pricing American put options is reduced to the following linear complementarity problem:

(
∂C

∂t
+ rS

∂C

∂S
+

1
2
σS2 ∂

2C

∂S2 − rC)(C − (K − St)) = 0

∂C

∂t
+ rS

∂C

∂S
+

1
2
σS2 ∂

2C

∂S2 − rC ≤ 0

C − (K − St) ≥ 0 ∀t.
Now we can introduce the fractional linear complementarity problem related to pricing Amer-

ican put options with constant volatility:

(
∂αC

∂tα
+ rS

∂C

∂S
+

1
2
σS2 ∂

2C

∂S2 − rC)(C − (K − St)) = 0

(
∂αC

∂tα
+ rS

∂C

∂S
+

1
2
σS2 ∂

2C

∂S2 − rC) ≤ 0

C − (K − St) ≥ 0 ∀t.
where 0 < α ≤ 1.

To determine the value of the American put option C(St, Vt), the following nonlinear frac-
tional differential equation must be solved:

Dα
t C(St, Vt) +A[C](St, Vt) = 0 0 < α ≤ 1 (2.5)

in the domain {(St, Vt)|St ≥ 0, Vt ≥ 0 and t ∈ [0, T ]} with the initial value

C(S0, V0), (2.6)

where Dα
t = ∂α

∂tα and A[C] = rS ∂C∂S + 1
2σS

2 ∂2C
∂S2 − rC.

In the case of a put option, the boundary conditions are at maturity T with an exercise price
K, the payoff function is

(K − ST , 0)+. (2.7)

Theorem 2.1. Let (Ct)t≥0 be the price American option at time t. According to the Black and
Scholes hypotheses, at time l with l < t, the price American put option, which is the solution of:

C(Sl, Vl) = max((K − Sl, 0)+;Eα(−(t− l)αA[C(St, Vt)])),

where 0 < α ≤ 1, A[C] = rS ∂C∂S + 1
2σS

2 ∂2C
∂S2 − rC, and Eα is the Mittag-Leffler function.

Proof. Multiplying equation (7)by the operator D−αt and taking into account of (2), we get

C(St, Vt) = C(Sl, Vl) +D−αt (−A[C](St, Vt)). (2.8)

based on the Adomian decomposition in the domain [l, t], the solution has the following form:

C(St, Vt) = C(Sl, Vl) +
∞∑
k=1

Ck(St, Vt). (2.9)

By replacing (11) into (7), we have

Cn+1(St, Vt) = D−αt (−A[Cn](St, Vt))

= −A[C(Sl, Vl)]nD−αt (
(t− l)nα

Γ(1 + nα)
). (2.10)

Thus, we get

C(Sl, Vl) =
∞∑
k=0

(−1)k
(t− l)kα

Γ(1 + kα)
A[C(St, Vt)]

k

= Eα(−(t− l)αA[C(St, Vt)]). (2.11)

For a real and positive alpha, the convergence of the power series of the fractional Black and
Scholes model is guaranteed.
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Figure 1. Fig.1 The price of an American put option for various fractional order values as a
function of moneyness, ( σ = 0.2, r=0.05, K=100, T=1/12).

2.2 Numerical results and simulations

In this part, we carry out the established results by presenting a numerical study of the price of
an American put option for various fractional order values (see Figures 1,2 and 3).

We investigated the American put price as it relates to moneyness. In the following, we
considered σ = 0.2, K=100, r=0.05. We considered three scenarios for the maturity time: the
first is 1/12, the second is 1/4, and the third is 1/2.

We take as reference price, the one issued from the Binomial model with 1000 steps. From
the attained results, all curves have the same outlines as the one associated with the binomial
model, which is consistent with option theory.

When the moneyness is located near to one, the obtained results and the binomial model
differ by an insignificant margin. Otherwise, the difference in the premium of the American put
option is nearly futile, as demonstrated in terms of precision, for every value of the fractional
order, all results are almost the same.

Figure 2. Fig.5 The price of an American put option for various fractional order values as a
function of moneyness, ( σ = 0.2, r=0.05, K=100, T=1/4).
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Figure 3. Fig.5 The price of an American put option for various fractional order values as a
function of moneyness, ( σ = 0.2, r=0.05, K=100, T=1/2).

3 Fractional Heston Model

As compared to the Black and Scholes model, the Heston model is more required since the
volatility is stochastic.

Let St the dynamic of the asset price generated by:

dSt = rStdt+ St
√
VtdW

S
t (3.1)

and Vt follows a mean reversion and a square-root diffusion process given by:

dVt = kV (θV − Vt)dt+ σV
√
VtdW

V
t , (3.2)

where r is supposed to be constant, WS
t and WV

t are two standard Brownian motions that are
correlated, i.e. WS

t =
√

1− ρ2B1
t + ρB2

t and WV
t = B2

t , where B is a standard 2-dimensional
Brownian motion and ρ ∈ ] − 1, 1[ . The V t stochastic process’s long-term mean, rate of
mean reversion, and volatility are represented by the parameters thetaV , kV , and sigmaV ,
respectively.

3.1 Closed-Form European Option Solution Using Fractional Heston Model

When the volatility is stochastic, the price C(St, Vt) of the European option is given by

Dα
t C(St, Vt) +A[C](St, Vt) = 0, 0 < α ≤ 1, (3.3)

in the domain {(St, Vt)|St ≥ 0, Vt ≥ 0 and t ∈ [0, T ]} with the initial value

C(S0, V0), (3.4)

where Dα
t = ∂α

∂tα and

A[C] = rS
∂C

∂S
+ k(θ − V )∂C

∂V
+

1
2
V S2 ∂

2C

∂S2 + ρσV S
∂2C

∂S∂V
− 1

2
σV

∂2C

∂V 2 − rC.

In the case of a call option with a maturity of T and an exercise price ofK, the payoff function
is

(ST −K, 0)+ (3.5)

and for the put option the payoff function is equal to

(K − ST , 0)+. (3.6)



68 Mohamed KHARRAT

Theorem 3.1. Let (Ct)t≥0 be the European option price, a function of the underlying asset price
and the volatility. According to the same Heston model hypotheses, the price of the European
option is given by the following formula:

C(St, Vt) = Eα(−tαA[C(S0, V0)]),

where 0 < α ≤ 1, A[C] = rS ∂C∂S + k(θ− V ) ∂C∂V + 1
2V S

2 ∂2C
∂S2 + ρσV S ∂2C

∂S∂V −
1
2σV

∂2C
∂V 2 − rC

and Eα is the Mittag-Leffler function

Proof. Multiplying equation (3.3)by the operator D−αt and on taking into account (1.2), we get

C(St, Vt) = C(S0, V0) +D−αt (−A[C](St, Vt)), (3.7)

so, using the Adomian decomposition method we obtain

C(St, Vt) = C0(St, Vt) +
∞∑
k=1

Ck(St, Vt), (3.8)

by replacing (3.8) into (3.3), we get:

Cn+1(St, Vt) = D−αt (−A[Cn](St, Vt))

= −A[C(S0, V0)]
nD−αt (

tnα

Γ(1 + nα)
), (3.9)

with C0(St, Vt) = C(S0, V0), we have:

C(St, Vt) =
∞∑
k=0

(−1)k
tkα

Γ(1 + kα)
A[C(S0, V0)]

k

= Eα(−tαA[C(S0, V0)]). (3.10)

For a real and positive alpha, the power series of the fractional Heston model is guaranteed to
converge.

3.2 Pricing American put Option using Fractional Heston Model

Based on the Ito formula, we get the differential equation shown below:

∂C

∂t
+ rS

∂C

∂S
+ k(θ − V )∂C

∂V
+

1
2
V S2 ∂

2C

∂S2 + ρσV S
∂2C

∂S∂V

−1
2
σV

∂2C

∂V 2 − rC = 0, (3.11)

where C represents the American put price and K represents the strike price In terms of time,
the boundary conditions are as follows:

C(St, t) = (K − St, 0)+ in the exercice case (3.12)

and
C(St, t) > (K − St, 0)+ in the otherwise . (3.13)

In the previous section we have introduced the fractional Heston model in order to provide
a European option’s closed-form solution. It is now devoted to pricing American put options.
So, in addition to the previous problem, We must solve the fractional linear complementarity
problem shown below.:

[
∂αC

∂tα
+ rS

∂C

∂S
+ k(θ − V )∂C

∂V
+

1
2
V S2 ∂

2C

∂S2 + ρσV S
∂2C

∂S∂V
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−1
2
σV

∂2C

∂V 2 − rC](C − (K − St)) = 0

[
∂αC

∂tα
+ rS

∂C

∂S
+ k(θ − V )∂C

∂V
+

1
2
V S2 ∂

2C

∂S2 + ρσV S
∂2C

∂S∂V

−1
2
σV

∂2C

∂V 2 − rC] ≤ 0

C − (K − St) ≥ 0 ∀t,
where 0 < α ≤ 1.
To calculate the value of the American put price C(St, V t), under stochastic volatility, we

must solve the following nonlinear fractional differential equation.

Dα
t C(St, Vt) +A[C](St, Vt) = 0 0 < α ≤ 1 (3.14)

in the domain {(St, Vt)|St ≥ 0, Vt ≥ 0 and t ∈ [0, T ]} with the initial value

C(S0, V0). (3.15)

where Dα
t = ∂α

∂tα and

A[C] = rS
∂C

∂S
+ k(θ − V )∂C

∂V
+

1
2
V S2 ∂

2C

∂S2 + ρσV S
∂2C

∂S∂V
− 1

2
σV

∂2C

∂V 2 − rC.

In the case of a put option with a maturity of T and an exercise price ofK, the payoff function
is

(K − ST , 0)+. (3.16)

Theorem 3.2. Let (Ct)t≥0 be the value of the American option at time t. According to the Heston
model hypotheses, at time l with 0leqlt, the American put option price, which corresponds to the
solution of the previous fractional linear complementarity problem, is equal to

C(Sl, Vl) = max[(K − Sl, 0)+;Eα(−(t− l)αA[C(St, Vt)])], (3.17)

where 0 < α ≤ 1, A[C] = rS ∂C∂S + k(θ− V ) ∂C∂V + 1
2V S

2 ∂2C
∂S2 + ρσV S ∂2C

∂S∂V −
1
2σV

∂2C
∂V 2 − rC

and Eα is the Mittag-Leffler function.

Proof. Multiplying equation (3.14)by the operator D−αt and taking into account (1.2), we get

C(St, Vt) = C(Sl, Vl) +D−αt (−A[C](St, Vt)). (3.18)

The solution is indicated as using the Adomian decomposition method in the domain [l, t].

C(St, Vt) = C(Sl, Vl) +
∞∑
k=1

Ck(St, Vt). (3.19)

By substituting (3.19) into (3.14), we have

Cn+1(St, Vt) = D−αt (−A[Cn](St, Vt))

= −A[C(Sl, Vl)]nD−αt (
(t− l)nα

Γ(1 + nα)
). (3.20)

Thus, we get

C(Sl, Vl) =
∞∑
k=0

(−1)k
(t− l)kα

Γ(1 + kα)
A[C(St, Vt)]

k

= Eα(−(t− l)αA[C(St, Vt)]). (3.21)

For a real and positive alpha, the power series of the fractional Heston model is guaranteed to
converge.
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3.3 Numerical Results and Simulations

In this section we exhibit and plot the price of the American put option under the fractional
Heston model versus our reference model (see Figures 4, 5, 6, 7, 8 and 9).

We used K=100, V 0 = 0.2, and r=0.05 as data. We considered three scenarios for time of
maturity: the first is equal to 1/12, the second is equal to 1/4, and the third is equal to 1/2.

The results (see Figures 4, 5, 6, 7, 8, and 9) show that all curves have the same curves as our
reference model, which is consistent with option theory.

Figure 4. The price of an American put option for various fractional order values as a function
of moneyness, (K=100, V0 = 0.2, r=0.05, T=1/12).

Figure 5. The difference in the value of an American put option under the fractional Heston
model and the classical binomial model (400 time steps) under stochastic volatility as a function
of moneyness, (K=100, V0 = 0.2, r=0.05, T=1/12).

4 Conclusion

We provide and demonstrate the convergence of the power series related to the pricing put option
problem under fractional model by utilizing the Adomian decomposition for both cases European
and American option, when respectively the volatility is considered as constant and stochastic. In
order to carry out the theoretical outcomes, We present numerical solutions for various fractional
order values. All of the results are consistent with the theory of the American option.
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