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Abstract. In this study, we generalize the comparability conditions, addressed in Compara-
bility of ideals and valuation over rings [2], between certain maximal ideals and fractional ideals
of D which also force D to be a quasi-local domain. Also, we introduce the notion of an almost
totally ordered group and establish that: “An integral domain D is an AVD if and only if the
group of divisibility of D is almost totally ordered”. Further we also establish the groups of
divisibility for APVD and PAVD, by which we can easily define the corresponding maps which
are basically the generalization of valuation map. Finally, by a similar approach as in [2], we
translate these comparability conditions into conditions on the partial ordering on the groups of
divisibility of D.

1 Introduction

Group theory has vast applications in almost all branches of science, but our main concern is to
study the abelian groups admitting a (partial) order relation compatible with the group operation.
Connections between an ordered abelian group and a unitary commutative ring is the main focus
throughout this study. Associated with any integral domain D is a partially ordered directed
group G(D), known as the group of divisibility of D, which is the group of nonzero principal
fractional ideals of D with partial order defined as, aD ≤ bD if and only if bD ⊆ aD, where
a, b ∈ K�{0}, where K is the quotient field of D.

It has proved useful on occasion to phrase a ring-theoretic problem in terms of the ordered
group G(D), first solve the problem there, and then pull-back the solution if possible to D. The
main theorem in the pull-back process from the group G(D) to the ring D is due to Jaffard
[11] and asserts that any lattice-ordered group is the group of divisibility of a Bezout domain (a
domain in which every finitely generated ideal is principal).

Throughout this study, D represents an integral domain with quotient field K. Following
Hedstrom and Houston [7], D is a pseudo-valuation domain (PVD) if each prime ideal P of D is
strongly prime (that is, if xy ∈ P , where x, y ∈ K, then either x ∈ P or y ∈ P ). Equivalently, D
is a pseudo-valuation domain if and only if for every nonzero x ∈ K, either x ∈ D or ax−1 ∈ D
for every nonunit a ∈ D (cf. [7, Theorem 1.5]). An integral domain D is said to be a valuation
domain (VD) if for every nonzero element x ∈ K, either x ∈ D or x−1 ∈ D. A valuation
domain is a PVD, but the converse is not true. By [1, page 301], D is an almost valuation
domain (AVD) if for every nonzero element x ∈ K, there is an integer n ≥ 1 such that either xn
∈ D or x−n ∈ D. Equivalently, D is an AVD if for nonzero a, b ∈ D, there is an n = n(a, b)
such that an | bn (an divides bn) or bn | an (see [1, Definition 5.5]). A valuation domain is an
AVD, but the converse is not true. By [4, Definition 2.1], D is a pseudo almost valuation domain
(PAVD) if every prime ideal P of D is a pseudo-strongly prime (that is, if whenever x, y ∈ K and
xyP ⊆ P , then there is an integer n ≥ 1 such that either xn ∈ D or ynP ⊆ P ). Equivalently, D
is a PAVD if and only if D is quasilocal and for every nonzero x ∈ K, there is an integer n ≥ 1
such that either xn ∈ D or ax−n ∈ D for every nonunit a ∈ D. By [3, Definition 3.1], D is an
almost pseudo valuation domain (APVD) if each prime ideal P of D is a strongly primary ideal,
in the sense that, if xy ∈ P , x, y ∈ K, then either xn ∈ P for some integer n ≥ 1 or y ∈ P .
Equivalently, D is an APVD if and only if (D, M ) is quasilocal such that for every nonzero
element x ∈ K, either xn ∈M for some integer n ≥ 1 or ax−1 ∈M for every nonunit a ∈ D.

This study is motivated by [2], in which D. F. Anderson introduced the comparability con-
ditions (I), (II), and (III) for a quasilocal integral domain (D,M) with quotient field K, which
are equivalent to D being a valuation domain, a PVD, and a domain with valuation overring
M : M = {r ∈ K : rM ⊆M}, respectively.

In this study, we generalize those comparability conditions between certain maximal ideals
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M and fractional ideals of an integral domain D. These conditions force D to be quasilocal
and are equivalent to D being an AVD, PAVD, and a domain with an almost valuation overring
M : M, respectively. Moreover, we define a notion of an almost totally ordered group and
show that the group of divisibility of an AVD is an almost totally ordered group. And by a
similar approach as in [2], we establish the groups of divisibility of APVD and PAVD. With the
help of these groups of divisibility we define the corresponding maps which are basically the
generalization of valuation map. Finally we translate the comparability conditions (IV), (V),
(VI) into conditions on the partial ordering on the group of divisibility of D.

2 Comparability conditions

Let (D, M) be a quasilocal domain with quotient field K. By [2, pages 452, 453], the following
are three comparability conditions for fractional ideals of D.

(I) For each x ∈ K, xD ⊆ D or D ⊆ xD.
(II) For each x ∈ K, xD ⊆M or M ⊆ xD.
(III) For each x ∈ K, xM ⊆M or M ⊆ xM .
Clearly (I)⇒ (II)⇒ (III).
(I) is an equivalent condition for D to be a valuation domain, while (III) means that the

overring M : M of D is a valuation domain, and (II) is an equivalent condition for D to be a
PVD.

In a similar manner, we generalize the above comparability conditions for fractional ideals of
a quasilocal domain (D,M) with quotient field K as:

(IV) For each x ∈ K, there exists an integer n ≥ 1 such that xnD ⊆ D or D ⊆ xnD.
(V) For each x ∈ K, there exists an integer n ≥ 1 such that xnD ⊆M or M ⊆ xnD.
(VI) For each x ∈ K, there exists an integer n ≥ 1 such that xnM ⊆M or M ⊆ xnM.
Assume that D satisfies (IV). If xnD ⊂ D, then xnD ⊆ M since D is quasilocal. If D ⊆

xnD, then M ⊆ xnD. Thus D satisfies (V). Now suppose that D satisfies (V). Then xnD ⊆ M
implies xnM ⊆ M, and M ⊂ xnD implies x−nM ⊆ M, as D is quasilocal domain. Thus
M ⊆ xnM. Hence D satisfies (VI). Consequently, we conclude the following.

(IV ) ⇒ (V ) ⇒ (V I)

In the following, we establish that (IV) (resp., (V)) is an equivalent condition for D to be an
AVD (resp., a PAVD), while (VI) just means that the overring M : M of D is an AVD.

Proposition 2.1. Let (D,M) be a quasilocal integral domain with quotient field K. Then D
satisfies (IV) if and only if D is an AVD.

Proof. Suppose D is an AVD. For every nonzero element x ∈ K, there is an integer n ≥ 1 such
that either xn ∈ D or x−n ∈ D. This implies either xnD ⊆ D or x−nD ⊆ D (that is, D ⊆ xnD),
respectively. Thus (IV) holds. Conversely, let x ∈ K be nonzero. If xnD ⊆ D, then xn ∈ D.
Similarly, if D ⊆ xnD, then x−nD ⊆ D implies x−n ∈ D. Hence D is an AVD.

Let D be an integral domain with quotient field K. As in [4], let E(S) = {x ∈ K : xn /∈ S
for every integer n ≥ 1}, where S is a subset of D.

Proposition 2.2. Let (D,M) be a quasilocal integral domain with quotient field K. Then D
satisfies (V) if and only if D is a PAVD.

Proof. Let D be a PAVD and x ∈ K. If xn ∈ D, then either xnD ⊆M or M ⊆ xnD, depending
on whether xn is a nonunit or unit in D. If x ∈ E(D), then x−nM ⊆ M, by [4, Lemma 2.1].
Thus M ⊆ xnM ⊂ xnD. Conversely, suppose that xnD ⊆ M. This implies xn ∈ M ⊂ D. If
M ⊆ xnD, then x−nM ⊆ D. This implies that mx−n ∈ D for each m ∈M, which are nonunits
in D. Hence D is a PAVD.

Proposition 2.3. Let (D,M) be the quasilocal integral domain with quotient field K. Then D
satisfies (VI) if and only if M : M is an AVD.

Proof. For nonzero x ∈ K, if xnM ⊆ M, then xn ∈ M : M , and if M ⊆ xnM, then x−n ∈
M : M. That is, for nonzero x ∈ K, either xn ∈ M : M or x−n ∈ M : M. Hence M : M is
an AVD. Conversely, let M : M be an AVD. Then for nonzero x ∈ K, either xn ∈ M : M or
x−n ∈M : M. Hence (VI) holds.
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We conclude that: (I) ⇒ (IV), but (IV) ; (I) (cf.[4, Example 2.20]). Similarly (II) ⇒ (V),
but (V) ; (II), and (III) ⇒ (VI), but (VI) ; (III), for instance see [4, Example 3.5]. For (III)
; (II), see [2, Example 3.2]. However, (VI)⇒ (V) if the overring V = M : M is an AVD with
maximal ideal Rad(MV ) (cf. [4, Theorem 2.15]).

Consequently, the following non- reversible implications are obtained.

(I) ⇒ (II) ⇒ (III)

⇓ ⇓ ⇓
(IV ) ⇒ (V ) ⇒ (V I)

In (IV), (V), and (VI), D is assumed to be a quasilocal domain with unique maximal ideal M .
Further, we show that comparability conditions between certain maximal ideals M of an integral
domain D and certain fractional ideals actually force D to be a quasilocal domain.

Proposition 2.4. Let D be an integral domain with quotient field K. If for each x ∈ K, there
exist an integer n ≥ 1 such that xnD ⊆ D or D ⊆ xnD, then D is a quasilocal domain.

Proof. Assume that D has two distinct maximal ideals M and N. Choose x ∈ M\N and y ∈
N\M. By hypothesis, for xy−1 ∈ K, there exist an integer n ≥ 1 such that either xny−nD ⊆ D
or D ⊆ xny−nD. That is, xn/yn ∈ D or yn/xn ∈ D. Now, if xn/yn ∈ D, then xn =
yn(xn/yn) = y(yn−1xn/yn) ∈ N, and so x ∈ N since N is a prime ideal, a contradiction. A
similar conclusion is obtained if yn/xn ∈ D. Thus D is a quasilocal domain.

Proposition 2.5. Let D be an integral domain with quotient field K. If for each x ∈ K, there is
a maximal ideal M of D and an integer n ≥ 1 such that either xnM ⊆ M or M ⊆ xnM , then
D is a quasilocal domain.

Proof. Assume that D has two distinct maximal ideals M and N. Choose x ∈ M\N and y ∈
N\M. By hypothesis, there is a maximal ideal P of D such that xny−nP ⊆ P or P ⊆ xny−nP.
If xny−nP ⊆ P, then xnP ⊆ ynP ⊂ N. This implies xnp ∈ N for each p ∈ P, and therefore p ∈
N. Thus P ⊆ N and hence P = N since P is a maximal ideal. This means xn = (xny−n)yn ∈
N, a contradiction. For y, a similar conclusion is obtained if P ⊆ xny−nP . Thus D is quasilocal.

Corollary 2.6. Let D be an integral domain with quotient field K. Then the following are equiv-
alent.

(1) D is a quasilocal domain and satisfies (VI).
(2) For each x ∈ K and maximal ideal M of D, xnM and M are comparable for some

integer n ≥ 1 (each M : M is an AVD).
(3) For some maximal ideal M of D, xnM and M are comparable for each x ∈ K, and some

integer n ≥ 1 (some M : M are AVDs).
(4) For each x ∈ K, there is a maximal ideal M of D such that M and xnM are comparable

for some integer n ≥ 1.

Proposition 2.7. Let D be an integral domain with quotient field K. If for each x ∈ K, there is
a maximal ideal M of domain D and an integer n ≥ 1 such that xnD and M are comparable,
then D is a quasilocal domain.

Proof. Assume that D has two distinct maximal ideals M and N . Choose a ∈ M\N and
b ∈ N\M. Applying the hypothesis to a2b−2 we conclude that, there is a maximal ideal P of
D such that a2nb−2nD and P are comparable. If a2nb−2nD ⊆ P, then a2nD ⊆ b2nP ⊂ N.
This implies a2n ∈ N, and therefore a ∈ N , a contradiction. Thus a2nb−2nD * P, and hence
P ⊆ a2nb−2nD. Equivalently, b2nP ⊆ a2nD ⊂ M, and thus, b2nc ∈ M for each c ∈ P. Since
b2n /∈ M, therefore c ∈ M . This implies P = M, and therefore M ⊆ a2nb−2nD. Localizing
at M, we obtain MM ⊆ a2nDM ⊆ aDM ⊆ MM . This implies aDM = a2nDM = MM , a
contradiction for n ≥ 1. Hence D must be quasilocal.

Corollary 2.8. Let D be an integral domain with quotient field K. Then the following are equiv-
alent.

(1) D is a PAVD (and hence quasilocal).
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(2) For each x ∈ K and maximal ideal M of D, xnD and M are comparable for some integer
n ≥ 1.

(3) For some maximal ideal M of D, xnD and M are comparable for all x ∈ K and some
integer n ≥ 1.

(4) For each x ∈ K, there is a maximal ideal M of D such that xnD and M are comparable
for some integer n ≥ 1.

The set of all prime ideals of an integral domain D is known as the spectrum of D (Spec(D)).

Proposition 2.9. Let (D,M) be a quasilocal domain with quotient field K. If D satisfies (VI),
then Spec(D) is linearly ordered.

Proof. Let P , Q ∈ Spec(D) be prime ideals of D such that P * Q. Choose x ∈ P\Q, and
assume that P ( M. For each nonzero q ∈ Q, (xq−1)nM ⊆ M implies that xnM ⊆ qnM ⊆
Q. This gives xnm ∈ Q, for each m ∈ M. Hence xn ∈ Q, and therefore x ∈ Q. This is a
contradiction. Next (qx−1)nM ⊆ M implies qnM ⊆ xnM ⊆ P. Thus qn ∈ P, and so q ∈ P
gives Q ⊂ P. Hence Spec(D) is linearly ordered.

3 Group of Divisibility

Associated with any integral domain D, there is a partially ordered abelian group (po-group)
G(D), known as the group of divisibility of D. G(D) is the group of nonzero principal fractional
ideals of D with xD ≤ yD if and only if yD ⊆ xD, where 0 6= x, y ∈ K, the quotient field of
D. A necessary condition for a po-group G to be a group of divisibility of an integral domain
D is that G is directed (a po-group G is directed if for each pair a, b ∈ G, there exists c ∈ G
such that c ≤ a, b [9, page 5]). However, this condition is not sufficient for G to be the group
of divisibility of a domain as shown in [13] through several examples. On the other hand, some
partial orders are sufficient for the existence of a domain D so that a po-group G is isomorphic
to G(D) for some domain D. In fact, Krull [8] has shown that any totally ordered abelian group
G is the group of divisibility of a valuation ring.

Note that, if K∗ denotes the multiplicative group of the quotient field K of an integral domain
D and U (or U(D)) the group of units of D, then G(D) is order isomorphic to K∗/U , where
xU ≤ yU if and only if y/x ∈ D (cf. [10, page 194]). The set of positive elements (positive
cone) of G(D) is G(D)+ = {aU : aU > U} = {aU : a ∈ D∗} =D∗/U. Under the isomorphism
aU 7−→ aD, the image of G(D)+ is the set of nonzero principal integral ideals of D (cf. [5, page
172]).

D. F. Anderson addresses the group of divisibility of a PVD in [2, Proposition 5.1]. In this
study, we extend it to the group of divisibility of an AVD, an APVD, and, a PAVD and relate
them with the comparability conditions (IV), (V), and (VI).

Almost totally ordered group

In a valuation domain D, for any pair of nonzero elements x, y in its quotient field K, either
x | y or y | x. Consequently, there exists a totally ordered group of divisibility of the valuation
domain D such that xU ≤ yU or yU ≤ xU (equivalently yD ⊆ xD or xD ⊆ yD). In fact, this
motivates us to think about the existence of the group of divisibility for an AVD.

Definition 3.1. (a) Let (S,≤) be a partially ordered set closed under addition. The partial order
≤ is an almost total order if for all s, t ∈ S, there exists some integer n ≥ 1 such that either
ns ≤ nt or nt ≤ ns.

(b) A partially ordered abelian group (G,≤) is called an almost totally ordered group if the
partial order ≤ is an almost total order.

Remark 3.2. A totally ordered group is almost totally ordered, but the converse is not true. For
example, G = (Z ⊕ Z4,≤) with the partial order defined as follows; (n, k) ≤ (m, k), where
n,m ∈ Z, k ∈ Z4, if and only if n ≤ m under the usual order on Z, is an almost totally ordered
group, in which any pair of elements are comparable through a positive integer 4 or its multiple,
which is not totally ordered.

Recall that a po-group G is isolated, if for all integers n ≥ 1 and x ∈ G, the implication
nx ≥ 0 ⇒ x ≥ 0 holds. In a torsion free group G, if a 6= 0, then na 6= 0, for all integers
n ≥ 1. A group G is torsion free if and only if G is isomorphic to an isolated po-group (cf. [13,
Proposition 7.2.2]).
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The group of divisibility of an integrally closed domain is torsion free. Since an AVD is not
necessarily integrally closed (IC), it is not necessary that the group of divisibility of an AVD is
torsion free. Accordingly, we record an observation in the following remark.

Remark 3.3. An almost totally ordered group need not be torsion free. For example, the almost
totally ordered group G = (Z⊕ Z4,≤) is not torsion free.

The Group of Divisibility of an AVD

The following proposition defines the group of divisibility of an AVD.

Proposition 3.4. An integral domain D is an AVD if and only if G(D) is an almost totally ordered
group.

Proof. Let K be the quotient field of domain D and U be the group of unit elements in D. Then
G = K∗/U is the group of divisibility of D. By definition of an AVD, for a, b ∈ D, there exists
an integer n ≥ 1 such that either an | bn or bn | an. This implies bnD ⊆ anD or anD ⊆ bnD,
and this implies anU ≤ bnU or bnU ≤ anU in G. Since in G, it is defined that aU.bU = aU+bU,
therefore anU = naU. Hence ng ≤ nh or nh ≤ ng, where g = aU and h = bU. This shows
that G is an almost totally ordered group. Conversely, suppose that G(D) is an almost totally
ordered group of an integral domain D. Let aU = g, bU = h ∈ G(D)+ such that ng ≤ nh for
some integer n ≥ 1. Thus anU ≤ bnU . Equivalently, bnD ⊆ anD, which implies that an | bn.
Similarly, we obtain bn | an for nh ≤ ng. Hence D is an AVD.

The following remark substantiates the existence of an almost totally ordered group of divis-
ibility of an AVD.

Remark 3.5. Let K be a field with characteristic p 6= 0, and let L be a purely inseparable exten-
sion of K such that Lp ⊆ K. The ring R = K +XL[X] is one dimensional and the localization
at every height one prime is an AVD (cf [14, Example 2.13]). Consider the height one prime
ideal P = XL[X]. In RP , the only nonunits are associates of powers of X . So every nonzero
nonunit of RP can be written as elXr, where e is a unit that is a fraction of the form 1+Xf(X)

1+Xg(X) ,
l ∈ L, and r ∈ Z+. Note that for every l ∈ L we have lp ∈ K, and this is a unit. Now let e1l1X

r1 ,
e2l2X

r2 be two nonzero nonunits in RP where we can assume that r1 ≤ r2. In the first case, we
have e1l1X

r1 |e2l2X
r2 and consequently e1l1X

r1U(RP ) ≤ e2l2X
r2U(RP ). And in the second

case, pr1 = pr2, implies (e1l1X
r1)p and (e2l2X

r2)p are associates, so (e1l1X
r1)p|(e2l2X

r2)p

holds, thus translated to p(e1l1X
r1U(RP )) ≤ p(e2l2X

r2U(RP )) in the additive language of po-
groups, that is, the two elements of the ring are related through the positive integer p. Hence the
group of divisibility of the AVD RP is an almost totally ordered group

A question arises whether an almost totally ordered group is a group of divisibility of an
integral domain. The answer is in no. To demonstrate this fact we follow the following approach:

First Mott [12], and then Yi Chuan Yang [13] gave a principle [12, Theorem 4.4.1], and [13,
Lemma7.1.4] respectively, for deciding whether a group is a group of divisibility or not, which
is stated as:

“Suppose that v is a semi-valuation on a field K with semi-value group G and that x, y ∈ K∗

are such that v(x) and v(y) are not comparable under the order in G. If x + y ∈ K∗, then
v(x+ y) ∈ UL{v(x), v(y)}\(U{v(x)} ∪ U{v(y)})”, where UL {v(x), v(y)} denotes the set of
upper bounds U of lower bounds L of {v(x), v(y)}.

By Mott [12] and Yang [13], any po-group that violates the above ‘box condition’ can not be
a group of divisibility.

In [13, Example 2.2], G = ((Z2⊕Z),≤) with partial order (0̄, 0) ≤ (1̄, 1), (1̄, 0) ≤ (0̄, 1), (0̄, n) ≤
(0̄,m), and (1̄, n) ≤ (1̄,m) if and only if n ≤ m under the usual order on Z is a non torsion
free almost lattice ordered group (al-group), which is not a group of divisibility of any integral
domain. This order ≤ is not just a partial order on G but, in fact, it is an almost total order which
says that any two elements of G are comparable through an integer c ≥ 1, where c = 2 or a
multiple of 2. Hence, this shows that an almost totally ordered group is not necessarily a group
of divisibility.

Let D be an integral domain with quotient field K, and I = ({aα}), J = ({bβ}) be fractional
ideals of D. Then the set of fractional ideals is almost totally ordered if there exists an integer
n ≥ 1 such that either ({anα}) ⊆ ({bnβ}) or ({bnβ}) ⊆ ({anα}).
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Recall that, an integral domain D is an almost principal ideal domain (API-domain) if for
any non-empty subset {aα} ⊆ D\{0}, there exists a positive integer n = n({aα}) with ({anα})
principal (we call such ideals the almost principal ideal, see [1, Definiion 4.2]).

Now we may extend these notions as: “Let D be an integral domain with quotient field K. If
for any non empty subset {xα} ⊆ K\{0}, there exist an integer n ≥ 1 with ({xnα}) a principal
fractional ideal, then we call the fractional ideal generated by {xα} an almost principal fractional
ideal”.

The following is a generalization of [5, Theorem 16.3] for an AVD.

Theorem 3.6. Let D be an integral domain with quotient field K and G be the group of divisi-
bility of D. Then the followings are equivalent.

(1) G is an almost totally ordered group.
(2) The set of principal fractional ideals of D is almost totally ordered by inclusion.
(3) For each pair (xi), i = 1, ..., k (yj), j = 1, ...l of finitely generated fractional ideals there

is a positive integer q such that (xqi ) and (yqj ) are comparable.
(4) The set of principal integral ideals of D is almost totally ordered by inclusion.
(5) For each pair (xi), i = 1, ..., k (yj), j = 1, ...l of finitely generated integral ideals there

is a positive integer q such that (xqi ) and (yqj ) are comparable..
(6) If x ∈ K\{0}, then xn ∈ D or x−n ∈ D for some integer n ≥ 1.

Proof. We shall follow the scheme: (1)⇒ (2)⇒ (3)⇒ (5)⇒ (4)⇒ (6)⇒ (1).
(1) ⇒ (2) is obvious since G ∼= P (D), where P (D) is the set of principal fractional ideals

of D.
(2) ⇒ (3) Let I = ( x1, x2, ..., xk) , J = ( y1, y2, ..., yl) be two finitelly generated nonzero

ideals. Since, by Proposition 3.4, and by (1) ⇒ (2) the domain satisfying (2) is an AVD,
there exist positive integers m, n and elements a, b ∈ K∗ such that (xm1 , xm2 , ..., xmk ) = (a) and
(yn1 , y

n
2 , ..., y

n
l ) = (b). Now it is easy to see that (xmn1 , xmn2 , ..., xmnk ) = (an) and (ymn1 , ymn2 , ..., ymnl ) =

(bm) . By (2) again there is a positive integer t such that (an)t = (ant) ⊆ (bmt) or (bmt) ⊆ (ant)
. But since (xmnt1 , xmnt2 , ..., xmntk ) = (ant) and (ymnt1 , ymnt2 , ..., ymntl ) = (bmt) we conclude that
the positive integer q is mnt.

(3) ⇒ (5) is obvious, since the set of finitely generated integral ideals of D is contained in
the set of finitely generated fractional ideals of D.

(5)⇒ (4) This is again obvious, since the set of principal integral ideals of D is contained in
the set of finitely generated integral ideals of D.

(4) ⇒ (6) Let z = xy−1 ∈ K, for non zero x, y ∈ D. Then for some integer n ≥ 1, either
xnD ⊆ ynD or ynD ⊆ xnD. This implies xny−nD ⊂ D or ynx−nD ⊆ D. Hence xny−n ∈ D
or ynx−n ∈ D, that is, zn ∈ D or z−n ∈ D.

(6) ⇒ (1) Suppose that xy−1 ∈ K, then by hypothesis, either (xy−1)n ∈ D or (xy−1)−n ∈
D. If (xy−1)n ∈ D, then xnD ⊆ ynD which implies that nyU ≤ nxU. If (xy−1)−n ∈ D, then
ynD ⊂ xnD, which implies that nxU ≤ nyU. This shows that G is an almost totally ordered
group.

Thus an integral domain that satisfies any of equivalent conditions of Theorem 3.6 is an AVD.

Remark 3.7. (i) In the proof of (2) ⇒ (3) we have used the fact that the domain described in
(2) is an AVD as shown in Proposition 3.4. It is well known from [1] that an AVD is an ABD,
(almost Bezout domain) (for a, b ∈ D\{0} there exists a positive integer n = n(a, b) such that
(an, bn) is principal see also [1, Theorem 5.6]).

(ii) A Noetherian AVD is an API-domain.

4 Generalization of valuation map

Semi-valuation map
A semi-valuation map of a field K is group epimorphism w : K∗ → G into a po-group G

such that w(a+ b) ∈ UL{w(a), w(b)} denotes the set of upper bounds U of lower bounds L of
{w(a), w(b)}. G is called the semi-valuation group of w, and Rw = {x ∈ K∗ | w(x) ≥ 0} ∪ {0}
is a subring of K which is called the semi-valuation ring of w.

Almost valuation map
Let w : K∗ → G be a semi-valuation and its corresponding domain Dw be an AVD. Then by

Proposition 3.4, G is an almost totally ordered group. We call such a map w an almost valuation
map. That is in addition to the conditions of a semi-valuation, w will satisfy

(a) For each x, y ∈ K∗ and n ≥ 1, nw(x) ≤ nw(y) or nw(y) ≤ nw(x).
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Hence Mw = {x ∈ K∗ : w(x) > 0} is its unique maximal ideal.
Corresponding to a valuation ring, there exists a valuation map w such that for any nonzero

x, y ∈ Dw, either w(x) ≤ w(y) or w(y) ≤ w(x), and hence either y/x ∈ Dw or x/y ∈ Dw.In
the same spirit for an AVD we have the following.

Proposition 4.1. (1) Let w be an almost valuation map. For any nonzero x, y ∈ Dw, there exist
an integer n ≥ 1 such that either nw(x) ≤ nw(y) or nw(y) ≤ nw(x), then either yn/xn ∈ Dw

or xn/yn ∈ Dw.
(2) Let I be an ideal in an AVD Dw. If x ∈ I and y ∈ Dw with nw(x) ≤ nw(y), for some

integers n ≥ 1, then yn ∈ I.

Proof. (1) If nw(x) ≤ nw(y) for an integer n ≥ 1, then ng ≤ nh, where w(x) = g and
w(y) = h. This implies 0 ≤ nh− ng ∈ G+, and therefore w(yn)+w(x−n) = w(ynx−n) ∈ G+.
Hence yn/xn ∈ Dw. Similarly, if nw(y) ≤ nw(x), then xn/yn ∈ Dw.

(2) As x ∈ I, xn ∈ Dw, where n ≥ 1 is an integer. So take yn = xn(yn/xn) = x(xn−1yn/xn).
By (1), yn/xn ∈ Dw, and hence yn ∈ I.

It is known that the spectrum of an AVD is totally ordered (see [4, Page 1168]). Also we can
verify this fact with the help of the group of divisibility of an AVD.

Theorem 4.2. The spectrum of an AVD is totally ordered.

Proof. Let I , J be any pair of prime ideals of an AVD Dw. Suppose J * I and take y ∈ J \
I. Then for every x ∈ I, nw(x) � nw(y), where n ≥ 1 is an integer. By Proposition 4.1 (1),
nw(x) > nw(y), so xn/yn ∈ Dw, and by Proposition 4.1 (2) xn ∈ J. This implies x ∈ J, and
hence I ⊂ J.

The following implication tables provide a correspondence between integral domains and
their groups of divisibility.

V D ⇒ AVD

⇓ ⇓
BD(⇒ GCD − domain) ⇒ ABD(⇒ AGCD)

⇓
IC

Totally ordered ⇒ Almost totally ordered
⇓ ⇓

Lattice ordered ⇒ Almost lattice ordered
⇓

Torsion free

In the above table, BD stands for a Bezout Domain (a domain in which every finitely gen-
erated ideal is principal). In a GCD-domain, every nonzero pair of elements has a gcd. AGCD
stands for Almost GCD-domain (a domain in which for each a, b ∈ D\{0}, there is an integer
n = n(a, b) ≥ 1 with anD ∩ bnD principal).

Group of divisibility of APVD and PAVD

We generalize the following proposition for APVD and PAVD instead of PVD.

Proposition 4.3. [2, Proposition 5.1] Let D be an integral domain with quotient field K and
group of divisibility G the following are equivalent.

(1) D is a PVD, (and hence quasilocal).
(2) For each g ∈ G, either g ≥ 0 or g < h for all h ∈ G with h > 0.

The following proposition defines group of divisibility of APVD.

Proposition 4.4. Let D be an integral domain with quotient field K. The following are equiva-
lent, for the group of divisibility G of D.

(1) D is an APVD (and hence quasilocal).
(2) For each g ∈ G, there exists an integer n ≥ 1 such that either ng > 0 or g < h for all

h ∈ G with h > 0.
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Proof. (1)⇒ (2)
Let M be the only maximal ideal in D and g ∈ G with g = xU, where x ∈ K∗. So, if xn ∈M

for some integer n ≥ 1, then we have ng = xnU > U . If ax−1 ∈M for any nonunit a ∈ D such
that h = aU > 0, then ax−1U = h− g > 0. Thus g < h for h > 0.

(2)⇒ (1)
First, we have to show that D is quasilocal. If D has two distinct maximal ideals M and N,

then choose x ∈ M\N and y ∈ N\M. Let g′ = xy−1U and h = yU. Then for any positive
integer n, ng′ = xny−n U. Clearly ng′ ≯ 0 and g′ ≮ h, while h > 0 because if g′ < h. This
implies xy−1U < yU, which implies xU < y2U. Equivalently y2D ⊆ xD ⊆ M, and hence
y ∈M, a contradiction to our supposition. Therefore g′ ≮ h. This contradicts the hypothesis, so
D must be quasilocal. Let x ∈ K be such that xU = g and ng = xnU. If ng > 0, then xn ∈ M
and if g < h, then xU < h. Let a be a nonunit element in D such that h = aU. Obviously h > 0,
and hence xU < aU implies ax−1U > 0. This implies ax−1 ∈M. Thus D is an APVD.

By [3, Theorem 3.4], it is clear that APVD is a class of integral domains satisfying condition
(III) of [2], and hence satisfies [2, Proposition 5.2].

Following proposition defines group of divisibility of PAVD.

Proposition 4.5. Let D be an integral domain with quotient field K. The following are equiva-
lent, for the group of divisibility G of D.

(1) D is a PAVD.
(2) For each g ∈ G, there exist an integer n ≥ 1 such that either ng ≥ 0 or ng < h for all

h ∈ G, where h > 0.

Proof. (1)⇒ (2) : Let x ∈ E(D) and g = xU. Then clearly ng � 0. In D every prime ideal is a
pseudo strongly prime, so by [4, Lemma 2.1] x−nM ⊆ M. Then for each m ∈ M, x−nm ∈ M.
Let xU = g and mU = h > 0. Then (x−nm)U = x−nU +mU = −ng + h > 0 implies ng < h
for each h > 0.

(2) ⇒ (1) : If D has two distinct maximal ideals N,M, then choose xn ∈ M\N and yn ∈
N\M. Let ng′ = xny−nU (hence ng′ � 0) and h = yU. If ng′ < h for each h > 0, then
xny−nU < yU. This implies xnU < yn+1U, or equivalently, yn+1D ⊆ xnD ⊆ M . Hence
yn+1 ∈M gives yn ∈M , a contradiction. Therefore ng′ ≮ h, which contradicts the hypothesis.
Hence D is quasilocal.

Let M be the maximal ideal of D. To show D is a PAVD, it is sufficient to show M is a
pseudo strongly prime ideal. For this, let x ∈ E(D) such that xU = g ∈ G. Clearly ng � 0,
for each integer n ≥ 1. So, for each m ∈ M, we choose mU = h > 0. Then by hypothesis
ng < h, so we have xnU < mU . This implies mx−nU > 0, and so mx−n ∈ M . This implies
x−nM ⊆M, and hence, by [4, Lemma 2.1], M is pseudo strongly prime.

Remark 4.6. Let G∗, G∗∗, and G∗∗∗ represent the defining properties of the groups of divisibility
of a PVD, APVD, and PAVD, respectively. Then, corresponding to non-reversible implications
PV D ⇒ APV D ⇒ PAV D, we have again non reversible implications G∗ ⇒ G∗∗ ⇒ G∗∗∗ .

Almost pseudo-valuation map

Let w : K∗ → G, where G staisfies G∗∗, be a semi-valuation, which has the following
property, if x, y ∈ K∗;

(a) nw(x) = ng > 0, for n ∈ Z+ or g = w(x) < w(y) = h, where g, h ∈ G and h > 0.
This map w is called almost pseudo-valuation map in which condition (a) reflects the prop-

erties in G∗∗. Then Dw = {x ∈ K∗ : w(x) ≥ 0} is an APVD, it follow from the proof of
4.4.

Pseudo almost valuation map

Let w : K∗ → G, where G satisfies G∗∗∗ be a semi-valuation, which has the following
property if x, y ∈ K∗;

(a) nw(x) = ng ≥ 0, for n ∈ Z+ or ng = nw(x) < w(y) = h, where g, h ∈ G and h > 0.
This map w is called pseudo-almost valuation map in which condition (a) reflects the prop-

erties in G∗∗∗. Then Dw = {x ∈ K∗ : w(x) ≥ 0} will be a PAVD, it follow from the proof of
4.5.

Consequently, the modifications in [2, Proposition 5.2] shape the following proposition.

Proposition 4.7. Let D be an integral domain with quotient field K. The following are equiva-
lent, for the group of divisibility G of D.



30 Tariq Shah and Asma Shaheen Ansari

(1) D is a quasilocal domain and satisfies (VI) (i.e. M : M is an AVD).
(2) For each g ∈ G, there exist an integer n ≥ 1 such that either ng > h for all h ∈ G with

h < 0 or ng < h for all h ∈ G with h > 0.

Proof. (1)⇒ (2) Let x ∈ K such that g = xU ∈ G. If ng ≮ h for all h ∈ G with h = mU > 0,
where m ∈ M, then this implies that mx−n /∈ M . Thus by hypothesis, xnM ⊆ M. Hence
xnm ∈ M implies ng + h > 0 for each h ∈ G with h > 0, or equivalently, ng > −h = t for all
t ∈ G with t < 0.

(2) ⇒ (1) To show that the domain D is quasilocal, we can follow the proof of Proposition
4.5. Now, we have to show that D satisfies (VI). For this, let x ∈ K such that xU = g and
yU = h. If ng < h for each h ∈ G with h > 0, then y ∈ M, and therefore h − ng > 0. This
means yx−n ∈M, and so we have yx−nM ⊆M. This implies x−nM ⊆M, and so M ⊆ xnM .
Similarly for ng > h for all h ∈ G with h < 0, we can obtain xnM ⊆M, as required.

It is known that an AVD is a PAVD (see [4, proposition 2.12]), but, in the following, we prove
it with the help of their groups of divisibility.

Proposition 4.8. An AVD is a PAVD.

Proof. Let D be an AVD with K as its quotient field and w : K∗ → G be its corresponding
map. If for x ∈ K, xn ∈ D such that w(xn) = ng ≥ 0, then the proof is obvious. If x−n ∈ D,
then w(x−n) = −ng ≥ 0. Now for every nonunit a ∈ D such that w(a) = h > 0, assume that
w(ax−n) < 0. This implies w(a) + w(x−n) < 0, that is, h − ng < 0. But h > 0 and −ng ≥ 0,
which is a contradiction. Hence h− ng ≥ 0, that is, ng ≤ h, and therefore ax−n ∈ D.

4.1 Some more on Generalization of valuation map

In [6, Page 156] a valuation monoid is defined in terms of a valuation map as follows

Definition 4.9. (a)(Valuation Monoid) Let G be a group. By a valuation on G, we mean a
homomorphism v : G → H, where H is a totally ordered group. The set Gv = {x ∈ G s.t
v(x) ≥ 0} is called the value monoid of G with quotient group G.

(b) In other words we may define a valuation monoid as follows: Let G be a quotient group
of a monoid S, then S is called a valuation monoid if for each x ∈ G either x ∈ S or −x ∈ S.

Remark 4.10. Gv is integrally closed in G.

Example 4.11. Consider G = 〈1/2,−1/2〉0 and an ordered group H = Z.
Define a valuation on G by v : G→ Z
v(a/2 − b/2) = a − b. then Gv = {a/2 − b/2 ∈ G : v(a/2 − b/2) ≥ 0} this implies that

Gv = 〈1/2〉0.

Remark 4.12. Every rational cyclic monoid is a valuation monoid.

Remark 4.13. In a similar manner we define an almost valuation monoid as follows.

Definition 4.14. (Almost valuation monoid) (a) Let G be a group. By an almost valuation on G,
we mean a homomorphism v

′
: G → G

′
where G

′
is an almost totally ordered group. The set

Gv′ = {x ∈ G s.t v(x) ≥ 0} is called the almost value monoid of G with quotient group G.
(b) In other words we define an almost valuation monoid as follows: Let G be a quotient

group of a monoid S, then S is called an almost valuation monoid if for each x ∈ G there exist
a positive integer n, either nx ∈ S or −nx ∈ S.

Remark 4.15. Gv′ is not integrally closed in G.

Remark 4.16. V aluation Monoid =⇒ Almost V aluation Monoid.
But the converse is not true.

Example 4.17. Positive cone of any almost totally ordered group would be an almost valuation
monoid which is not a valuation monoid in particular positive cone of G = Z2 ⊕Z is an almost
valuation monoid which is not a valuation monoid.
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