Quadratic BSDEs with two reflecting barriers and a square integrable terminal value

Roubi Abdallah, Labed Boubakeur and Khaled Bahlali
Communicated by Raouf Fakhfakh

MSC 2010 Classifications: $60 \mathrm{H} 10,60 \mathrm{H} 20$.
Keywords and phrases: Reflected quadratic BSDE, Local time, Occupation time formula, Krylov's inequality, ItôKrylov's formula, Tanaka's formula.

Abstract

We consider a backward stochastic differential equation (BSDE) with two reflecting barriers which generator $H(t, \omega, y, z)$ has a quadratic growth in its z-variable and a square integrable terminal value ξ. The solutions is constrained to stay between two time continuous processes L and U (called the barriers). We establish the existence of solutions when $H(t, \omega, y, z):=a+b|y|+c|z|+f(y)|z|^{2}$. The uniqueness and the comparison of solutions are also established when the generator is of the form $f(y)|z|^{2}$. The main tools are Krylov's estimate and Itô-Krylov's formula, which are proved here, for the solutions of backward stochastic differential equations with two reflecting barriers.

1 Introduction

Let $\left(B_{t}\right)_{t \geq 0}$ be a standard d-dimensional Brownian motion, defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, let $\left\{\mathcal{F}_{t}\right\}_{0 \leq t \leq T}$ be the natural filtration of B_{t}, where \mathcal{F}_{0} contains all \mathbb{P}-null sets of \mathcal{F}. On the other hand, for $p>0$, we denote:
$\mathbb{L}_{\text {loc }}^{p}(\mathbb{R}):=$ the space of (classes) of functions u defined on \mathbb{R} which are p-integrable on bounded set of \mathbb{R}.
$\mathcal{W}_{p, l o c}^{2}:=$ the Sobolev space of (classes) of functions u defined on \mathbb{R} such that both u and its generalized derivatives u^{\prime} and $u^{\prime \prime}$ belong to $\mathbb{L}_{l o c}^{p}(\mathbb{R})$.
$\mathcal{C}:=$ the space of continuous and \mathcal{F}_{t}-adapted processes.
$\mathcal{S}^{2}:=$ the space of continuous, \mathcal{F}_{t}-adapted processes φ such that $\mathbb{E} \sup _{0<t<T}\left|\varphi_{t}\right|^{2}<+\infty$.
$\mathbb{L}^{2}:=$ the space of $\mathcal{F}_{T}-$ measurable random variable ξ s.t. satisfying $\mathbb{E}|\xi|^{2}<+\infty$.
$\mathcal{M}^{2}:=$ the space of \mathcal{F}_{t}-adapted processes φ satisfying $\mathbb{E} \int_{0}^{T}\left|\varphi_{t}\right|^{2} d t<+\infty$.
$\mathcal{L}^{2}:=$ the space of \mathcal{F}_{t}-adapted processes φ satisfyin $\int_{0}^{T}\left|\varphi_{t}\right|^{2} d t<+\infty$.
$\mathcal{K}:=$ the space of \mathcal{P}-measurable continuous nondecreasing processes $\left(K_{t}\right)_{t \leq T}$ such that $K_{0}=0$ and $K_{T}<+\infty, \mathbb{P}-$ a.s.
$\mathcal{K}^{2}:=$ the space of \mathcal{P}-measurable continuous nondecreasing processes $\left(K_{t}\right)_{t \leq T}$ such that $K_{0}=0$ and $\mathbb{E}\left(K_{T}^{2}\right)<+\infty$.

For $(a, b) \in \mathbb{R}^{2}$, we denote $a \vee b:=\max (a, b), a \wedge b:=\min (a, b), a^{-}:=\max (0,-a)$ and $a^{+}:=\max (0, a)$.

We consider the following assumptions on the data.
(A.1) $H(t, \omega, y, z)$ is a real valued, \mathcal{F}_{t}-progressively measurable process defined on $[0, T] \times \Omega \times$ $\mathbb{R} \times \mathbb{R}^{d}$.
(A.2) ξ is a square integrable, \mathcal{F}_{T}-measurable random variable defined on $(\Omega, \mathcal{F}, \mathbb{\Phi})$.
(A.3) $U=\left(U_{t}\right)_{0 \leq t<T}$ and $L=\left(L_{t}\right)_{0 \leq t<T}$ are two processes which belong to \mathcal{S}^{2} such that $\forall t \leq T$, $L_{t}<U_{t}$ and $L_{T} \leq \xi \leq U_{T}, \mathbb{P}-\bar{a} . s$.

Definition 1.1. A solution of a BSDE with two reflecting barriers, with the data (ξ, H, L, U), is an $\left(\mathcal{F}_{t}\right)$-adapted process $\left(Y, Z, K^{+}, K^{-}\right):=\left(Y_{t}, Z_{t}, K_{t}^{+}, K_{t}^{-}\right)_{0 \leq t \leq T}$ which satisfies the following
equation.
(i) $Y \in \mathcal{C}, K^{+}$and $K^{-} \in \mathcal{K}, Z \in \mathcal{L}^{2}$,
(ii) $Y_{t}=\xi+\int_{t}^{T} H\left(s, Y_{s}, Z_{s}\right) d s+\int_{t}^{T} d K_{s}^{+}-\int_{t}^{T} d K_{s}^{-}-\int_{t}^{T} Z_{s} d B_{s}, \quad 0 \leq t \leq T$,
(iii) $\forall t \leq T, L_{t} \leq Y_{t} \leq U_{t}$,
(iv) $\int_{0}^{T}\left(U_{t}-Y_{t}\right) d K_{t}^{-}=\int_{0}^{T}\left(Y_{t}-L_{t}\right) d K_{t}^{+}=0$.
ξ is called the terminal value, H the generator or coefficient, L the lower barrier and U the upper barrier.

In the sequel the previous equation will be labeled $e q(H, \xi, L, U)$ or $b s d e(H, \xi, L, U)$.
The backward stochastic differential equations with two reflecting barriers (RBSDEs) have been introduced by Civitanic and Karatzas [7]. A RBSDE (1.1) is called quadratic if its generator has at most a quadratic growth in its z variable. In [7], the authors have proved the existence and uniqueness of the solution in the case of a uniformly Lipschitz generator H and a square terminal condition ξ. Moreover, either the barriers are regular or they satisfy the so-called Mokobodski's condition which leads to the existence of a difference of non-negative super-martingales between L and U. When ξ is bounded, H satisfies $H(s, y, z) \leq C\left(1+\phi(y)+|z|^{2}\right)$ [with ϕ is some function which is bounded on compact sets] and the barriers satisfy the Mokobodski's condition, the existence of a solution have been proved, it has been shown in Bahlali, Hamadène and Mezerdi [4]. In Hamadène and Hassani [9], the existence of solutions to RBSDE (1.1) has been proved in the case where the terminal value ξ is square integrable and H has a uniform linear growth in y and z and the barriers are square integrable and satisfying $L_{t}<U_{t}, \forall t \in[0, T]$. In Lepeltier and San Martin [12], the existence of solutions to RBSDE (1.1) has been established under a linearly increasing generator H and a square integrable terminal data ξ. Essaky and Hassani [8] considered RBSDE (1.1) in a very general situation. Indeed, they show the existence of a minimal and a maximal solution when ξ is only \mathcal{F}_{T}-measurable and H has a general growth with respect to the variable y and stochastic quadratic growth with respect to the variable z. More precisely, Essaky and Hassani assume that there exist a \mathcal{F}_{t}-adapted processes η such that $\mathbb{E}\left(\int_{0}^{T} \eta_{s} d s\right)<+\infty$ and a continuous process C such that $|H(t, y, z)| \leq \eta_{t}(\omega)+C_{t}(\omega)|z|^{2}$, and there exists a continuous semimartingale whic passes between L and U. The latter is satisfied, for instance, when $L<U$.

The main objective of this work is to extend the result of $[1,2]$ to quadratic reflected BSDEs. We first use the occupation time formula to show that for any solution $\left(Y, Z, K^{+}, K^{-}\right)$of RBSDE (1.1) with data $(H(t, y, z), \xi, L, U)$ such that there exist a locally integrable positive function f and \mathcal{F}_{t}-adapted positive stochastic process η satisfying $\mathbb{E} \int_{0}^{T} \eta_{s} d s<+\infty$ such that for a.e. (t, ω) and every (y, z),

$$
|H(t, y, z)| \leq \eta_{t}+f(y)|z|^{2}
$$

then the time spent by Y in a Lebesgue negligible set is negligible with respect to the measure $\left|Z_{t}\right|^{2} d t$. i.e. the following Krylov's estimate holds for any nonnegative measurable function Ψ

$$
\begin{equation*}
\mathbb{E} \int_{0}^{T \wedge \tau_{R}} \Psi\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s \leq C\|\Psi\|_{\mathbb{L}^{1}([R,-R])} \tag{1.2}
\end{equation*}
$$

where τ_{R} is the first exit time of Y from the interval $[-R, R]$ and C is a constant depending on $T,\|\eta\|_{\mathbb{L}^{1}(\Omega)} \mathbb{E}\left[K_{T}^{ \pm}\right]$and $\|f\|_{\mathbb{L}^{1}([R,-R])}$.

Using inequality (1.2) we prove that the following Itô-Krylov's change of variable formula holds for Φ belonging to the Sobolev space $\mathcal{W}_{p, \text { loc }}^{2}$

$$
\begin{equation*}
\Phi\left(Y_{t}\right)=\Phi\left(Y_{0}\right)+\int_{0}^{t} \Phi^{\prime}\left(Y_{s}\right) d Y_{s}+\frac{1}{2} \int_{0}^{t} \Phi^{\prime \prime}\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s \tag{1.3}
\end{equation*}
$$

where $\left(Y, Z, K^{+}, K^{-}\right)$is an arbitrary solution to the RBSDE (1.1). This allows us to establish the existence of solution to the RBSDE (1.1).

The Paper is organized as follows. In section 2 (auxilliary results), we present the results of Hamadène \& Hassani [9] which will be used. In section 3, we consider the reflected BSDEs
bsde $\left(f(y)|z|^{2}, \xi, L, U\right)$ and $b s d e\left(\phi_{f}(y, z), \xi, L, U\right)$, where a, b, c are real numbers and

$$
\begin{equation*}
\phi_{f}(y, z):=a+b|y|+c|z|+f(y)|z|^{2} . \tag{1.4}
\end{equation*}
$$

Assuming that f is continuous and globally integrable on \mathbb{R}, ξ is square integrable, we establish the existence of solutions for the two equations. The uniqueness is also established for bsde $\left(f(y)|z|^{2}, \xi, L, U\right)$.

In section 4, we prove Krylov's inequality and Itô-Krylov's change of variable formula for the solutions of BSDEs with two reflecting barriers then we use them to extend the results of sections 3 to the case where f is merely integrable on \mathbb{R}.

2 Auxiliary results

Consider the following assumptions.
(A.4) for any $t, y, y^{\prime}, z, z^{\prime}$, there exists a constant $C \geq 0$ such that \mathbb{P} - a.s.

$$
\left|H(s, y, z)-H\left(s, y^{\prime}, z^{\prime}\right)\right| \leq C\left(\left|y-y^{\prime}\right|+\left|z-z^{\prime}\right|\right) .
$$

(A.5) H is continuous and has a uniform linear growth in y and z, i.e. there exists a constant C such that

$$
|H(s, y, z)| \leq C(1+|y|+|z|) .
$$

The following results is established in [9]. The authors proved the existence and uniqueness of the solution to reflected BSDEs (1.1) when $L_{t}<U_{t}$, for each $t \leq T$.

Theorem 2.1. ([9], Theorem 3.7) Let assumptions (A.1) - (A.4) be hold. Then, there exists a unique solution (Y, Z, K) to the equation (1.1) which belongs to $\mathcal{S}^{2} \times \mathcal{M}^{2} \times \mathcal{K}^{2}$.

Theorem 2.2. ([9], Theorem 5.1) Assume that (A.1) - (A.3) and (A.5) are satisfied. Then, equation (1.1) has at least one solution (Y, Z, K) which belongs to $\mathcal{S}^{2} \times \mathcal{M}^{2} \times \mathcal{K}^{2}$.

3 Reflected BSDE with continuous generators

In this section, we will study the two types of the reflected $\operatorname{BSDE}(1.1)$ with data $\left(f(y)|z|^{2}, \xi, L, U\right)$ and $\left(\phi_{f}(y, z), \xi, L, U\right)$. Assuming that f is continuous and globally integrable on \mathbb{R} and ξ square integrable. The following lemma is necessary to study the two types of the reflected quadratic BSDEs. It allows us to eliminate the additive quadratic term.

Lemma 3.1. ([2], Lemma A.1). Let f be continuous and belongs to $\mathbb{L}^{1}(\mathbb{R})$. The function

$$
u(x):=\int_{0}^{x} \exp \left(2 \int_{0}^{y} f(t) d t\right) d y
$$

has the following properties,
(i) $u \in C^{2}(\mathbb{R})$ and satisfies the differential equation $\frac{1}{2} u^{\prime \prime}(x)-f(x) u^{\prime}(x)=0$ on \mathbb{R}.
(ii) u is a one to one function from \mathbb{R} onto \mathbb{R}.
(iii) The inverse function u^{-1} belongs to $C^{2}(\mathbb{R})$.
(iv) u is a quasi-isometry, that is there exist two positive constants m and M such that, for any $x, y \in \mathbb{R}$,

$$
\begin{equation*}
m|x-y| \leq|u(x)-u(y)| \leq M|x-y| . \tag{3.1}
\end{equation*}
$$

We explain how we establish the existence of a solution for both $\operatorname{bsde}\left(f(y)|z|^{2}, \xi, L, U\right)$ and $\operatorname{bsde}\left(\phi_{f}(y, z), \xi, L, U\right)$. Let u be the function defined in Lemma 3.1, we define the processes $\bar{\xi}$, $\bar{L}, \bar{S}, \bar{Y}, \bar{Z}, \bar{K}^{ \pm}$and \bar{H} as follows:

$$
\left\{\begin{array}{l}
\bar{\xi}=u(\xi), \quad \bar{L}_{s}=u\left(L_{s}\right), \quad \bar{S}=u\left(S_{s}\right), \tag{3.2}\\
\bar{Y} .=u(Y .), \quad \bar{Z}=u^{\prime}(Y .) Z ., \quad d \bar{K}_{.}^{ \pm}=u^{\prime}(Y .) d K^{ \pm}, \\
\bar{H}(s, \bar{y}, \bar{z})=u^{\prime}\left(u^{-1}(\bar{y})\right) H\left(s, u^{-1}(\bar{y}),\left[u^{-1}(\bar{y})\right]^{\prime} \bar{z}\right)-f\left(u^{-1}(\bar{y})\right)\left[u^{-1}(\bar{y})\right]^{\prime}|\bar{z}|^{2} .
\end{array}\right.
$$

Assume that $\left(Y, Z, K^{+}, K^{-}\right)$is a solution (resp. maximal solution) of the RBSDE (1.1). Then, the following RBSDE has a solution (resp. maximal solution)
(i) $\bar{Y} \in \mathcal{C}, \bar{K}^{+}$and $\bar{K}^{-} \in \mathcal{K}, \bar{Z} \in \mathcal{L}^{2}$,
(ii) $\bar{Y}_{t}=\bar{\xi}+\int_{t}^{T} \bar{H}\left(s, \bar{Y}_{s}, \bar{Z}_{s}\right) d s+\int_{t}^{T} d \bar{K}_{s}^{+}-\int_{t}^{T} d \bar{K}_{s}^{-}-\int_{t}^{T} \bar{Z}_{s} d B_{s}, \quad 0 \leq t \leq T$,
(iii) $\forall t \leq T, \bar{L}_{t} \leq \bar{Y}_{t} \leq \bar{U}_{t}$,
(iv) $\int_{0}^{T}\left(\bar{U}_{t}-\bar{Y}_{t}\right) d \bar{K}_{t}^{-}=\int_{0}^{T}\left(\bar{Y}_{t}-\bar{L}_{t}\right) d \bar{K}_{t}^{+}=0$.

Remark 3.2. The maximality property of the solutions is preserved by the fact that the function u and its inverse are strictly increasing.

Proposition 3.3. Assume that f is continuous and globally integrable on \mathbb{R} and ξ is square integrable on Ω. Then, equation (1.1) has a solution (resp. maximal solution) if and only if equation (3.3) has a solution (resp. maximal solution). Moreover, the solutions belong to $\mathcal{S}^{2} \times$ $\mathcal{M}^{2} \times \mathcal{K}^{2}$.

Proof. Suppose that $\left(Y, Z, K^{+}, K^{-}\right)$is a solution (resp. maximal solution) of RBSDE (1.1). Let $u(x):=\int_{0}^{x} \exp \left(2 \int_{0}^{y} f(t) d t\right) d y$ be the function defined in Lemma 3.1. We use Itô's formula to show that

$$
\begin{aligned}
u\left(Y_{t}\right) & =u(\xi)+\int_{t}^{T} u^{\prime}\left(Y_{s}\right)\left\{H\left(s, Y_{s}, Z_{s}\right)-f\left(Y_{s}\right)\left|Z_{s}\right|^{2}\right\} d s \\
& +\int_{t}^{T} u^{\prime}\left(Y_{s}\right) d K_{s}^{+}-\int_{t}^{T} u^{\prime}\left(Y_{s}\right) d K_{s}^{-}-\int_{t}^{T} u^{\prime}\left(Y_{s}\right) Z_{s} d B_{s}
\end{aligned}
$$

Since both u and its inverse are \mathcal{C}^{2} class functions which are globally Lipschitz and one to one from \mathbb{R} onto \mathbb{R}, then every solution $\left(\bar{Y}, \bar{Z}, \bar{K}^{+}, \bar{K}^{-}\right)$of equation (3.2) is a solution (resp. maximal solution) of equation (3.3) with data $(\bar{H}(s, \bar{y}, \bar{z}), \bar{\xi}, \bar{L}, \bar{U})$. Conversely, suppose that there exists a solution (resp. maximal solution) $\left(\bar{Y}, \bar{Z}, \bar{K}^{+}, \bar{K}^{-}\right)$for equation (3.3). Hence, according to Lemma 3.1, one can see that $\left(Y_{t}, Z_{t}, K_{t}^{+}, K_{t}^{-}\right)$is a solution (resp. maximal solution) for equation (1.1), where

$$
\left\{\begin{array}{l}
Y_{t}=u^{-1}\left(\bar{Y}_{t}\right), \quad Z=\left[u^{-1}\left(\bar{Y}_{t}\right)\right]^{\prime} \bar{Z}_{t} \\
d K_{t}^{ \pm}=\left[u^{-1}\left(\bar{Y}_{t}\right)\right]^{\prime} d \bar{K}_{t}^{ \pm}, \text {for all } t \leq T
\end{array}\right.
$$

This shows that, equations (1.1) and (3.3) are equivalent.

3.1 Reflected Quadratic BSDEs with $H(t, y, z):=f(y)|z|^{2}$

Proposition 3.4. Let f be a continuous and integrable function. Assume that conditions (A.2) and (A.3) are satisfied. Then, equation bsde $\left(f(y)|z|^{2}, \xi, L, U\right)$ has a unique solution.

Proof. We use the same notations as in Proposition 3.3. According to Proposition 3.3, the Reflected Quadratic BSDE (RQBSDE) with data $\left(f(y)|z|^{2}, \xi, L, U\right)$ has a unique solution if and only if the following equation has a unique solution

$$
\left\{\begin{array}{l}
\text { (i) } \bar{Y} \in \mathcal{S}^{2}, \bar{K}^{+} \text {and } \bar{K}^{-} \in \mathcal{K}^{2}, \bar{Z} \in \mathcal{M}^{2}, \tag{3.4}\\
\text { (ii) } \bar{Y}_{t}=\bar{\xi}+\int_{t}^{T} d \bar{K}_{s}^{+}-\int_{t}^{T} d \bar{K}_{s}^{-}-\int_{t}^{T} \bar{Z}_{s} d B_{s}, \quad 0 \leq t \leq T, \\
\text { (iii) } \forall t \leq T, \bar{L}_{t} \leq \bar{Y}_{t} \leq \bar{U}_{t}, \\
\text { (iv) } \int_{0}^{T}\left(\bar{U}_{t}-\bar{Y}_{t}\right) d \bar{K}_{t}^{-}=\int_{0}^{T}\left(\bar{Y}_{t}-\bar{L}_{t}\right) d \bar{K}_{t}^{+}=0
\end{array}\right.
$$

By Assumption (A.2) and Lemma 3.1, we have $\bar{\xi}=u(\xi)$ is square integrable. From the result of Theorem 2.1, equation (3.4) has a unique solution.

Reflected Quadratic BSDE with $H(t, y, z)=a+b|y|+c|z|+f(y)|z|^{2}:=\phi_{f}(y, z)$
Let $\phi_{f}(y, z):=a+b|y|+c|z|+f(y)|z|^{2}, a, b, c \in \mathbb{R}$ and $f: \mathbb{R} \rightarrow \mathbb{R}$. The objective is to prove that the following reflected quadratic BSDE has at least one solution.

$$
\left\{\begin{array}{l}
\text { (i) } Y \in \mathcal{S}^{2}, K^{+} \text {and } K^{-} \in \mathcal{K}^{2}, Z \in \mathcal{M}^{2}, \\
\text { (ii) } Y_{t}=\xi+\int_{t}^{T} \phi_{f}(y, z) d s+\int_{t}^{T} d K_{s}^{+}-\int_{t}^{T} d K_{s}^{-}-\int_{t}^{T} Z_{s} d B_{s}, \quad 0 \leq t \leq T, \tag{3.5}\\
\text { (iii) } \forall t \leq T, L_{t} \leq Y_{t} \leq U_{t}, \\
\text { (iv) } \int_{0}^{T}\left(U_{t}-Y_{t}\right) d K_{t}^{-}=\int_{0}^{T}\left(Y_{t}-L_{t}\right) d K_{t}^{+}=0
\end{array}\right.
$$

Proposition 3.5. Let (A.2), (A.3) be satisfied. Assume moreover that f is continuous and belongs to $\mathbb{L}^{1}(\mathbb{R})$. Then the reflected quadratic BSDE (3.5) has at least one solution.

Proof. Let u be the function defined in Lemma 3.1. Let $\bar{Y}, \bar{K}^{\mp}, \bar{Z}, \bar{\xi}, \bar{L}$ and \bar{U} defined by (3.2). Consider the BSDE :

$$
\left\{\begin{array}{l}
\text { (i) } \bar{Y} \in \mathcal{S}^{2}, \bar{K}^{+} \text {and } \bar{K}^{-} \in \mathcal{K}^{2}, \bar{Z} \in \mathcal{M}^{2} \\
\text { (ii) } \bar{Y}_{t}=\bar{\xi}+\int_{t}^{T} G\left(\bar{Y}_{s}, \bar{Z}_{s}\right) d s+\int_{t}^{T} d \bar{K}_{s}^{+}-\int_{t}^{T} d \bar{K}_{s}^{-}-\int_{t}^{T} \bar{Z}_{s} d B_{s}, \quad 0 \leq t \leq T \tag{3.6}\\
\text { (iii) } \forall t \leq T, \bar{L}_{t} \leq \bar{Y}_{t} \leq \bar{U}_{t}, \\
\text { (iv) } \int_{0}^{T}\left(\bar{U}_{t}-\bar{Y}_{t}\right) d \bar{K}_{t}^{-}=\int_{0}^{T}\left(\bar{Y}_{t}-\bar{L}_{t}\right) d \bar{K}_{t}^{+}=0,
\end{array}\right.
$$

where $G(\bar{y}, \bar{z})=\left(a+b\left|u^{-1}(\bar{y})\right|\right) u^{\prime}\left(u^{-1}(\bar{y})\right)+c|\bar{z}|$. Using Lemma 3.1, we show that $\bar{\xi}$ is square integrable and G is continuous and of linear growth. Hence, according to Theorem 2.2, the BSDE (3.6) has at least one solution. We use Proposition 3.3 to get the desired result.

4 Reflected Quadratic BSDEss with measurable coefficient

4.1 Krylov's estimates and Itô-Krylov's formula in equation

We consider the following assumptions:
(H1) There exist a locally integrable nonnegative function f and an \mathcal{F}_{t}-adapted nonnegative stochastic process η satisfying $\mathbb{E} \int_{0}^{T} \eta_{s} d s<+\infty$ such that for a.e. (t, ω) and every (y, z),

$$
|H(t, y, z)| \leq \eta_{t}+f(y)|z|^{2}
$$

(H2) $f \in \mathbb{L}^{1}(\mathbb{R})$.

Proposition 4.1. (Local estimte) Let $\left(Y, Z, K^{+}, K^{-}\right)$be a solution of the equation (1.1) with data $(H(t, y, z), \xi, L, U)$ and assume that the generator H satisfy Assumption (H1). Then, there exists a positive constant C depending on $T, R, \mathbb{E}\left[K_{T}^{ \pm}\right]$and $\|f\|_{\mathbb{L}^{1}([R,-R])}$ such that for any positive measurable function Ψ,

$$
\mathbb{E} \int_{0}^{T \wedge \tau_{R}} \Psi\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s \leq C\|\Psi\|_{\mathbb{L}^{1}([R,-R])},
$$

where $\tau_{R}:=\inf \left\{t>0:\left|Y_{t}\right| \geq R\right\}$
Proof. Let $\tau:=\tau_{R} \wedge \tau_{N}^{\prime} \wedge \tau_{M}^{\prime \prime} \wedge \tau_{l}^{+} \wedge \tau_{l^{\prime}}^{-}$, where

$$
\begin{aligned}
\tau_{N}^{\prime} & :=\inf \left\{t>0: \int_{0}^{t}\left|Z_{s}\right|^{2} d s \geq N\right\} \\
\tau_{M}^{\prime \prime} & :=\inf \left\{t>0: \int_{0}^{t}\left|H\left(s, Y_{s}, Z_{s}\right)\right| d s \geq M\right\}, \\
\tau_{l}^{+} & :=\inf \left\{t>0: K_{t}^{+} \geq l\right\} \\
\tau_{l^{\prime}}^{-} & :=\inf \left\{t>0: K_{t}^{-} \geq l^{\prime}\right\} .
\end{aligned}
$$

Clearly, τ_{N}^{\prime} tends to infinity as N tends to infinity. The same do for $\tau_{R}, \tau_{M}^{\prime \prime}, \tau_{l}^{+}$and $\tau_{l^{\prime}}^{-}$. For $a \in \mathbb{R}$ such that $a \leq R$, let $\mathbf{L}^{a}(Y)$ be the local time of Y at the level a. Using the occupation time formula, we show that for any nonnegative function Ψ, we have

$$
\begin{align*}
\mathbb{E}\left[\int_{0}^{t \wedge \tau_{R}} \Psi\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s\right] & =\mathbb{E}\left[\int_{0}^{t \wedge \tau_{R}} \Psi\left(Y_{s}\right) d\langle Y\rangle_{s}\right] \tag{4.1}\\
& \leq \mathbb{E}\left[\int_{-R}^{R} \Psi(a) \mathbf{L}_{t \wedge \tau_{R}}^{a}(Y) d a\right]
\end{align*}
$$

On the other hand, using Tanaka's formula and the fact that the map $y \rightarrow(y-a)^{+}$is Lipschitz, we get

$$
\left(Y_{t \wedge \tau}-a\right)^{+}=\left(Y_{t \wedge \tau}-a\right)^{+}+\int_{0}^{t \wedge \tau} 1_{\left\{Y_{s} \geq a\right\}} d Y_{s}+\frac{1}{2} \mathbf{L}_{t \wedge \tau}^{a}(Y)
$$

It follows that

$$
\begin{align*}
\frac{1}{2} \mathbf{L}_{t \wedge \tau}^{a}(Y)+\int_{0}^{t \wedge \tau} 1_{\left\{Y_{s} \geq a\right\}} d K_{s}^{-} & \leq\left|Y_{t \wedge \tau}-Y_{0}\right|+\int_{0}^{t \wedge \tau} 1_{\left\{Y_{s} \geq a\right\}} H\left(s, Y_{s}, Z_{s}\right) d s \tag{4.2}\\
& +\int_{0}^{t \wedge \tau} 1_{\left\{Y_{s} \geq a\right\}} d K_{s}^{+}-\int_{0}^{t \wedge \tau} 1_{\left\{Y_{s} \geq a\right\}} Z_{s} d W_{s}
\end{align*}
$$

Passing to expectation in the previous inequality, we obtain

$$
\begin{equation*}
\sup _{a} \mathbb{E}\left[\mathbf{L}_{t \wedge \tau}^{a}(Y)\right] \leq 2\left(M+l+l^{\prime}+2 R\right) \tag{4.3}
\end{equation*}
$$

Note that $\operatorname{Support}\left(\mathbf{L}_{\cdot \wedge \tau}^{a}(Y)\right) \subset[-R, R]$ and $\mathbb{E}\left(K_{T}^{ \pm}\right)^{2}<+\infty$. Therefore, using the occupation time formula, we get

$$
\begin{aligned}
\frac{1}{2} \mathbf{L}_{t \wedge \tau}^{a}(Y) & \leq\left|Y_{t \wedge \tau}-Y_{0}\right|+\int_{0}^{T} \eta_{s} d s+\int_{0}^{t \wedge \tau} 1_{\left\{Y_{s} \geq a\right\}} f\left(Y_{s}\right) d\langle Y\rangle_{s} \\
& +K_{T}^{+}+K_{T}^{-}-\int_{0}^{t \wedge \tau} 1_{\left\{Y_{s} \geq a\right\}} Z_{s} d W_{s} \\
& =\left|Y_{t \wedge \tau}-Y_{0}\right|+\int_{0}^{T} \eta_{s} d s+\int_{-R}^{a} f(x) \mathbf{L}_{t \wedge \tau}^{x}(Y) d x \\
& +K_{T}^{+}+K_{T}^{-}-\int_{0}^{t \wedge \tau} 1_{\left\{Y_{s} \geq a\right\}} Z_{s} d W_{s}
\end{aligned}
$$

It follows that

$$
\begin{align*}
\mathbb{E}\left[\mathbf{L}_{t \wedge \tau}^{a}(Y)\right] & \leq 2 \mathbb{E}\left[\left|Y_{t \wedge \tau}-Y_{0}\right|+K_{T}^{+}+K_{T}^{-}+\int_{0}^{T} \eta_{s} d s\right] \tag{4.4}\\
& +\int_{-R}^{a} 2|f(x)| \mathbb{E}\left[\mathbf{L}_{T \wedge \tau}^{x}(Y)\right] d x
\end{align*}
$$

using Gronwall's lemma, we get

$$
\mathbb{E}\left[\mathbf{L}_{t \wedge \tau}^{a}(Y)\right] \leq C^{\prime} \exp \left(2\|f\|_{\mathbb{L}_{(\mid-R . R])}^{1}}\right)
$$

where $C^{\prime}=4 R+2\left[\|\eta\|_{\mathbb{L}^{1}(\Omega)}+\mathbb{E}\left(K_{T}^{+}+K_{T}^{-}\right)\right]$. Passing successively to the limit on N, M, l and l^{\prime} then using From Beppo-Levi's theorem, we obtain

$$
\begin{equation*}
\mathbb{E}\left[\mathbf{L}_{t \wedge \tau_{R}}^{a}(Y)\right] \leq C^{\prime} \exp \left(2\|f\|_{\mathbb{L}_{(\mid-R . R])}^{1}}\right) \tag{4.5}
\end{equation*}
$$

At last, from (4.5) and (4.1), we obtain

$$
\mathbb{E}\left[\int_{0}^{t \wedge \tau_{R}} \Psi\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s\right] \leq C^{\prime} \exp \left(2\|f\|_{\mathbb{L}_{(\mid-R . R))}^{1}}\right)\|\Psi\|_{\mathbb{L}_{(\mid-R . R))}^{1}}
$$

Proposition 4.1 is proved.

Corollary 4.2. (Global estimate). Assume that (H.1) and (H.2) hold and ξ is square integrable. Let $\left(Y, Z, K^{+}, K^{-}\right)$be a solution of equation (1.1). Then there exists a positive constant C depending on $T,\|\eta\|_{\mathbb{L}^{1}([0, T] \times \Omega)}, \mathbb{E}\left[K_{T}^{ \pm}\right],\|f\|_{\mathbb{L}^{1}(\mathbb{R})}$ and $\mathbb{E}\left(\sup _{0 \leq t \leq T}\left|Y_{t}\right|\right)$ such that, for any nonnegative measurable function Ψ,

$$
\mathbb{E}\left[\int_{0}^{T} \Psi\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s\right] \leq C\|\Psi\|_{\mathbb{L}^{1}(\mathbb{R})}
$$

In particular,

$$
\mathbb{E} \int_{0}^{T \wedge \tau_{R}} \Psi\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s \leq C\|\Psi\|_{\mathbb{L}^{1}([R,-R])},
$$

where $\tau_{R}:=\inf \left\{t>0:\left|Y_{t}\right| \geq R\right\}$.

4.2 Itô-Krylov's formula for Reflected BSDEs.

In this subsection, we establish Itô-Krylov's change of variable formula for the solutions of one dimensional BSDEs with two reflecting barriers. This extends the results obtained in [1, 2].

Theorem 4.3. Let $\left(Y, Z, K^{+}, K^{-}\right)$be a solution of the BSDE with two reflecting barriers (1.1). Assume that $(\mathbf{H . 1})$ is satisfied and ξ is square integrable. Then, for any function $u \in \mathcal{W}_{1, \text { loc }}^{2}$, we get

$$
\begin{equation*}
u\left(Y_{t}\right)=u\left(Y_{0}\right)+\int_{0}^{t} u^{\prime}\left(Y_{s}\right) d Y_{s}+\frac{1}{2} \int_{0}^{t} u^{\prime \prime}\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s \tag{4.6}
\end{equation*}
$$

Remark 4.4. Note that, any function of $\mathcal{W}_{1, l o c}^{2}(\mathbb{R})$ have a representant which belongs to $\mathcal{C}^{1}(\mathbb{R})$. This representant will be considered from now on.

Proof. (of Theorem 4.3) By Proposition 4.1, the term $\int_{0}^{t} u^{\prime \prime}\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s$ is well defined. Using classical regularization by convolution, we consider the sequence $\left(u_{n}\right)_{n}$, such that for any u_{n} of \mathcal{C}^{2}-class functions satisfying :
(i) u_{n} converges uniformly to u in the interval $[-R, R]$.
(ii) u_{n}^{\prime} converges uniformly to u^{\prime} in the interval $[-R, R]$.
(iii) $u_{n}^{\prime \prime}$ converges in $\mathbb{L}^{1}([-R, R])$ to $u^{\prime \prime}$.

For $R>\left|Y_{0}\right|$, let $\tau_{R}:=\inf \left\{t>0:\left|Y_{t}\right| \geq R\right\}$. Since τ_{R} tends to infinity as R tends to infinity, it is enough to establish formula (4.6) for $Y_{t \wedge \tau_{R}}$. Itô's formula applied to $u_{n}\left(Y_{t \wedge \tau_{R}}\right)$ shows that

$$
\begin{equation*}
u_{n}\left(Y_{t \wedge \tau_{R}}\right)=u_{n}\left(Y_{0}\right)+\int_{0}^{t \wedge \tau_{R}} u_{n}^{\prime}\left(Y_{s}\right) d Y s+\frac{1}{2} \int_{0}^{t \wedge \tau_{R}} u_{n}^{\prime \prime}\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s \tag{4.7}
\end{equation*}
$$

Passing to the limit on n in the equation (4.7) then using properties (i), (ii), (iii) and Proposition 4.1, we get

$$
u\left(Y_{t \wedge \tau_{R}}\right)=u\left(Y_{0}\right)+\int_{0}^{t \wedge \tau_{R}} u^{\prime}\left(Y_{s}\right) d Y_{s}+\frac{1}{2} \int_{0}^{t \wedge \tau_{R}} u^{\prime \prime}\left(Y_{s}\right)\left|Z_{s}\right|^{2} d s
$$

4.3 Reflected quadratic BSDE with measurable generators

We will use the Itô-Krylov formula (4.6) to study the existence of solutions for the two classes of Reflected Quadratic BSDEs (1.1) with data $\left(f(y)|z|^{2}, \xi, L, U\right)$ and $\left(\phi_{f}(y, z), \xi, L, U\right)$. We also prove a comparison theorem for equation (1.1) with data $\left(f(y)|z|^{2}, \xi, L, U\right)$.

Lemma 4.5. ([2], Lemma A.1). Let f belongs to $\mathbb{L}^{1}(\mathbb{R})$. The function

$$
u(x):=\int_{0}^{x} \exp \left(2 \int_{0}^{y} f(t) d t\right) d y
$$

has the following properties,
(i) $u \in \mathcal{W}_{1, \text { loc }}^{2}(\mathbb{R})$ and satisfies the differential equation $\frac{1}{2} u^{\prime \prime}(x)-f(x) u^{\prime}(x)=0$ a.e on \mathbb{R}.
(ii) u is a one to one function from \mathbb{R} onto \mathbb{R}.
(iii) The inverse function u^{-1} belongs to $\mathcal{W}_{1, \text { loc }}^{2}(\mathbb{R})$.
(iv) u is a quasi-isometry, that is there exist two positive constants m and M such that, for any $x, y \in \mathbb{R}$,

$$
\begin{equation*}
m|x-y| \leq|u(x)-u(y)| \leq M|x-y| \tag{4.8}
\end{equation*}
$$

Remark 4.6. Since f is not continuous, then function $u(x):=\int_{0}^{x} \exp \left(2 \int_{0}^{y} f(t) d t\right) d y$ is not of class \mathcal{C}^{2}. Therefore, the classical Itô's formula can not be applied. But since u belongs to the Sobolev space $\mathcal{W}_{1, \text { loc }}^{2}$, we can use the Itô-Krylov formula.

The Reflected Quadratic BSDE with $H(t, y, z):=f(y)|z|^{2}$

The following result gives the existence and uniqueness of the solution to $b s d e\left(f(y)|z|^{2}, \xi, L, U\right)$.
Proposition 4.7. Assume that (A.2) and (H.2) are satisfied. Then, bsde $\left(f(y)|z|^{2}, \xi, L, U\right)$ has a unique solution.

Proof. Let u be the function defined in Lemma 4.5. Thanks to Theorem 2.1 the RBSDEs (3.3) with the data $(0, \bar{\xi}, \bar{L}, \bar{U})$ has a unique solution. Since u^{-1} belongs to $\mathcal{W}_{1, l o c}^{2}(\mathbb{R})$, then Itô-Krylov formula (3.3), applied to u^{-1} and the solution of equation (3.3) with data $(0, \bar{\xi}, \bar{L}, \bar{U})$, allows us to get the desired result.

The following proposition shows that we can compare the solutions for the two reflecting barriers quadratique BSDEs with the generators $H(t, y, z):=f(y)|z|^{2}$ although the generators are not continuous the comparison holds.

Proposition 4.8. (Comparison) Let f_{1}, f_{2} be globally integrable on \mathbb{R}. Let ξ_{1}, ξ_{2} belongs to \mathbb{L}^{2}. $\operatorname{Let}\left(Y^{f_{1}}, Z^{f_{1}}, K^{+, f_{1}}, K^{-, f_{1}}\right)$ and $\left(Y^{f_{2}}, Z^{f_{2}}, K^{+, f_{2}}, K^{-, f_{2}}\right)$ be solutions of RQBSDE (??) with data $\left(f_{1}(y)|z|^{2}, \xi_{1}, L^{f_{1}}, U^{f_{1}}\right)$ and $\left(f_{2}(y)|z|^{2}, \xi_{2}, L^{f_{2}}, U^{f_{2}}\right)$, respectively. Assume that $\xi_{1} \leq \xi_{2}$ a.s, $f_{1} \leq f_{2}$ a.e. and for any $t \leq T, L_{t}^{f_{1}} \leq L_{t}^{f_{2}}, U_{t}^{f_{1}} \leq U_{t}^{f_{2}}$ a.s. Then $Y_{t}^{f_{2}} \geq Y_{t}^{f_{1}}$ for all $t \mathbb{P}-$ a.s.

Proof. For any function f belongs to $\mathbb{L}^{1}(\mathbb{R})$, Consider $u_{f}(x):=\int_{0}^{x} \exp \left(2 \int_{0}^{y} f(t) d t\right) d y$. Using Theorem (4.3) to the function $u_{f_{1}}\left(Y_{t}^{f_{2}}\right)$, we have

$$
\begin{aligned}
u_{f_{1}}\left(Y_{T}^{f_{2}}\right)+\int_{t}^{T} u_{f_{1}}^{\prime}\left(Y_{s}^{f_{2}}\right) d K_{s}^{+, f_{2}} & =u_{f_{1}}\left(Y_{t}^{f_{2}}\right)-\int_{t}^{T} u_{f_{1}}^{\prime}\left(Y_{s}^{f_{2}}\right) f_{2}\left(Y_{s}^{f_{2}}\right)\left|Z_{s}^{f_{2}}\right|^{2} d s+\int_{t}^{T} u_{f_{1}}^{\prime}\left(Y_{s}^{f_{2}}\right) d K_{s}^{-, f_{2}} \\
& +\int_{t}^{T} \frac{1}{2} u_{f_{1}}^{\prime \prime}\left(Y_{T}^{f_{2}}\right)\left|Z_{s}^{f_{2}}\right|^{2} d s+\int_{t}^{T} u_{f_{1}}^{\prime}\left(Y_{s}^{f_{2}}\right) Z_{s}^{f_{2}} d B_{s}
\end{aligned}
$$

Since $u_{f_{1}}^{\prime}(x) \geq 0$, we use Lemma 4.5 (i) to deduce that

$$
\begin{aligned}
u_{f_{1}}\left(Y_{T}^{f_{2}}\right)+\int_{t}^{T} u_{f_{1}}^{\prime}\left(Y_{s}^{f_{2}}\right) d K_{s}^{+, f_{2}} & =u_{f_{1}}\left(Y_{t}^{f_{2}}\right)-\int_{t}^{T} u_{f_{1}}^{\prime}\left(Y_{s}^{f_{2}}\right)\left[f_{2}\left(Y_{s}^{f_{2}}\right)-f_{1}\left(Y_{s}^{f_{2}}\right)\right]\left|Z_{s}^{f_{2}}\right|^{2} d s \\
& +\int_{t}^{T} u_{f_{1}}^{\prime}\left(Y_{s}^{f_{2}}\right) d K_{s}^{-, f_{2}}+\int_{t}^{T} u_{f_{1}}^{\prime}\left(Y_{s}^{f_{2}}\right) Z_{s}^{f_{2}} d B_{s}
\end{aligned}
$$

Using to Lemma $4.5(\mathbf{i v})$ and $f_{2}\left(Y_{s}^{f_{2}}\right)-f_{1}\left(Y_{s}^{f_{2}}\right) \geq 0$, then there exists two positive constants m and M, such that

$$
u_{f_{1}}\left(Y_{T}^{f_{2}}\right)-u_{f_{1}}\left(Y_{t}^{f_{2}}\right)+m\left(K_{T}^{+, f_{2}}-K_{t}^{+, f_{2}}\right) \leq \int_{t}^{T} u_{f_{1}}^{\prime}\left(Y_{s}^{f_{2}}\right) Z_{s}^{f_{2}} d B_{s}+M\left(K_{T}^{-, f_{2}}-K_{t}^{-, f_{2}}\right)
$$

Since $u_{f^{1}}$ is an increasing function, then using the term $\xi_{1}-\xi_{2} \leq 0$, we get

$$
\begin{aligned}
u_{f_{1}}\left(Y_{t}^{f_{1}}\right)-u_{f_{1}}\left(Y_{t}^{f_{2}}\right) & =\mathbf{E}\left[u_{f_{1}}\left(Y_{T}^{f_{1}}\right) \mid \mathcal{F}_{t}\right]-u_{f_{1}}\left(Y_{t}^{f_{2}}\right) \\
& =\mathbf{E}\left[u_{f_{1}}\left(\xi_{1}\right) \mid \mathcal{F}_{t}\right]-u_{f_{1}}\left(Y_{t}^{f_{2}}\right) \\
& \leq \mathbf{E}\left[u_{f_{1}}\left(\xi_{2}\right) \mid \mathcal{F}_{t}\right]-u_{f_{1}}\left(Y_{t}^{f_{2}}\right) \\
& \leq \mathbf{E}\left[u_{f_{1}}\left(Y_{T}^{f_{2}}\right)-u_{f_{1}}\left(Y_{t}^{f_{2}}\right) \mid \mathcal{F}_{t}\right] \leq 0 .
\end{aligned}
$$

At last, taking $u_{f_{1}}^{-1}$ to get the desired result. Proposition (4.8) is proved.

4.4 The reflected BSDE with
 $$
H(t, y, z)=a+b|y|+c|z|+f(y)|z|^{2}:=\phi_{f}(y, z)
$$

In this subsection, we will establish the existence of solutions for the Reflected quadratic BSDE (1.1) when $H(t, y, z):=\phi_{f}(y, z)$, with

$$
\phi_{f}(y, z):=a+b|y|+c|z|+f(y)|z|^{2},
$$

where a, b and c are some nonnegative constants.

Proposition 4.9. Assume that f is globally integrable on \mathbb{R} and ξ square integrable. Then, the Reflected quadratic BSDE (1.1) with the data $\left(\phi_{f}(y, z), \xi, L, U\right)$ has at least one solution.

Proof. Let $u(x):=\int_{0}^{x} \exp \left(2 \int_{0}^{y} f(t) d t\right) d y$. Using the quasi isometry property of u in Lemma 4.5, we see that ξ is square integrable if and only if $\bar{\xi}:=u(\xi)$ is square integrable. Since u is a quasi isometry and u^{\prime} is bounded, we deduce that $G(\bar{y}, \bar{z})=\left(a+b\left|u^{-1}(\bar{y})\right|\right) u^{\prime}\left(u^{-1}(\bar{y})\right)+c|\bar{z}|$ is continuous and with linear growth. Therefore, according to Theorem 2.2, the RBSDE (1.1) with the data $(G(\bar{y}, \bar{z}), \bar{\xi}, \bar{L}, \bar{U})$ has at least one solution. Applying Itô-Krylov's formula (4.6) to the function $u^{-1}\left(\bar{Y}_{t}\right)$, we get that the $\operatorname{BSDE}(1.1)$ with the data $\left(\phi_{f}(y, z), \xi, L, U\right)$ has at least one solution.

Remark 4.10. It is clear that the conclusion of Proposition 4.9 remains true when the generator $\phi_{f}(y, z)$ is replaced by the generator $\psi_{f}(y, z):=a+b y+c z+f(y)|z|^{2}$.

4.5 The Reflected Quadratic BSDE with the generator \boldsymbol{H}

Proposition 4.11. Assume that the coefficient $H(t, \omega, y, z)$ is continuous in (y, z) for a.e (t, ω). Assume moreover that (A.1), (A.2), (A.3), (H.1) and (H.2) are satisfied. Then, the reflected quadratic BSDE (1.1) has a minimal and a maximal solution. Moreover, for any solution $\left(Y, Z, K^{+}, K^{-}\right)$, the component Y belongs to \mathcal{S}^{2}.

Proof. According to [1], since f is locally bounded, then it can be majorized by a piecewise constant function which we denote h. Therefore, using a suitable interpolation, one can construct a continuous function g such that $g \geq h \geq f$. Note moreover that (A.3) implies that there exists a continuous $\left(\mathcal{F}_{t}\right)$-adapted semimartigale. Therefore, according to Theorem 3.2 of [8] with

$$
\eta_{t}=a+b\left(\left|L_{t}\right|+\left|U_{t}\right|\right)+c^{2}
$$

and

$$
C_{t}=1+\sup _{s \leq t} \sup _{\alpha \in[0,1]}\left|g\left(\alpha L_{s}+(1-\alpha) U_{s}\right)\right|,
$$

the reflected BSDE (1.1) has a solution $\left(Y, Z, K^{+}, K^{-}\right)$such that (Y, Z) belongs to $\mathcal{C} \times \mathcal{L}^{2}$ and K^{+}, K^{-}belong to \mathcal{K}. Since L and U belong to \mathcal{S}^{2}, so does for Y because $L \leq Y \leq U$.

Remark 4.12. We conjecture that under assumptions of Proposition 4.11, one can show that Z belongs to \mathcal{M}^{2} and $\left(K^{+}-K^{-}\right)$belongs to \mathcal{K}^{2}.

References

[1] Bahlali Khaled; Eddahbi M'hamed; Ouknine Youssef; Solvability of some quadratic BSDEs without exponential moments. C. R. Math. Acad. Sci. Paris 351 (2013), no. 5-6, 229-233.
[2] Khaled Bahlali, M'hamed Eddahbi, Youssef Ouknine; Quadratic BSDEs with \mathbb{L}^{2}-terminal data Krylov's estimate and Itô-Krylov's formula and Existence results. The Annals of Probability 2017, Vol. 45, No. 4, 2377-2397. DOI/ 10.1214/16-AOP1115.
[3] Bahlali Khaled; A domination method for solving unbounded Quadratic BSDEs, Grad. J. Math, Special issue, Vol 5, 20-36, (2020). Also available in hal-01972711.
[4] Bahlali Khaled, Hamadene Said, Mezerdi Brahim; "Backward stochastic differential equations with two reflecting barriers and continuous with quadratic growth coefficient." Stochastic Processes and their Applications 115.7 (2005): 1107-1129.
[5] Bahlali Khaled and Mezerdi Brahim. "Some properties of solutions of stochastic differential equations driven by semi-martingales". Random Operators and Stochastic Equations 9.4: 307-318.
[6] Bahlali Khaled, El Hassan Essaky and Boubakeur Labed. "Reflected Backward Stochastic Differential Equation with Super-Linear Growth." Proceedings of the International Conference on Stochastic Analysis and Applications. Springer, Dordrecht, 2004.
[7] Cvitanic Jaksa and Ioannis Karatzas. "Backward stochastic differential equations with reflection and Dynkin games." The Annals of Probability (1996): 2024-2056.
[8] Essaky, E. H. and M. Hassani. Generalized BSDE with 2-reflecting barriers and stochastic quadratic growth. Journal of Differential Equations 254.3 (2013): 1500-1528.
[9] Hamadène, Saïd and Mohammed Hassani. "BSDEs with two reflecting barriers: the general result." Probability Theory and Related Fields 132.2 (2005): 237-264.
[10] Krylov N. V; Controlled diffusion processes. Vol. 14. Springer Science \& Business Media, 2008.
[11] Krylov N. V; On estimates of the maximum of a solution of a parabolic equation and estimates of the distribution of a semimartingale. Mathematics of the USSR-Sbornik 58.1 (1987): 207.
[12] Lepeltier, Jean-Pierre, and Jaime San Martín; Backward SDEs with two barriers and continuous coefficient: an existence result. Journal of applied probability 41.1 (2004): 162-175.
[13] Mel'nikov A. V; Stochastic equations and Krylov's estimates for semimartingales. Stochastics: An International Journal of Probability and Stochastic Processes 10.2 (1983): 81-102.
[14] Pardoux Etienne and Shige Peng; Adapted solution of a backward stochastic differential equation. Systems \& Control Letters 14.1 (1990): 55-61.

Author information

Roubi Abdallah, Université de Toulon, IMATH, EA 2134, 83957 La Garde, France and Université Med Khider Département de Maths, B.P. 145 Biskra, Algérie.
E-mail: abdallah.roubi@univ-biskra.dz
Labed Boubakeur, Université Med Khider Département de Maths, B.P. 145 Biskra, Algérie.
E-mail: b.labed@univ-biskra.dz
Khaled Bahlali, Université de Toulon, IMATH, EA 2134, 83957 La Garde, France.
E-mail: bahlali@univ-tln.fr
Received: June 23, 2021.
Accepted: October 23, 2021

