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Abstract. In this paper, we study the structure of cyclic codes of an arbitrary length n over
the ring Fq + uFq + u2Fq + . . . + uk−1Fq, where uk = 0 and q is a power of prime. Also
we study the rank for these codes, and we find their minimal spanning sets. This study is a
generalization and extension of the works in references [9] and [12], the dual codes over the ring
Fq + uFq + u2Fq, where u3 = 0 are studied as well

1 Introduction

Among the four rings of four elements, the Galois field F4 and more recently the ring of integers
modulo four Z4 are the most used in coding theory. Z4 -codes are renowned for producing good
nonlinear codes by the Gray map, namely Kerdok, preparata or Goethals codes. The structure
of cyclic codes over rings of odd length n has been discussed in Bonnecaze and Udaya [4],
Calderbank [5], Dougherty and Shiromoto [8], and van Lint [13]. Calderbank and Sloane [6],
and Pless [11] presented a complete structure of cyclic codes over Z4 of odd length. In [3],
Blackford studied cyclic codes of length n = 2k when k is odd. The cyclic codes over Z4
of length a power of 2 are studied in Abualrub and Oehmke [2]. They showed that the ring
Z4[x]/

〈
xn − 1

〉
is not a principal ideal ring and hence ideals may have more than one generator.

Ping Li and Shixin Zhu in [12], studied cyclic codes of arbitrary length over the ring Fq + uFq,
with u2 = 0 and Fq is a finite field of order q where q is a power of prime.

Let Rk be the ring Fq + uFq + u2Fq + . . . + uk−1Fq with uk = 0, where q is a power of
prime p.
In [1], Abualrub and Siap studied cyclic codes of an arbitrary length n over F2 + uF2 =
{0, 1, u, u + 1} where u2 = 0 and over F2 + uF2 + u2F2 = {0, 1, u, u + 1, u2, 1 + u2, 1 +
u+ u2, u+ u2} where u3 = 0 and F2 = {0, 1}. In [9], the authors Mohammed Al-Ashker and
Mohammed Hamoudeh extend these resultsto rings of the form F2 +uF2 +u2F2 + . . .+uk−1F2
where uk = 0.

A. Singh and P. kewat in [14] extend some of the results in [9] to the ring Fp+uFp+u2Fp+
. . .+ uk−1Fp where uk = 0, and Fp = {0, 1, 2, · · · , p− 1}.
In this paper, we study cyclic codes of an arbitrary length over Fq +uFq +u2Fq + · · ·+uk−1Fq,
where q is a power of prime p and uk = 0, we also study their dual codes and find their properties
over these rings. We give a unique set of generators for these codes as ideals in the ring Rk,n =
Rk[x]/

〈
xn − 1

〉
. For this purpose, it is useful to obtain the divisors of xn − 1, but this becomes

difficult when the characteristic of the ring is not relatively prime to the length of the code,
because then xn − 1 does not factor uniquely over the ring Fq + uFq + u2Fq + · · · + uk−1Fq.
We show that the results of [12] concerning the codes over the ring Fq +uFq with u2 = 0 and of
[9] concerning the codes over the ring F2 + uF2 + u2F2 + · · ·uk−1F2 with uk = 0 are valid for
Rk = Fq + uFq + u2Fq + . . . + uk−1Fq with uk = 0. The proofs of lemmas and Theorems in
this paper are some what similar to those discussed in [12], [9] and slightly different from those
discussed in [14]

The remaining part of this paper is organized as follows: In section 2, we give some basic
definitions and results that are used in the sequel of this paper. In section 3, we study cyclic
codes of an arbitrary length n over Fq + uFq + u2Fq + · · · + uk−1Fq. We find a unique set of
generators for these codes. In section 4, we study the rank and find minimal spanning sets for
these codes. In section 5, we study the dual codes of the codes over the ring Fq + uFq + u2Fq.
In section 6, we include some examples of cyclic codes over Rk.
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2 Preliminaries

Let Fn
q denote the vector space of all n−tuples over the finite field Fq. An (n,M) code C over

Fq is a subset of Fn
q of size M . If C is a k−dimentional subspace of Fn

q , then we will called an
[n, k] linear code over Fq.
A linear codeC of length n over Fq is cyclic provided that for each vector c = (c0c1 . . . cn−2cn−1)
in C, the vector (cn−1c0 . . . cn−2) obtained from c by the cyclic shift of coordinates i 7→ i + 1(
mod n), is also in C.
A code of length n over a commutative ring R is a nonempty subset of Rn, and a code is linear

over R if it is an R−submodule of Rn.
A free module C is a module with a basis (a linearly independent spanning set for C).
A linear code of length n is cyclic if it is invariant under the automorphism σ which is given by
σ(c0, c1, . . . , cn−1) = (cn−1, c0, . . . , cn−2).

Definition 2.1. [7] An ideal I of a ring R is called principal if it is generated by one element. A
ring R is a principal ideal ring if its ideals are principal. R is called a local ring if R has a unique
maximal right (left) ideal. Furthermore, a ring R is called a right (left) chain ring if the set of
all right (left) ideals of R is a chain under set-theoretic inclusion. If R is both a right and a left
chain ring, we simply call R a chain ring.

Definition 2.2. The ring Rk = Fq[u]/
〈
uk
〉
= Fq +uFq +u2Fq + . . .+uk−1Fq is a commutative

chain ring of qk elements with maximal ideal uRk, where uk = 0.
Since u is nilpotent with nilpotent index k, we have

Rk ⊃ uRk ⊃ u2Rk ⊃ . . . ⊃ ukRk = 0.

Moreover Rk/uRk
∼= Fq is the residue field and |uiRk| = q|(ui+1Rk)| = qk−i, 0 ≤ i ≤ (k−1).

Denote R1 = Fq, R2 = Fq + uFq, R3 = Fq + uFq + u2Fq, . . . etc.

Definition 2.3. Let Ck be a code of length n over the ring Rk = Fq+uFq+u2Fq+ . . .+uk−1Fq

with uk = 0, we mean an additive submodule of the Rk−module Rn
k .

A cyclic code of length n over Rk is an ideal in the ring Rk,n = Rk[x]/
〈
xn − 1

〉
.

Definition 2.4. [1] Let c = (c0, . . . , cn−1) and u = (u0, . . . , un−1) be any two vectors over a ring.
We define their inner product by

c.u = c0u0 + . . .+ cn−1un−1.

If c.u = 0, then c and u are said to be orthogonal. We define the dual of a cyclic code C to be
the set

C⊥ = {c ∈ Rn
k : c · u = 0 for all u ∈ C}.

Notation: We write a for a(x), g for g(x), . . .etc.

Proposition 2.1. [7] Let R be a finite commutative ring, then the following conditions are equiv-
alent:
(i) R is a local ring and the maximal ideal M of R is principal.
(ii) R is a local principal ideal ring.
(iii) R is a chain ring.

Notation:all rings studied in this paper are commutative chain rings.

3 A generator Construction

The structure of cyclic codes over Ri depends on cyclic codes over Ri−1 for i = 2, 3, . . . , k and
the structure of cyclic codes over R2 depends on cyclic codes over R1 = Fq.
By following results in [1] and [9], let C1 be a cyclic code in Rk,n = Rk[x]/

〈
xn − 1

〉
.

Define ψ1 : Rk → Rk−1 by ψ1(a) = a, where uk = 0 mod q. ψ1 is a ring homomorphism that
can be extended to a homomorphism φ1 : C1 → Rk−1,n = Rk−1[x]/

〈
xn − 1

〉
defined by

φ1(c0 + c1x+ . . .+ cn−1x
n−1) = ψ1(c0) + ψ1(c1)x+ . . .+ ψ1(cn−1)x

n−1.

kerφ1 = {uk−1r(x) : r(x) ∈ Fq[x]}.

Let J1 = {r(x) : uk−1r(x) ∈ kerφ1}, J1 is an ideal inR1,n = R1[x]/
〈
xn−1

〉
= Fq[x]/

〈
xn−1

〉
and and hence a cyclic code in Fq[x]/

〈
xn−1

〉
. So J1 =

〈
ak−1(x)

〉
and kerφ1 =

〈
uk−1ak−1(x)

〉
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with ak−1(x)|(xn − 1).
Let C2 be a cyclic code in Rk−1,n = Rk−1[x]/

〈
xn − 1

〉
.

Define ψ2 : Rk−1 → Rk−2 by ψ2(a) = a. ψ2 is a ring homomorphism that can be extended to a
homomorphism φ2 : C2 → Rk−2[x]/

〈
xn − 1

〉
defined by

φ2(c0 + c1x+ . . .+ cn−1x
n−1) = ψ2(c0) + ψ2(c1)x+ . . .+ ψ2(cn−1)x

n−1.

kerφ2 = {uk−2r(x) : r(x) ∈ Fq[x]}.

Let J2 = {r(x) = uk−2r(x) ∈ kerφ2} is an ideal in R1,n = Fq[x]/
〈
xn − 1

〉
and hence a

cyclic code in Fq[x]/
〈
xn − 1

〉
. So J2 =

〈
ak−2(x)

〉
and hence ker(φ2) =

〈
uk−2ak−2(x)

〉
with

ak−2(x)|(xn − 1).
Let C3 be a cyclic code in Rk−2,n = Rk−2[x]/

〈
xn − 1

〉
.

Define ψ3 : Rk−2 → Rk−3 by ψ3(a) = a. ψ3 is a ring homomorphism that can be extended
to a homomorphism φ3 : C3 → Rk−3[x]/

〈
xn − 1

〉
. Continue in the same way as above until

we define ψk−1 : R2 → R1 = Fq by ψk−1(a) = aq. ψk−1 is a ring homomorphism because
(a+ b)q = aq + bq in R2 and in Fq.
Extend ψk−1 to a homomorphism φk−1 : Ck−1 → Fq[x]/

〈
xn − 1

〉
= R1,n defined by

φk−1(c0 + c1x+ . . .+ cn−1x
n−1) = ψk−1(c0) + ψk−1(c1)x+ . . .+ ψk−1(cn−1)x

n−1

= cq0 + cq1x+ . . .+ cqn−1x
n−1 = c0 + c1c+ · · ·+ cnx

n−1,

where Ck−1 be a cyclic code in R2,n = R2[x]
/〈
xn − 1

〉
, where R2 = Fq + uFq with u2 = 0

mod q.
kerφk−1 =

{
ur(x) : r(x) is a polynomial in Fq[x]

/〈
xn − 1

〉}
=
〈
ua1(x)

〉
with a1(x)

∣∣(xn − 1
)
.

The image of φk−1 is also an ideal and hence a cyclic code over Fq generated by g(x) with
g(x)

∣∣(xn − 1
)
. The cyclic code over R2 = Fq + uFq have the form in the following lemma:

Lemma 3.1. [12] Let Ck−1 an arbitrary ideal of ring R2,n (i.e., it’s an arbitrary cyclic code of
arbitrary length n over ring R2), then there only exits a1(x)|g(x)|xn − 1, and the polynomials
g(x), a1(x), p(x) in Fq[x] with dega1 > degp, such that Ck−1 =< g(x) + up(x), ua1(x) >.

Note that a1
∣∣(pxn−1

g

)
because

φk−1
(xn − 1

g
[g + up]

)
= φk−1

(
up
xn − 1
g

)
= 0

⇒
(
upxn−1

g

)
∈ kerφk−1 =

〈
ua1
〉
. Also ug ∈ kerφk−1 implies a1(x)

∣∣g(x).
Lemma 3.2. If Ck−1 =

〈
g(x) + up(x), ua1(x)

〉
over R2 = Fq + uFq with (u2 = 0 mod q), and

g(x) = a1(x) with deg g(x) = r, then Ck−1 =
〈
g(x) + up(x)

〉
and (g + up)

∣∣(xn − 1
)

in R2[x].

Proof. Since u(g + up) = ug and g = a with deg g(x) = r, then Ck−1 = (g(x) + up) and (g +
up)|xn − 1 in R2[x].

Lemma 3.3. (1) Let Ck−2 be a cyclic code in R3,n, then Ck−2 =
〈
g + up1 + u2p2, ua1 +

u2q1, u
2a2
〉

with a2|a1|g|(xn − 1), a1(x)
∣∣p1(x)

(
xn−1
g(x)

)
mod q, a2|q1

(
xn−1
a1

)
, a2|p1

(
xn−1

g

)
and

a2
∣∣p2
(
xn−1

g

)(
xn−1
a1

)
. We may assume that deg p2 < deg a2, deg q1 < deg a2, deg p1 < deg a1.

(2)A cyclic code over the ring R3,n can be written uniquely as Ck−2 =
〈
g + up1 + u2p2, ua1 +

u2q1, u
2a2
〉
.

(3)If Ck−2 =
〈
g + up1 + u2p2, ua1 + u2q1, u

2a2
〉

over R3 = Fq + uFq + u2Fq with (u3 = 0),
and a2 = g, then Ck−2 =

〈
g + up1 + u2p2

〉
and

(
g + up1 + u2p2

)∣∣(xn − 1) in R3.
(4)If n is relatively prime to q, then Ck−2 =

〈
g, ua1, u

2a2
〉
=
〈
g + ua1 + u2a2

〉
over R3.

Proof. (1) Since the image of φk−2 is an ideal in R2,n = R2[x]
/〈
xn − 1

〉
(where R2 = Fq +

uFq with u2 = 0), then Im(φk−2) =
〈
g(x) + up1(x), ua1(x)

〉
with a1(x)

∣∣g(x)|(xn − 1) and
a1(x)

∣∣p1(x)
(
xn−1
g(x)

)
.Also, ker(φk−2) =

〈
u2a2(x)

〉
with a2(x)

∣∣(xn−1). Since u2a1 ∈ ker(φk−2) =〈
u2a2

〉
, then the cyclic code Ck−2 over R3 = Fq + uFq + u2Fq with u3 = 0 is Ck−2 =〈

g + up1 + u2p2, ua1 + u2q1, u
2a2
〉

with a2|a1|g|(xn − 1), a1(x)
∣∣p1(x)

(
xn−1
g(x)

)
mod q. Since

φk−2
(
xn−1
a1

(ua1 + u2q1)
)
= φk−2

(
u2q1

xn−1
a1

)
= 0. Hence

(
u2q1

xn−1
a1

)
∈ kerφk−2 =

〈
u2a2

〉
.
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This implies that a2(x)
∣∣(q1

xn−1
a1

)
. Similarly, we have a1(x)

∣∣p1(x)
(
xn−1
g(x)

)
mod q. further,

φk−2
((

xn−1
g

)(
xn−1
a1

)(
g+up1+u2p2

))
= φk−2

((
xn−1

g

)(
xn−1
a1

)
u2p2

)
= 0. Thus, a2

∣∣p2
(
xn−1

g

)(
xn−1
a1

)
.

We may assume that deg p2 < deg a2, deg q1 < deg a2, deg p1 < deg a1 because if e =
(a, b), then e = (a, b+ de) for any d.
(2)The proof is similar to Lemma 6 in [1].
(3) Since a2 = g, then a1 = a2 = g. From lemma 3.1. we get that

(
g + up

)∣∣(xn − 1) in R2 and
Ck−2 =

〈
g + up1 + u2p2, u

2a2
〉
. The rest of the proof is similar to lemma 3.1.

(4) The proof is similar to Lemma 8 in [1].

Following the same process we find the cyclic code Ck−3 over R4 = Fq+uFq+u2Fq+u3Fq

with (u4 = 0). So, since the image of φk−3 is an ideal in R3,n = R3[x]
/〈
xn − 1

〉
(where

R3 = Fq + uFq + u2Fq with u3 = 0), then Im(φk−3) =
〈
g(x) + up1(x) + u2p2(x), ua1(x) +

u2q1(x), u2a2(x)
〉

with a2|a1|g|(xn − 1), a1(x)
∣∣p1(x)

(
xn−1
g(x)

)
, a2|q1(x)

(
(xn−1)
a1(x)

)
and

a2
∣∣p2(x)

(
xn−1
g(x)

)(
xn−1
a1(x)

)
.Also ker(φk−3) =

〈
u3a3(x)

〉
with a3(x)

∣∣(xn−1). Since u3a2 ∈ ker(φk−3) =〈
u3a3(x)

〉
, then the cyclic code Ck−3 over R4 = Z2 + uZ2 + u2Z2 + u3Z2 with (u4 = 0) is

Ck−3 =
〈
g + up1 + u2p2 + u3p3, ua1 + u2q1 + u3q2, u

2a2 + u3l1, u
3a3
〉

with

a3
∣∣a2
∣∣a1
∣∣g∣∣(xn − 1) mod q, a1(x)

∣∣p1(x)
(xn − 1
g(x)

)
,

a2
∣∣q1(x)

((xn − 1)
a1(x)

)
, a2

∣∣p2(x)
(xn − 1
g(x)

)(xn − 1
a1(x)

)
,

a3
∣∣l1(x)((xn − 1)

a2(x)

)
, a3

∣∣q2(x)
(xn − 1
q1(x)

)(xn − 1
a1(x)

)
and a3(x)

∣∣p3(x)
(
xn−1
g(x)

)(
xn−1
a2(x)

)(
xn−1
a1(x)

)
. Moreover deg p3 < dega3, deg q2 < dega3, deg l1 <

dega3, deg p2 < dega2, deg q1 < dega2, deg p1 < dega1.

Lemma 3.4. If Ck−3 =
〈
g+up1 +u2p2 +u3p3, ua1 +u2q1 +u3q2, u

2a2 +u3l1, u
3a3
〉

over R4 =

Fq +uF2q+u2Fq +u3Fq with (u4 = 0), and a3 = g, then Ck−3 =
〈
g+up1 +u2p2 +u3p3

〉
and(

g + up1 + u2p2 + u3p3
)∣∣(xn − 1) in R4.

Proof. Since a3 = g, then a1 = a2 = a3 = g. From lemma 3.3 we get that (g+up1+u2p2)
∣∣(xn−

1) in R3 and Ck−3 =
〈
g+ up1 + u2p2 + u3p3, ua1 + u2q1 + u3q2, u

3a3
〉
. The rest of the proof is

similar to lemma 3.3.

Lemma 3.5. If n is relatively prime to q, then the cyclic code Ck−3 over R4 can be written as

Ck−3 =
〈
g, ua1, u

2a2, u
3a3
〉
=
〈
g + ua1 + u2a2 + u3a3

〉
.

Proof. The proof is similar to Lemma 3.5 in [9].

From all the above discussion, we can construct any cyclic code C1 over Rk, k ≥ 4 by using
the same process and induction on k to get the following theorem:

Theorem 3.6. Let C1 be a cyclic code in Rk,n = Rk[x]
/〈
xn − 1

〉
, Rk = Fq + uFq + u2Fq +

. . .+ uk−1Fq with uk = 0.
(1) If n is relatively prime to q, then Rk,n is a principal ideal ring and
C1 =

〈
g, ua1, u

2a2, . . . , u
k−1ak−1

〉
=
〈
g + ua1 + u2a2 + . . .+ uk−1ak−1

〉
where g(x), a1(x), a2(x), . . . , ak−1(x) are polynomials over Fq with
ak−1(x)

∣∣ak−2(x)
∣∣ . . . ∣∣a2(x)

∣∣a1(x)
∣∣g(x).

(2) If n is not relatively prime to q, then
(a) C1 =

〈
g + up1 + u2p2 + . . .+ uk−1pk−1

〉
where g(x), pi(x) are polynomials over Fq

∀i = 1, 2, . . . , k− 1 with g(x)
∣∣(xn − 1), (g+ up1 + u2p2 + . . .+ uk−1pk−1)

∣∣(xn − 1) in Rk and
deg pi < deg pi−1 for all 2 ≤ i ≤ k − 1.
OR
(b)C1 =

〈
g+up1+u2p2+. . .+uk−1pk−1, u

k−1ak−1
〉

where ak−1|g|(xn−1), (g+up1)|(xn−1)
inR2, g(x)|p1

(
xn−1
g(x)

)
and ak−1|p1

(
xn−1
g(x)

)
, ak−1|p2

(
xn−1
g(x)

)(
xn−1
g(x)

)
, . . . and ak−1|pk−1

(
xn−1
g(x)

)
. . .
(
xn−1
g(x)

)
(k−

1, times) and deg pk−1 < deg ak−1.
OR
(c) C1 =

〈
g+up1 +u2p2 + . . .+uk−1pk−1, ua1 +u2q1 + . . .+uk−1qk−2, u

2a2 +u3l1 + . . .+
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uk−1lk−3, . . . , u
k−2ak−2 + uk−1t1, u

k−1ak−1
〉

with ak−1
∣∣ak−2

∣∣ . . . ∣∣a2
∣∣a1
∣∣g|(xn − 1),

ak−2|p1
(
xn−1

g

)
, . . . , ak−1|t1

(
xn−1
ak−2

)
, . . . , ak−1|pk−1

(
xn−1

g

)
. . .
(
xn−1
ak−2

)
.

Moreover deg pk−1 < deg ak−1, . . . , deg t1 < deg ak−1, . . . and deg p1 < deg ak−2.

Motivated by the work in [7], [10], the structure of cyclic codes overRk of length n relatively
prime to q can be given in another way as follows: LetRk be a finite chain ring with the maximal
ideal< u > and k be the nilpotent index of u. Assume that n is not divisible by the characteristic
of the residue field Fq, so that xn−1 has a unique decomposition as a product of basic irreducible
pairwise coprime polynomials in Rk[x] (cf.proposition 2.7 in [7]).

Theorem 3.7. Let C be a cyclic code of length n relatively prime to q over Rk, which has maxi-
mal ideal < u > and k is the nilpotent index of u. Then there exist polynomials g0, g1, . . . , gk−1
in Rk[x] such that C =

〈
g0, ug1, . . . , u

k−1gk−1
〉

and gk−1|gk−2| . . . |g1|g0|(xn − 1).

Theorem 3.8. Let C be a cyclic code of length n relatively prime to q over Rk, which has
maximal ideal < u > and k is the nilpotent index of u, F = F̂1 + uF̂2 + . . . + uk−1F̂k, where
Fi(x) is a factor of xn − 1, F̂i(x) =

xn−1
Fi(x)

. Then C =
〈
F
〉
.

Corollary 3.9. The ring Rk[x]
/〈
xn − 1

〉
with n relatively prime to q is a principal ideal ring.

4 Ranks and minimal spanning sets for cyclic codes over Rk

In this section we will discuss the ranks and minimal spanning sets for cyclic codes over Rk. In
[9], the authors have shown the following Theorem:

Lemma 4.1. [9] Let C1 be a cyclic code of even length n over Rk = Z2 + uZ2 + u2Z2 + . . . +
uk−1Z2 with uk = 0. The constraints on the generator polynomials as in theorem 3.6.
(1) If C1 =

〈
g + up1 + u2p2 + . . .+ uk−1pk−1

〉
, deg g(x) = r, then C1 is a free module with

rank(C1) = n− r and basis
β =

{
(g+up1+u2p2+ . . .+uk−1pk−1), x(g+up1+u2p2+ . . .+uk−1pk−1), . . . , xn−r−1(g+

up1 + u2p2 + . . .+ uk−1pk−1)
}
.

(2) If C1 =
〈
g+up1 +u2p2 + . . .+uk−1pk−1, ua1 +u2q1 + . . .+uk−1qk−2, u

2a2 +u3l1 + . . .+

uk−1lk−3, . . . , u
k−2ak−2+uk−1t1, u

k−1ak−1
〉

with deg g(x) = r1, deg a1(x) = r2, deg a2(x) =
r3, . . . , deg ak−1 = rk, then C1 has rank(C1) = n− rk and a minimal spanning set given by
χ =

{(
g+up1+u2p2+. . .+uk−1pk−1

)
, x
(
g+up1+u2p2+. . .+uk−1pk−1

)
, . . . , xn−r1−1

(
g+

up1+u2p2+. . .+uk−1pk−1
)
,
(
ua1+u2q1+. . .+uk−1qk−2

)
, x
(
ua1+u2q1+. . .+uk−1qk−2

)
, . . . ,

xr1−r2−1
(
ua1 + u2q1 + . . .+ uk−1qk−2

)
, (u2a2 + u3l1 + . . .+ uk−1lk−3), x(u2a2 + u3l1 + . . .+

uk−1lk−3), . . . , xr2−r3−1(u2a2+u3l1+. . .+uk−1lk−3), . . . , uk−1ak−1(x), xuk−1ak−1(x), . . . ,

xrk−1−rk−1uk−1ak−1(x)
}
.

(3) If C1 =
〈
g+ up1 + u2p2 + . . .+ uk−1pk−1, u

k−1ak−1
〉

with deg g(x) = r,deg ak−1 = t then
C1 has rank(C1) = n− t and a minimal spanning set given by
Γ =

{
(g+up1+u2p2+ . . .+uk−1pk−1), x(g+up1+u2p2+ . . .+uk−1pk−1), . . . , xn−r−1(g+

up1 + u2p2 + . . .+ uk−1pk−1), uk−1ak−1, xu
k−1ak−1, . . . , x

r−t−1uk−1ak−1

}
.

Now we use the technology to obtain the similar results:

Theorem 4.2. Let C1 be a cyclic code of length n not relatively prime to q overRk = Fq+uFq+
u2Fq + . . .+ uk−1Fq with uk = 0. The constraints on the generator polynomials as in theorem
3.6.
(1) If C1 =

〈
g + up1 + u2p2 + . . .+ uk−1pk−1

〉
, deg g(x) = r, then C1 is a free module with

rank(C1) = n− r and basis
β =

{
(g+up1+u2p2+ . . .+uk−1pk−1), x(g+up1+u2p2+ . . .+uk−1pk−1), . . . , xn−r−1(g+

up1 + u2p2 + . . .+ uk−1pk−1)
}
.

(2) If C1 =
〈
g+up1 +u2p2 + . . .+uk−1pk−1, ua1 +u2q1 + . . .+uk−1qk−2, u

2a2 +u3l1 + . . .+

uk−1lk−3, . . . , u
k−2ak−2+uk−1t1, u

k−1ak−1
〉

with deg g(x) = r1, deg a1(x) = r2, deg a2(x) =
r3, . . . , deg ak−1 = rk, then C1 has rank(C1) = n− rk and a minimal spanning set given by
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χ =
{(
g+up1+u2p2+. . .+uk−1pk−1

)
, x
(
g+up1+u2p2+. . .+uk−1pk−1

)
, . . . , xn−r1−1

(
g+

up1+u2p2+. . .+uk−1pk−1
)
,
(
ua1+u2q1+. . .+uk−1qk−2

)
, x
(
ua1+u2q1+. . .+uk−1qk−2

)
, . . . ,

xr1−r2−1
(
ua1 + u2q1 + . . .+ uk−1qk−2

)
, (u2a2 + u3l1 + . . .+ uk−1lk−3), x(u2a2 + u3l1 + . . .+

uk−1lk−3), . . . , xr2−r3−1(u2a2+u3l1+. . .+uk−1lk−3), . . . , uk−1ak−1(x), xuk−1ak−1(x), . . . ,

xrk−1−rk−1uk−1ak−1(x)
}
.

(3) If C1 =
〈
g+ up1 + u2p2 + . . .+ uk−1pk−1, u

k−1ak−1
〉

with deg g(x) = r,deg ak−1 = t then
C1 has rank(C1) = n− t and a minimal spanning set given by
Γ =

{
(g+up1+u2p2+ . . .+uk−1pk−1), x(g+up1+u2p2+ . . .+uk−1pk−1), . . . , xn−r−1(g+

up1 + u2p2 + . . .+ uk−1pk−1), uk−1ak−1, xu
k−1ak−1, . . . , x

r−t−1uk−1ak−1

}
.

Proof. The proof is similar to the prove of lemma (4.1) in [9].

5 Dual codes over rings Fq + uFq + u2Fq

This section study the dual codes of cyclic codes over R3 = Fq + uFq + u2Fq. Let I be the
ideal of Ri,n = Ri[x]

/〈
xn − 1

〉
, where 2 ≤ i ≤ k, then the set A(I) = {g(x) : f(x)g(x) =

0,∀f(x) ∈ I} is called the annihilator of I in Ri,n; reciprocal polynomial of degree r of the
polynomial f(x) = c0 + c1x + · · · + crx

r is defined as f∗(x) = cr + cr−1x + · · · + c0x
r;

It’s obvious that if C is a cyclic code with associated ideal I then the associate ideal of C⊥ is
A(I)∗ = {g∗(x) : ∀g(x) ∈ I}.

Lemma 5.1. [12] If (n, p) 6= 1, let Ck−1 be an arbitrary ideal of the ring R2,n = R2[x]
/〈
xn−1

〉
(i.e., it’s an arbitrary cyclic code of arbitrary length n over ring R2), then there only exits
a1(x)|g(x)|xn − 1, and the polynomials g(x), a1(x), p1(x) in Fq[x] with dega1 > degp1, such
that Ck−1 =

〈
g(x) + up1(x), ua1(x)

〉
:

(I) if a(x) = g(x), then Ck−1 =
〈
g+up

〉
, and (g+up)|xn−1 inR2[x] , thusA(Ck−1) =

〈
xn−1
g+up

〉
,

also we have C⊥k−1 =
〈(

xn−1
g+up

)∗〉
(II)Otherwise, Ck−1 =< g+up, ua >, then A(Ck−1) =

〈
xn−1

a −up xn−1
g

a , uxn−1
g

〉
, also we have

C⊥k−1 =
〈(

xn−1
a − up xn−1

g

a

)∗
, u
(
xn−1

g

)∗〉
Lemma 5.2. Let Ck−2 be a cyclic code in R3,n ,then
(I) if (n, p) 6= 1 and Ck−2 =

〈
g+up1 +u2p2

〉
with a2|a1|g|(xn− 1)mod q, (g+up)|xn− 1, and

(g + up1 + u2p2) | (xn − 1) and deg p2 < deg p1, then
A(Ck−2) =

〈
xn−1

g+up1+u2p2

〉
, also have C⊥k−2 =

〈(
xn−1

g+up1+u2p2

)∗〉
(II) if (n, p) 6= 1 and Ck−2 =

〈
g+up1 +u2p2, u

2a2
〉

with a2|g|(xn− 1)mod q, (g+up)|xn− 1,
g(x)

∣∣p1(x)
(
xn−1
g(x)

)
, a2|p1

(
xn−1

g

)
and a2

∣∣p2
(
xn−1

g

)(
xn−1
a1

)
, and degp2 < dega2, then

A(Ck−2) =
〈 (xn−1)2

ga2
− up1(

xn−1
g )2

a2
+ u2 p2

1(
xn−1

g )2

ga2
− u2 p2(

xn−1
g )2

a2
, uxn−1

g

〉
.

Also have C⊥k−2 =
〈( (xn−1)2

ga2
− up1(

xn−1
g )2

a2
+ u2 p2

1(
xn−1

g )2

ga2
− u2 p2(

xn−1
g )2

a2

)∗
,
(
uxn−1

g

)∗〉
.

(III) Ck−2 =
〈
g + up1 + u2p2, ua1 + u2q1, u

2a2
〉

with a2|a1|g|(xn − 1), a1(x)
∣∣p1(x)

(
xn−1
g(x)

)
mod q, a2|q1

(
xn−1
a1

)
, a2|p1

(
xn−1

g

)
and a2

∣∣p2
(
xn−1

g

)(
xn−1
a1

)
, moreover, deg p2 < deg a2, deg q1 <

deg a2, deg p1 < deg a1, then

A(Ck−2) =
〈 (xn−1)3

ga1a2
−up1(x

n−1)3

g2a1a2
+u2 p2

1(
xn−1

g )3

a1a2
−u2 p2(x

n−1)3

g2a1a2
, u (xn−1)2

ga1
−u2 p1(

xn−1
g )2

a1
, u3 xn−1

g

〉
,

Also haveC⊥k−2 =
〈( (xn−1)3

ga1a2
−up1(x

n−1)3

g2a1a2
+u2 p2

1(
xn−1

g )3

a1a2
−u2 p2(x

n−1)3

g2a1a2

)∗
,
(
u (xn−1)2

ga1
−u2 p1(

xn−1
g )2

a1

)∗
,(

u3 xn−1
g

)∗〉
.

Proof. (I)Since (g+up1+u2p2) | (xn−1), the proof of the conclusion is similar to the generator
of dual codes in the ring R1.

(II)Let D =
〈 (xn−1)2

ga2
− up1(

xn−1
g )2

a2
+ u2 p2

1(
xn−1

g )2

ga2
− u2 p2(

xn−1
g )2

a2
, uxn−1

g

〉
, it is easy to prove that

(xn−1)2

ga2
− up1(

xn−1
g )2

a2
+ u2 p2

1(
xn−1

g )2

ga2
− u2 p2(

xn−1
g )2

a2
∈ A(Ck−2), uxn−1

g ∈ A(Ck−2).
SinceA(Ck−2) is an ideal of the ring ofR3,n, we assume thatA(Ck−2) =

〈
h+uv1+u2v2, u

2d2
〉
.

Since (h+ uv1 + u2v2)(g + up1 + u2p2) = 0, and (h+ uv1 + u2v2)(u2a2) = 0,
then

a2h = 0, gh = 0, gv1 + p1h = 0, gv2 + p1v1 + p2h = 0.
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From the above equalities, we assume that

h = ϕ(x) (x
n−1)2

ga2
, and we can obtain that v1 = −p1ϕ(x)

(xn−1)2

g2a2
, v2 = ϕ

p2
1(

xn−1
g )2

ga2
− ϕp2(

xn−1
g )2

a2
.

we also can get v2−ϕ
p2

1(
xn−1

g )2

ga2
+ϕ

p2(
xn−1

g )2

a2
= ξ xn−1

g , i.e. v2 = ϕ
p2

1(
xn−1

g )2

ga2
−ϕp2(

xn−1
g )2

a2
+ξ xn−1

g .
Then

h+uv1+u
2v2 = ϕ(x)

(xn − 1)2

ga2
−up1ϕ(x)

(xn − 1)2

g2a2
+u2ϕ

p2
1(

xn−1
g )2

ga2
−u2ϕ

p2(
xn−1

g )2

a2
+u2ξ

xn − 1
g

= ϕ(x)[
(xn − 1)2

ga2
− up1

(xn − 1)2

g2a2
+ u2

p2
1(

xn−1
g )2

ga2
− u2

p2(
xn−1

g )2

a2
] + ξu2x

n − 1
g

,

which implies that h+ uv1 + u2v2 ∈ D, it is easy to prove that u2d2 ∈ D, then A(Ck−2) ∈ D.

Hence A(Ck−2) =
〈 (xn−1)2

ga2
− up1(

xn−1
g )2

a2
+ u2 p2

1(
xn−1

g )2

ga2
− u2 p2(

xn−1
g )2

a2
, uxn−1

g

〉
,

and C⊥k−2 =
〈( (xn−1)2

ga2
− up1(

xn−1
g )2

a2
+ u2 p2

1(
xn−1

g )2

ga2
− u2 p2(

xn−1
g )2

a2
)∗,
(
uxn−1

g )∗
〉
.

(III)LetD1 =
〈 (xn−1)3

ga1a2
−up1(x

n−1)3

g2a1a2
+u2 p2

1(
xn−1

g )3

a1a2
−u2 p2(x

n−1)3

g2a1a2
, u (xn−1)2

ga1
−u2 p1(

xn−1
g )2

a1
, u3 xn−1

g

〉
,

it is easy to prove that (xn−1)3

ga1a2
− up1(x

n−1)3

g2a1a2
+ u2 p2

1(
xn−1

g )3

a1a2
− u2 p2(x

n−1)3

g2a1a2
∈ A(Ck−2), u

(xn−1)2

ga1
−

u2 p1(
xn−1

g )2

a1
∈ A(Ck−2), u3 xn−1

g ∈ A(Ck−2).
Since A(Ck−2) is an ideal of the ring of R3,n,
we assume that A(Ck−2) =

〈
h+ uv1 + u2v2, ud1 + u2l1, u

2d2
〉
.

Since (h+ uv1 + u2v2)(g + up1 + u2p2) = 0, (h+ uv1 + u2v2)(ua1 + u2q1) = 0, (h+ uv1 +
u2v2)(u2a2) = 0, (g + up1 + u2p2)(ud1 + u2l1) = 0, (ua1 + u2q1)(ud1 + u2l1) = 0, and
(h+ uv1 + u2v2)(u2a2) = 0,
then

a2h = 0, ha1 = 0, hq1 + a1v1 = 0, gh = 0, gv1 + p1h = 0, gv2 + p1v1 + p2h = 0.

From the above equalities, we assume that h = η(x) (x
n−1)3

ga1a2
,

and we can obtain that v1 = −p1η(x)
(xn−1)3

g2a1a2
, v2 = η(x)

p2
1(

xn−1
g )3

a1a2
− η(x)p2((x

n−1)3

g2a1a2
.

We also can get v2 − η(x)
p2

1(
xn−1

g )3

a1a2
+ η(x)p2((x

n−1)3

g2a1a2
= δ xn−1

g , i.e. v2 = η(x)
p2

1(
xn−1

g )3

a1a2
−

η(x)p2((x
n−1)3

g2a1a2
+ δ xn−1

g .

Then

h+ uv1 + u2v2 = η(x)
(xn − 1)3

ga1a2
− up1η(x)

(xn − 1)3

g2a1a2

+u2η(x)
p2

1(
xn−1

g )3

a1a2
− u2η(x)

p2((xn − 1)3

g2a1a2
+ u2δ

xn − 1
g

= η(x)[
(xn − 1)2

ga2
− up1

(xn − 1)2

g2a2
+ u2

p2
1(

xn−1
g )2

ga2
− u2

p2(
xn−1

g )2

a2
] + δu2x

n − 1
g

,

which implies that h+ uv1 + u2v2 ∈ D, it is easy to prove that ud1 + u2l1 ∈ D, and u2d2 ∈ D,
then A(Ck−2) ∈ D.

HenceA(Ck−2) =
〈 (xn−1)3

ga1a2
−up1(x

n−1)3

g2a1a2
+u2 p2

1(
xn−1

g )3

a1a2
−u2 p2(x

n−1)3

g2a1a2
, u (xn−1)2

ga1
−u2 p1(

xn−1
g )2

a1
, u3 xn−1

g

〉
,

and
C⊥k−2 =

〈(〈 (xn−1)3

ga1a2
−up1(x

n−1)3

g2a1a2
+u2 p2

1(
xn−1

g )3

a1a2
−u2 p2(x

n−1)3

g2a1a2
)∗,
(
u (xn−1)2

ga1
−u2 p1(

xn−1
g )2

a1
)∗,
(
u3 xn−1

g )∗
〉
.

6 Examples

Example 6.1. Cyclic codes of length 3 over F3 + uF3 + u2F3 + u3F3 with u4 = 0.
Now, x3 − 1 = (x+ 2)3 = g(x)

3

The Nonzero cyclic codes of length 3 over F3 + uF3 + u2F3 + u3F3 with generator polynomials
are on the following table 1:
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Non zero generator polynomials〈
1
〉
,
〈
g
〉
,
〈
g2〉〈

u
〉
,
〈
ug

〉
,
〈
ug2〉〈

u2〉, 〈
u2g

〉
,
〈
u2g2〉〈

u3〉, 〈
u3g

〉
,
〈
u3g2〉〈

g, u
〉
,
〈
g2, u

〉
,
〈
g, u2〉, 〈

g2, u2〉, 〈
g2, u2g

〉〈
g, u3〉, 〈

g2, u3〉, 〈
g2, u3g

〉〈
ug, u2〉, 〈

ug2, u2〉, 〈
ug2, u2g

〉〈
u2g, u3〉, 〈

u2g2, u3〉, 〈
u2g2, u3g

〉
Table 1 : Cyclic codes of length 3 over F3 + uF3 + u

2
F3 + u

3
F3.

Example 6.2. If n = 4 over F3 + uF3 + u2F3 with u3 = 0.
x4 − 1 = (x+ 1)(x+ 2)(x2 + 1) = f1(x)f2(x)f3(x) .
The nonzero free/non free module cyclic codes over F3 +uF3 +u2F3 are on the following tables
2,3:

Non zero generator polynomial(s)〈
1
〉
,
〈
f1
〉
,
〈
f2
〉
,
〈
f3
〉
,
〈
f1 + u

〉
,
〈
f2 + u

〉
,
〈
f3 + u

〉
,
〈
f1 + u2〉, 〈

f2 + u2〉, 〈
f3 + u2〉〈

f1f2 + u(c0 + c1x)
〉
,
〈
f1f2 + u2(c0 + c1x)

〉〈
f1f3 + u(c0 + c1x + c2x

2)
〉
,
〈
f1f3 + u2(c0 + c1x + c2x

2)
〉〈

f2f3 + u(c0 + c1x + c2x
2)
〉
,
〈
f2f3 + u2(c0 + c1x + c2x

2)
〉

Table 2 : Non zero Free module cyclic codes of length 4 over F3 + uF3 + u
2
F3.

Non zero generator polynomial(s): g=x+1〈
u
〉
,
〈
u2〉〈

ufi
〉
, i = 1, . . . , 3,

〈
u2fi

〉
, i = 1, . . . , 3.〈

uf1f2
〉
,
〈
uf1f3

〉
,
〈
uf2f3

〉〈
u2f1f2

〉
,
〈
u2f1f3

〉
,
〈
u2f2f3

〉〈
f1, u

〉
,
〈
f2, u

〉
,
〈
f3, u

〉
,
〈
f1f2, u

〉
,
〈
f1f3, u

〉
,
〈
f2f3, u

〉
,〈

f1, u
2〉, 〈f2, u

2〉, 〈f3, u
2〉, 〈f1f2, u

2〉, 〈f1f3, u
2〉, 〈f2f3, u

2〉,〈
f1f2 + uc0, uf1

〉
,
〈
f1f2 + u2c0, u

2f1
〉
,
〈
f1f2 + uc0, uf2

〉
,
〈
f1f2 + u2c0, u

2f2
〉〈

f1f3 + uc0, uf1
〉
,
〈
f1f3 + u2c0, u

2f1
〉
,
〈
f1f3 + u(c0 + c1x), uf2

〉
,
〈
f1f3 + u2(c0 + c1x), u

2f3
〉〈

f2f3 + uc0, uf2
〉
,
〈
f2f3 + u2c0, u

2f2
〉
,
〈
f2f3 + u(c0 + c1x), uf2

〉
,
〈
f2f3 + u2(c0 + c1x), u

2f3
〉

Table 3 : Non Free module cyclic codes of length 4 over F3 + uF3 + u
2
F3

7 Conclusion

In this paper, we studied cyclic codes of an arbitrary length over the ring Fq + uFq + u2Fq +
. . .+ uk−1Fq, with uk = 0. The rank and minimum spanning of this family of codes are studied
as well. We also study dual codes and find their properties over the ring Fq + uFq + u2Fq.
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