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Abstract In this note, we deal with some classes of analytic functions such as normalized,
meromorphiclly multi-valent functions in the open unit disk and the puncher unit disk respec-
tively. By using a special type of fractional differential operator, we investigate some geometric
properties of these classes under the suggested operator. Moreover, as an application, we formu-
late a class of analytic functions which is a generalization of Euler-Cauchy equations in the open
unit disk.

1 Introduction

Anderson and Ulness [1] presented a conformable differential operator (CDO) by using a notion
a proportional-derivative controller for controller output µ at time t with two tuning parameters
has the formula

µ(t) = λp Ξ(t) + λd
d

dt
Ξ(t), (1.1)

where λp is the proportional gain, λd is the derivative gain, and Ξ is the error between the process
variable and the state variable. Later, Ibrahim and Jahangiri [2] proposed CDO in the open unit
disk for a class of normalized functions denoting by Λ and having the series

g(z) = z +
∞∑
n=2

gnz
n, z ∈ U = {z ∈ C : |z| < 1},

where U is the open unit disk, with g(0) = g′(0) − 1 = 0 as follows: For a fractional positive
number ν∈ [0, 1),

D0g(z) = g(z)

Dνg(z) = λ1(ν, z)

λ1(ν, z) + λ0(ν, z)
g(z) +

λ0(ν, z)

λ1(ν, z) + λ0(ν, z)
(zg′(z))

(1.2)

the functions λ1, λ0 : [0, 1] ×U→ U are analytic in U so that

λ1(ν, z) 6= −λ0(ν, z),

lim
ν→0

λ1(ν, z) = 1, lim
ν→1

λ1(ν, z) = 0, λ1(ν, z) 6= 0, ∀z ∈ U, ν ∈ (0, 1),

and
lim
ν→0

λ0(ν, z) = 0, lim
ν→1

λ0(ν, z) = 1, λ0(ν, z) 6= 0, ∀z ∈ U ν ∈ (0, 1).

It is clear that the operator (1.2) is also normalized in U, for example,
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Example 1.1. let λ1(ν, z) = (1− ν)zν , λ0(ν, z) = νz1−ν and g(z) =
z

(1− z)
then

D0g(z) =
z

(1− z)

Dν
(

z

(1− z)

)
=

(1− ν)zν

(1− ν)zν + νz1−ν

(
z

(1− z)

)
+

νz1−ν

(1− ν)zν + νz1−ν

(
z

(
z

(1− z)

)′)

=
(1− ν)zν

(1− ν)zν + νz1−ν

(
z

(1− z)

)
+

νz1−ν

(1− ν)zν + νz1−ν

(
z

(1− z)2

)
=
z((ν − 1)(z − 1)z(2ν) + νz)

(z − 1)2(νz − (ν − 1)z(2ν))

= ((z + 2z2 + 3z3 + 4z4 + 5z5 +O(z6))

× ((νz +O(z6)) + z(2ν)
((1− ν) + (ν − 1)z +O(z6))))

((νz +O(z6))− (ν − 1)z(2ν))
.

Hence, the operator (1.2) is normalized in U.

In general, we have the following example [3]

Example 1.2. Let φ ∈ ∧ taking the expansion formula

φ(z) = z +
∞∑
n=2

φn z
n

then

Dνφ(z)

=
λ1(ν, z)

κ1(ν, z) + κ0(ν, z)
φ(z) +

λ0(ν, z)

λ1(ν, z) + λ0(ν, z)
(z φ′(z))

=
λ1(ν, z)

λ1(ν, z) + λ0(ν, z)

(
z +

∞∑
n=2

φn z
n

)
+

λ0(ν, z)

λ1(ν, z) + λ0(ν, z)

(
z +

∞∑
n=2

nφn z
n

)

= z +
∞∑
n=2

(
λ1(ν, z) + nλ0(ν, z)

λ1(ν, z) + λ0(ν, z)

)
φn z

n.

Recently, Ibrahim and Baleanu [3, 4] employed the operator (1.2) to formulate a hybrid con-
formable diff-integral operator and a quantum hybrid operator respectively. In this note, we shall
present some classes of analytic functions associated with CDO.

2 Meromorphically multivalent functions

Here, our discussion is based on a class of functions denoting by Σk(ρ) and constructing by (see
[5])

f(z) = z−ρ +
∞∑
n=k

anz
n−ρ, (2.1)

which are analytic in the punctured open unit disk U∗ = {z ∈ C : 0 < |z| < 1}.
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Definition 2.1. For a function f ∈ Σk(ρ), CDO is defined as follows:

∆
0f(z) = f(z)

∆
νf(z) =

λ1(ν, z)

λ1(ν, z) + λ0(ν, z)
f(z) +

λ0(ν, z)

λ1(ν, z) + λ0(ν, z)

(
−z
ρ

)
f ′(z)

= z−ρ +
∞∑
n=k

an

(
λ1(ν, z) + ((ρ− n)/ρ)λ0(ν, z)

λ1(ν, z) + λ0(ν, z)

)
zn−ρ

∆
2νf(z) = ∆(∆νf(z))

= z−ρ +
∞∑
n=k

an

(
λ1(ν, z) + ((ρ− n)/ρ)λ0(ν, z)

λ1(ν, z) + λ0(ν, z)

)2

zn−ρ

...

∆
mνf(z) = ∆

ν [∆(m−1)νf(z)]

= z−ρ +
∞∑
n=k

an

(
λ1(ν, z) + ((ρ− n)/ρ)λ0(ν, z)

λ1(ν, z) + λ0(ν, z)

)m
zn−ρ

:= z−ρ +
∞∑
n=k

an (Λn)
m
zn−ρ.

(2.2)

(
z ∈ U∗, ρ ∈ N, ν ∈ [0, 1]

)
where

lim
ν→0

λ1(ν, z) = 1, lim
ν→1

λ1(ν, z) = 0, λ1(ν, z) 6= 0, ∀z ∈ U∗, ν ∈ (0, 1),

and
lim
ν→0

λ0(ν, z) = 0, lim
ν→1

λ0(ν, z) = 1, λ0(ν, z) 6= 0, ∀z ∈ U∗ ν ∈ (0, 1).

It is clear that
f ∈ Σk(ρ)⇒ ∆

mνf(z) ∈ Σk(ρ).

Definition 2.2. An analytic function ϕ is subordinated to an analytic function ψ, written ϕ ≺ ψ,
if occurs an analytic function h with |h(z)| ≤ |z| such that ϕ = (ψ(h)) (see [6, 7]).

We have the following geometric results

Theorem 2.3. Define a functional

Θ(z) := (1− σ)zρ [∆mνf(z)]−
(
σ

ρ

)
z1+ρ[∆mνf(z)]′, σ < 0.

Then

< (Θ(z)) > 0⇒ |φn| ≤ 2
∫ 2π

0
|e−inθ| dµ(θ),

where dµ is a probability measure. Moreover,

<
(
ei$Θ(z)

)
> 0⇒ Θ(z) ∈ C,

where C is the class of analytic convex in U.

Proof. For the first part of the theorem, we suppose that

<(Θ(z)) = <

(
1 +

∞∑
n=1

φnz
n

)
> 0.
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Figure 1. The plot of f(z) = z−ρ, when ρ = 1, 2 (first coloumn) and ρ = 3, 4 (second coloumn).

Then by the Carathéodory positivist method for analytic functions, we have

|φn| ≤ 2
∫ 2π

0
|e−inθ| dµ(θ),

where dµ is a probability measure. Lastly, if

<
(
ei%Θ(z)

)
> 0, z ∈ U, % ∈ R

then according to [8]-Theorem 1.6(P22) and for some real numbers %, we have

Θ(z) ≈ Az + 1
Bz + 1

, z ∈ U.

But
Az + 1
Bz + 1

is convex in U, then by majority concept, we obtain that Θ(z) ∈ C.

Example 2.4. Let λ1 = λ0 = 0.5z0.5, ν = 0.5. Then for f(z) = z−ρ, where ρ = 1, 2, 3, 4 and
m = 1, we have (see Fig.1)

∆
mνf(z) = 0.5(

1
z
− z × d

dz

1
z
=

1
z
, ρ = 1;

∆
mνf(z) = 0.5(

1
z2 − z ×

d

dz

1
z2 ) =

1.5
z2 , ρ = 2;

∆
mνf(z) = 0.5(

1
z3 − z ×

d

dz

1
z3 ) =

2
z3 , ρ = 3;

and
∆
mνf(z) = 0.5(

1
z4 − z ×

d

dz

1
z4 ) =

2.5
z4 , ρ = 4.

Theorem 2.5. Define a functional υ(z) := zρ+1∆mνf(z), z ∈ U. If the subordination

υ(z) ≺ z

(1 + z)2

is hold then υ(z) ∈ S∗ (the class of starlike analytic functions) and(∫ z

0

√
υ(ζ)

ζ
dζ

)2

≺
(
2 tan−1√z

)2
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Figure 2. The plot of >(z) and ℘(z) respectivelly.

such that

−π
2
< −2 tan−1√r ≤ <

(∫ z

0

√
υ(ζ)

ζ
dζ

)
< 2 tan−1√r ≤ π

2
.

Proof. Let υ(z) = zρ+1∆mνf(z), z ∈ U. Then

υ(z) = z +
∞∑
n=2

vnz
n, z ∈ U

is analytic in the open unit disk, where

>(z) : =
(
2 tan−1√z

)2

= 4z − 8
z2

3
+

92z3

45
+O(z4).

Since the function (see [7]-P177)

℘(z) =
z

(1 + z)2

= z − 2z2 + 3z3 − 4z4 + 5z5 +O(z6) ∈ S∗, z ∈ U,

then by majority concept, we have υ(z) ∈ S∗. The second and third assertions are verified by
[7]-Corollary 3.6a.1 (see Fig.2).

In the similar manner of Theorem 2.5, if we replace >(z) by one of the function

ϒ(z) := −(log(1− i
√
z)− log(1 + i

√
z))2, z ∈ U,

Λ(z) :=
(

2 cot−1(
1√
z
)

)2

, z ∈ U.
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3 Conformable Euler-Cauchy Equations

The class of complex differential equations has concerned in many researches captivating the
common arrangement

λ(k)(ξ) + ak−1λ
(k−1)(ξ) + ...+ ak = 0,

Where λ(ξ) is an analytic function in a complex domain with non-zero coefficients. Classes
of this prescription are considered extensively. Most of these studies are dedicated on the as-
sociation issue and its boundary. For instance, Pommerenke considered [9] the second order;
Heittokangas [10] investigated a special example of the k−the order, whereas Walter [11] of-
fered a meromorphic solution for a class of complex differential equation. Later, the equation is
modified utilizing fractional calculus in the open unit disk [12, 13, 14].

This section deals with a generalized class of second order differential equations type Euler-
Cauchy equations (ECEs) utilizing the suggested operator CDO. The general formula of ECE is
given by the structure

z2φ′′(z) + azφ′(z) + bφ(z) = η(z), z ∈ U, (3.1)

where φ and η are analytic in U.Our discussion will take place on the function φ(z) := zρ+1∆mνf(z), z ∈
U. Therefore, Eq.(3.1) can be generalized by the formula

z2 (zρ+1
∆
mνf(z)

)′′
+ az

(
zρ+1

∆
mνf(z)

)′
+ b

(
zρ+1

∆
mνf(z)

)
= η(z), z ∈ U. (3.2)

Definition 3.1. Consider the normalized functions f ∈ Σk(ρ). Then the function f is in the class
Aν(α, η(z)) if it satisfies the Ma-Minda type [6] of subordination inequality

z2 (zρ+1
∆
mνf(z)

)′′
+ (1− α)z

(
zρ+1

∆
mνf(z)

)′
+ α

(
zρ+1

∆
mνf(z)

)
≺ η(z).

To illustrate our result, we need the following lemma [7]P139-140.

Lemma 3.2. Let υ ∈ Λ. Then

(a) υ(z) + αz υ′(z) ≺ (1 + α)z + αz2 ⇒ υ(z) ≺ z, when α ∈ (0, 1/3];

(b) zυ′(z)[1 + υ(z)] + αυ2(z) ≺ ξ + (1 + α)z2 ⇒ υ(z) ≺ z, when |1 + α| ≤ 1/4;

(c) [zυ′(z)− υ(z)]eα(υ(z)) + eυ(z) ≺ ez ⇒ υ(z) ≺ z, when |α− 1| ≤ π/2;

(d) zυ′(z)(1 + αυ(z)) + υ(z) ≺ 2z + αz2 ⇒ υ(z) ≺ z, when |α| ≤ 1/2;

(e) zυ′(z)eαυ(z) + υ(z) ≺ z(1 + αzeαz)⇒ υ(z) ≺ z, when |α| ≤ 1;

(f) υ(z) +
zυ′(z)

1 + αυ(z)
≺ z ⇒ υ(z) ≺ z, when |α| ≤ 1;

and the solution is sharp.

Theorem 3.3. Let f ∈ Σk(ρ). If one of the following inequalities occurs

(a) αz3φ′′′(z)+((3− α)α+ 1) z2φ′′(z)+zφ′(z)+αφ(z) ≺ (1+α)z+αz2 when α ∈ (0, 1/3];

(b)
(
z3φ′′′(z) + (3− α)z2φ′′(z) + zφ′(z)

)
[1+z2φ′′(z)+(1−α)zφ′(z)+αφ(z)]+α

(
z2φ′′(z) + (1− α)zφ′(z) + αφ(z)

)2 ≺
z + (1 + α)z2, when |1 + α| ≤ 1/4;

(c)
(
z3φ′′′(z) + (2− α)z2φ′′(z) + αzφ′(z)− αφ(z)

)
exp

(
α(z2φ′′(z) + (1− α)zφ′(z) + αφ(z))

)
+

exp
(
z2φ′′(z) + (1− α)zφ′(z) + αφ(z)

)
≺ ez,

when |α− 1| ≤ π/2;

(d)
(
z3φ′′′(z) + (3− α)z2φ′′(z) + zφ′(z)

)
[1+αz2φ′′(z)+α(1−α)zφ′(z)+α2φ(z)]+

(
z2φ′′(z) + (1− α)zφ′(z) + αφ(z)

)
≺

2z + αz2, when |α| ≤ 1/2;

(e)
(
z3φ′′′(z) + (3− α)z2φ′′(z) + zφ′(z)

)
exp

(
α[z2φ′′(z) + (1− α)zφ′(z) + αφ(z)]

)
+
(
z2φ′′(z) + (1− α)zφ′(z) + αφ(z)

)
≺

z(1 + α zeαz), when |a| ≤ 1;
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(f) z2φ′′(z)+(1−α)zφ′(z)+αφ(z)+ z3φ′′′(z) + (3− α)z2φ′′(z) + zφ′(z)

1 + α (z2φ′′(z) + (1− α)zφ′(z) + αφ(z))
≺ z, when

|α| ≤ 1;

then f ∈ Aν(α, z).

Proof. For f ∈ Σk(ρ), let
φ(z) := zρ+1

∆
mνf(z), z ∈ U.

Then φ ∈ Λ. Assuming that

υ(z) := z2 (zρ+1
∆
mνf(z)

)′′
+ (1− α)z

(
zρ+1

∆
mνf(z)

)′
+ α

(
zρ+1

∆
mνf(z)

)
in Lemma 3.2 such that

υ(z) = z2φ′′(z) + (1− α)zφ′(z) + αφ(z)

and
zυ′(z) = z3φ′′′(z) + (3− α)z2φ′′(z) + zφ′(z).

Consequently, by the inequalities of the theorem, we have f ∈ Aν(α, z).

Example 3.4. Consider the equation

z2φ′′(z) + (1− α)zφ′(z) + αφ(z) = z

then for

• α = 0.5, the solution is formulated by

φ(z) = c1z
0.25 sin(0.66 log(z)) + c2z

0.25 cos(0.66 log(z))

+z sin2(0.66 log(z)) + z cos2(0.66 log(z));

• α = 0.25 the solution is given by

φ(z) = c1z
0.125 sin(0.484123 log(z)) + c2z

0.125 cos(0.484123 log(z)) + z.

4 Conclusion

From above investigation, we illustrated some geometric presentations of a conformable frac-
tional operator in the open unit disk. The operator is suggested for a special type of analytic
functions called meromorphically multivalent function. We show that under some conditions,
the suggested operator is convex and starlike.
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