Vol. 2(1) (2013), 38-45

Transformation of 4-D dynamical systems to hyperjerk form

Zeraoulia Elhadj and J. C. Sprott

Communicated by Jose Luis Lopez-Bonilla

MSC 2010 Classifications: 37E45, 37E30, 37E40

PACS numbers: 05.45.+b, 47.52.+j, 02.30.Hq.

Keywords and phrases: Fourth-order nonlinear differential equations, hyperjerk dynamics, chaos, hyperchaos.

Abstract. In this paper, we investigate the possible cases for equivalence between fourdimensional autonomous dynamical systems and hyperjerk dynamics. In fact, we show that a wide class of four-dimensional vector fields possess this property.

1 Introduction

A jerky dynamical system is a differential equation of the form x''' = J(x, x', x'') with an explicit time dependence (see [1] and [5]). The first three derivatives (x', x'', x''') are called *velocity, acceleration,* and *jerk,* respectively. Jerky dynamics form an interesting subclass of dynamical systems that can exhibit regular and chaotic behavior such as shown by several simple examples in [6-7-8-9]. Jerky dynamics can be found in several nonmechanical areas of physics, one example of which is the chaotic third-order differential equation representing an oscillator model of thermal convection given in [3]. In fact, jerky dynamics are conceptually simpler than dynamical systems, and they show all the major features of three-dimensional vector fields. In particular, they can be considered as the natural generalization of oscillator dynamics, and hence new methods to study chaos are possible.

By extension, a hyperjerk system is a dynamical system governed by an n^{th} -order ordinary differential equation with n > 3 describing the time evolution of a single scalar variable of the form $x^{(4)} = H(x, x', x'', x''', ...)$. The fourth derivative $x^{(n)} = x''''$ has been called a *snap*, with successive derivatives *crackle* and *pop*, and there is no universally accepted name for the higher derivatives. Some simple forms of 4^{th} and 5^{th} order displaying chaos and hyperchaos were presented in [8]. The connection between externally driven nonlinear oscillators and specific uni- and bi-directionally coupled systems of two autonomous oscillators was discussed in [4] along with a reinterpretation of simple chaotic forms of hyperjerk systems. In fact, some 4-D quadratic continuous-time autonomous systems cannot be reduced to hyperjerk dynamics, or they possess a functionally complicated hyperjerk form.

2 Transformation of 4-D systems to hyperjerk form

Consider a 4-D system of the form

$$\begin{cases} x' = c_1 + b_{11}x + b_{12}y + b_{13}z + b_{14}u + n_1(x) \\ y' = c_2 + b_{21}x + b_{22}y + b_{23}z + b_{24}u + n_2(x, y, z, u) \\ z' = c_3 + b_{31}x + b_{32}y + b_{33}z + b_{34}u + n_3(x, y, z, u) \\ u' = c_4 + b_{41}x + b_{42}y + b_{43}z + b_{44}u + n_4(x, y, z, u) \end{cases}$$

$$(2.1)$$

where the functions $n_1(x)$ and $(n_i(x, y, z, u))_{2 \le i \le 4}$ are assumed to be at least of class C^2 in their corresponding arguments. We set $n_{11}(x) = \frac{\partial n_i(x)}{\partial x}$, $n_{111} = \frac{\partial^2 n_1(x)}{\partial x^2}$, $n_{i1}(x, y, z, u) = \frac{\partial n_i(x, y, z, u)}{\partial x}$, $n_{i2}(x, y, z, u) = \frac{\partial n_i(x, y, z, u)}{\partial y}$, $n_{i3}(x, y, z, u) = \frac{\partial n_i(x, y, z, u)}{\partial z}$, and $n_{i4}(x, y, z, u) = \frac{\partial n_i(x, y, z, u)}{\partial u}$, i = 2, 3, 4. In this paper, we derive only the hyperjerk form of system (1) with respect to x. The same logic applies for y, z, and u. For this purpose, assume that $b_{12} \neq 0$. Then from the first equation of (1), we have $y(x, x', z, u) = -\frac{1}{b_{12}}(-x' + c_1 + n_1(x) + b_{11}x + b_{13}z + b_{14}u)$. Thus $y'(x, x', x'', z, u) = f_1z + f_2x + f_3u + f_4 + f_5$, where

$$f_{1} = \frac{b_{13}^{2}b_{32}-b_{12}b_{13}b_{33}-b_{12}b_{14}b_{43}+b_{13}b_{14}b_{42}}{b_{12}^{2}}$$

$$f_{2} = \frac{b_{11}b_{13}b_{32}-b_{12}b_{13}b_{31}+b_{11}b_{14}b_{42}-b_{12}b_{14}b_{41}}{b_{12}^{2}}$$

$$f_{3} = \frac{b_{14}^{2}b_{42}-b_{12}b_{13}b_{34}+b_{13}b_{14}b_{32}-b_{12}b_{14}b_{44}}{b_{12}^{2}}$$

$$f_{4}(x, x', z, u) = -\frac{\left(b_{13}\left(c_{3}+n_{3}((x, y, z, u))-\frac{b_{32}(c_{1}+n_{1}(x))}{b_{12}}\right)+b_{14}\left(c_{4}+n_{4}(x, y, z, u)-\frac{b_{42}(c_{1}+n_{1}(x))}{b_{12}}\right)\right)}{f_{5}(x, x', x'')} = -\frac{b_{11}b_{12}+b_{13}b_{32}+b_{14}b_{42}+b_{12}n_{11}(x)}{b_{12}^{2}}x' + \frac{1}{b_{12}}x''$$

$$(2.2)$$

By equating the formula for y' = y'(x, x', x'', z, u) with the second equation of (2.1), we obtain

$$\left(f_1 - b_{23} + \frac{1}{b_{12}}b_{13}b_{22}\right)z = n_2 - f_4 - f_6 \tag{2.3}$$

where

$$f_6(x, x', x'') = \frac{f_2 b_{12} + b_{11} b_{22} - b_{12} b_{21}}{b_{12}} x - \frac{b_{22}}{b_{12}} x' - c_2 + \frac{b_{22} c_1}{b_{12}} + \frac{b_{22}}{b_{12}} n_1(x) + f_5$$
(2.4)

We remark that the second member of (2.3) depends on z in the part $n_2 - f_4$, so if we assume that $n_2(x, y, z, u) - f_4(x, x', z, u) = g_1(x, u)$, i.e., this part does not depend on the variable z, with g_1 being an arbitrary function of the indicated arguments, then

$$z(x, x', x'') = f_7 f_6(x, x', x'')$$
(2.5)

where f_7 is given by

$$f_7 = \frac{b_{12}^2}{b_{12}^2 b_{23} - b_{13}^2 b_{32} - b_{12} b_{13} b_{22} + b_{12} b_{13} b_{33} + b_{12} b_{14} b_{43} - b_{13} b_{14} b_{42}}$$
(2.6)

with the condition

$$b_{12}^2 b_{23} - b_{13}^2 b_{32} - b_{12} b_{13} b_{22} + b_{12} b_{13} b_{33} + b_{12} b_{14} b_{43} - b_{13} b_{14} b_{42} \neq 0$$
(2.7)

The function g_1 does not depend on y since y itself depends on z. Hence the condition $n_2 - f_4 = g_1(x, u)$ is equivalent to

$$(b_{12}n_2 + b_{13}n_3 + b_{14}n_4)(x, y, z, u) = b_{12}g_1(x, u) - b_{12}f_8(x)$$
(2.8)

where

$$f_8(x) = \frac{\left(b_{13}\left(c_3 - \frac{b_{32}(c_1 + n_1(x))}{b_{12}}\right) + b_{14}\left(c_4 - \frac{b_{42}(c_1 + n_1(x))}{b_{12}}\right)\right)}{b_{12}}$$
(2.9)

From (2.5), we have $z' = f_7 \left(\frac{1}{b_{12}} x''' + f_{10}(x) x'' + f_9(x, x') x' \right)$, where

$$\begin{cases} f_9(x, x') = \left(\frac{b_{12}(f_2 - b_{21}) + b_{22}b_{11} + b_{22}n_{11}(x) - n_{111}(x)x'}{b_{12}}\right) \\ f_{10}(x) = \left(-\frac{b_{22}}{b_{12}} - \frac{(b_{11}b_{12} + b_{13}b_{32} + b_{14}b_{42} + b_{12}n_{11}(x))}{b_{12}^2}\right) \end{cases}$$
(2.10)

By equating the formula for z' with the third equation of (2.1), we obtain

$$-\frac{b_{12}b_{34} - b_{14}b_{32}}{b_{12}}u = -f_{11} - f_{12} - \frac{f_7}{b_{12}}x'''$$
(2.11)

where

$$\begin{cases} f_{11}(x, x', x'') = \frac{b_{11}b_{32} - b_{12}b_{31}}{b_{12}}x + \frac{-b_{32} + f_7 f_9(x, x')b_{12}}{b_{12}}x' + f_7 f_{10}(x)x'' \\ f_{12}(x, x', x'', u) = -n_3(x, y, z, u) - c_3 + \frac{b_{32}(c_1 + n_1(x) + f_6 f_7 b_{13})}{b_{12}} - f_6 f_7 b_{33} \end{cases}$$
(2.12)

We remark that the second member of (2.11) depends on u in the part $-f_{12}$, so if we assume that $-f_{12} = g_2(x, z)$, i.e., this part does not depend on the variable u, with g_2 being an arbitrary function of the indicated arguments, then

$$u = \frac{f_7 x''' + b_{12} f_{11} \left(x, x', x'' \right) + b_{12} f_{12} \left(x, x', x'' \right)}{b_{12} b_{34} - b_{14} b_{32}}$$
(2.13)

with the condition

$$b_{12}b_{34} - b_{14}b_{32} \neq 0 \tag{2.14}$$

Hence the condition $-f_{12} = g_2(x, z)$ is equivalent to

$$-n_3(x, y, z, u) - c_3 + \frac{b_{32}(c_1 + n_1(x) + f_6 f_7 b_{13})}{b_{12}} - f_6 f_7 b_{33} = g_2(x, z)$$
(2.15)

From (2.13), we have $u' = f_{13}x^{(4)} + f_{14}$, where

$$\begin{cases} f_{13} = \frac{f_7}{b_{12}b_{34} - b_{14}b_{32}} \\ f_{14}\left(x, x', x'', x'''\right) = \frac{b_{12}f_{11}'\left(x, x', x'', x'''\right)}{b_{12}b_{34} - b_{14}b_{32}} + \frac{b_{12}f_{12}'\left(x, x', x'', x'''\right)}{b_{12}b_{34} - b_{14}b_{32}} \end{cases}$$
(2.16)

because $\frac{df_{11}(x,x',x'')}{dt} = f'_{11}(x,x',x'',x'')$, and since $f_{12} = -g_2(x,z)$, then $\frac{f_{12}(x,y,z,u)}{dt} = f'_{12}(x,x',x'',x''')$. Again, by equating the formula for u' with the fourth equation of (2.1), we obtain

$$x^{(4)} = \frac{f_{15}(x, x', x'', x''') + f_{16}(x, x', x'', x''')}{f_{13}} = H(x, x', x'', x''')$$
(2.17)

where

$$f_{15}(x, x', x'', x''', u) = c_4 + b_{41}x + b_{43}f_7f_6 + \rho_0$$

$$f_{16}(x, x', x'', x''', u) = b_{42}\left(-\frac{1}{b_{12}}\left(-x' + c_1 + n_1\left(x\right) + b_{11}x + \rho_1\right)\right)$$

$$\rho_0(x, x', x'', x''', u) = b_{44}\left(\frac{f_{7x'''+b_{12}f_{11}+b_{12}f_{12}}}{b_{12}b_{34}-b_{14}b_{32}}\right) + n_4 - f_{14}$$

$$\rho_1(x, x', x'', x''', u) = b_{13}f_7f_6 + b_{14}\left(\frac{f_{7x'''+b_{12}f_{11}+b_{12}f_{12}}}{b_{12}b_{34}-b_{14}b_{32}}\right)$$
(2.18)

Finally, the form (2.17) is the corresponding hyperjerk form of the 4-D dynamical system (2.1). Several chaotic examples of hyperjerk motion were studied in the literature where some of them are listed in [8] with many illustrations. For example, all periodically forced oscillators and some of the coupled oscillators are equivalent to a snap form as shown in [4]. This includes the frictionless forced pendulum and the periodically forced undamped oscillator with a cubic restoring force. Also, the same type of system with damping was studied in [8]. The simplest examples of chaotic hyperjerk systems have been studied in [1]. These include snap systems with one nonlinear function and the simplest dissipative chaotic case with a single quadratic nonlinearity given by $x'''' + 6x'' = 1 - x^2$.

3 The expression of the transformation

In this section, we derive a rigorous expression for the transformation between the 4-D dynamical system (2.1) and the hyperjerk form (2.17). Indeed, the above procedure defines an invertible transformation T = T(x, x', x'', x''') provided the following conditions hold:

$$b_{12} \neq 0$$

$$b_{12}^{2}b_{23} - b_{13}^{2}b_{32} - b_{12}b_{13}b_{22} + b_{12}b_{13}b_{33} + b_{12}b_{14}b_{43} - b_{13}b_{14}b_{42} \neq 0$$

$$b_{12}b_{34} - b_{14}b_{32} \neq 0$$

$$n_{2} - f_{4} = g_{1}(x, u)$$

$$-n_{3} - c_{3} + \frac{1}{b_{12}}b_{32}(c_{1} + n_{1}(x) + f_{6}f_{7}b_{13}) - f_{6}f_{7}b_{33} = g_{2}(x, z)$$
(3.1)

where g_1 and g_2 are arbitrary functions of the indicated arguments. The transformation T(x, x', x'', x''') is defined by

$$\begin{cases} T_{1}(x, y, z, u) = x \\ T_{2}(x, y, z, u) = x' = c_{1} + b_{11}x + b_{12}y + n_{1}(x) \\ T_{3}(x, y, z, u) = x'' = f_{17}(x, y) + f_{18}(x, z, u) + f_{19}(x, y, z, u) \\ T_{4}(x, y, z, u) = x''' = \Psi_{1} + \Psi_{2} \\ \Psi_{1} = f_{20}x^{3} + f_{21}x^{2}y + f_{22}x^{2} + f_{23}xy + f_{24}xz + f_{25}xu \\ \Psi_{2} = f_{26}x + f_{27}y^{2} + f_{28}yz + f_{29}yu + f_{30}y + f_{31}z + f_{32}u + f_{33} \end{cases}$$
(3.2)

and its inverse is defined by

$$T_{4}^{-1}(x, x', x'', x''') = x$$

$$T_{4}^{-1}(x, x', x'', x''') = u = \frac{f_{7}x''' + b_{12}f_{11}(x, x', x'') + b_{12}f_{12}(x, x', x'')}{b_{12}b_{34} - b_{14}b_{32}}$$

$$T_{3}^{-1}(x, x', x'', x''') = z = f_{7}f_{6}(x, x', x'')$$

$$T_{2}^{-1}(x, x', x'', x''') = y = -\frac{1}{b_{12}}(-x' + c_{1} + n_{1}(x) + b_{11}x + b_{13}z + b_{14}u)$$
(3.3)

where

$$\begin{cases} f_{17} = (b_{11}^2 + n_{11}(x) b_{11} + b_{12}b_{21}) x + (b_{11}b_{12} + b_{12}b_{22} + b_{12}n_{11}(x)) y \\ f_{18} = (b_{11}b_{13} + b_{12}b_{23} + b_{13}n_{11}(x)) z + (b_{11}b_{14} + b_{12}b_{24} + b_{14}n_{11}(x)) u \\ f_{19} = (b_{11}(c_1 + n_1(x)) + b_{12}(c_2 + n_2(x, y, z, u)) + n_{11}(x)(c_1 + n_1(x))) \\ f_{20} = b_{11}^2n_{111}(x) \\ f_{21} = b_{11}b_{12}n_{111}(x) \\ f_{22} = \xi_1 + \xi_2 \\ f_{23} = \xi_3 + \xi_4 \\ f_{24} = b_{12}b_{23}n_{11}(x) + b_{13}b_{33}n_{11}(x) + b_{14}b_{43}n_{11}(x) + b_{11}b_{13}n_{111}(x) \end{cases}$$
(3.4)

and

$$\begin{cases} f_{25} = b_{12}b_{24}n_{11} + b_{13}b_{34}n_{11} + b_{14}b_{44}n_{11} + b_{11}b_{14}n_{111} \\ f_{26} = \xi_5 + \xi_6 + \xi_7 + \xi_8 + \xi_9 \\ f_{27} = b_{12}^2n_{111} \\ f_{28} = b_{12}b_{13}n_{111} \\ f_{29} = b_{12}b_{14}n_{111} \\ f_{30} = \xi_{10} + \xi_{11} + \xi_{12} \\ f_{31} = \xi_{13} + \xi_{14} \\ f_{32} = \xi_{15} + \xi_{16} \\ f_{33} = \xi_{17} + \xi_{18} + \xi_{19} + \xi_{20} \end{cases}$$
(3.5)

where

$$\begin{aligned} \xi_{1} &= b_{11} \left(n_{11}^{2} + b_{11}n_{11} + c_{1}n_{111} + n_{1}n_{111} \right) (x) \\ \xi_{2} &= b_{11}n_{111} \left(x \right) \left(c_{1} + n_{1} \left(x \right) \right) + \left(b_{12}b_{21} + b_{13}b_{31} + b_{14}b_{41} \right) n_{11} \left(x \right) \\ \xi_{3} &= b_{12} \left(n_{11}^{2} \left(x \right) + b_{11}n_{11} \left(x \right) + \left(c_{1} + n_{1} \left(x \right) \right) n_{111} \left(x \right) \right) \\ \xi_{4} &= \left(b_{12}b_{22} + b_{13}b_{32} + b_{14}b_{42} \right) n_{11} \left(x \right) + b_{11}b_{12}n_{111} \left(x \right) \\ \xi_{5} &= \left(c_{1} + n_{1} \left(x \right) \right) \left(n_{11}^{2} \left(x \right) + b_{11}n_{11} \left(x \right) + \left(c_{1} + n_{1} \left(x \right) \right) n_{111} \left(x \right) \right) \\ \xi_{6} &= b_{11} \left(b_{11}^{2} + \left(b_{11} + c_{1} + n_{1} \right) n_{11} \left(x \right) + b_{12}b_{21} + b_{12}n_{21} \left(x, y, z, u \right) \right) \\ \xi_{7} &= b_{21} \left(b_{11}b_{12} + b_{12}b_{22} + b_{12}n_{22} \right) + b_{31} \left(b_{11}b_{13} + b_{12}b_{23} + b_{12}n_{23} \right) \\ \xi_{8} &= b_{41} \left(b_{11}b_{14} + b_{12}b_{24} + b_{12}n_{24} \right) + b_{12}n_{11} \left(x \right) \left(c_{2} + n_{2} \right) \\ \xi_{9} &= b_{13}n_{11} \left(x \right) \left(c_{3} + n_{3} \left(x, y, z, u \right) \right) + b_{14}n_{11} \left(c_{4} + n_{4} \left(x, y, z, u \right) \right) \\ \xi_{10} &= b_{12} \left(b_{11}^{2} + n_{11}b_{11} + c_{1}n_{11} + n_{1}n_{11} + b_{12}b_{21} + b_{12}n_{21} \right) \end{aligned}$$
(3.6)

and

$$\begin{aligned} \xi_{11} &= b_{22} \left(b_{11}b_{12} + b_{12}b_{22} + b_{12}n_{22} \right) + b_{32} \left(b_{11}b_{13} + b_{12}b_{23} + b_{12}n_{23} \right) \\ \xi_{12} &= b_{42} \left(b_{11}b_{14} + b_{12}b_{24} + b_{12}n_{24} \right) + b_{12}n_{111} \left(c_1 + n_1 \right) \\ \xi_{13} &= b_{23} \left(b_{11}b_{12} + b_{12}b_{22} + b_{12}n_{22} \right) + b_{33} \left(b_{11}b_{13} + b_{12}b_{23} + b_{12}n_{23} \right) \\ \xi_{14} &= b_{43} \left(b_{11}b_{14} + b_{12}b_{24} + b_{12}n_{24} \right) + b_{13}n_{111} \left(c_1 + n_1 \right) \\ \xi_{15} &= b_{24} \left(b_{11}b_{12} + b_{12}b_{22} + b_{12}n_{22} \right) + b_{34} \left(b_{11}b_{13} + b_{12}b_{23} + b_{12}n_{23} \right) \\ \xi_{16} &= b_{44} \left(b_{11}b_{14} + b_{12}b_{24} + b_{12}n_{24} \right) + b_{14}n_{111} \left(c_1 + n_1 \right) \\ \xi_{17} &= \left(c_1 + n_1 \right) \left(b_{11}^2 + n_{11}b_{11} + c_1n_{11} + n_1n_{11} + b_{12}b_{21} + b_{12}n_{21} \right) \\ \xi_{18} &= \left(c_2 + n_2 \left(x, y, z, u \right) \right) \left(b_{11}b_{14} + b_{12}b_{24} + b_{12}n_{24} \left(x, y, z, u \right) \right) \\ \xi_{19} &= \left(c_4 + n_4 \left(x, y, z, u \right) \right) \left(b_{11}b_{14} + b_{12}b_{23} + b_{12}n_{23} \left(x, y, z, u \right) \right) \\ \xi_{20} &= \left(c_3 + n_3 \left(x, y, z, u \right) \right) \left(b_{11}b_{13} + b_{12}b_{23} + b_{12}n_{23} \left(x, y, z, u \right) \right) \end{aligned}$$

Note that the inverse transformation exits since the procedure described in Sec. 2 transforms the 4-D dynamical system (2.1) to the hyperjerk form in (2.17) without any singularities. Therefore, the inverse procedure defined by (3.3) can give the initial 4-D dynamical system (2.1).

4 Examples of hyperjerk dynamics

Using the above method, we can prove that any dynamical system of the functional form

$$\begin{aligned}
x' &= c_1 + b_{11}x + b_{12}y + n_1(x) \\
y' &= c_2 + b_{21}x + b_{22}y + b_{23}z + n_2(x, y) \\
z' &= c_3 + b_{31}x + b_{32}y + b_{33}z + b_{34}u + n_3(x, y, z) \\
u' &= c_4 + b_{41}x + b_{42}y + b_{43}z + b_{44}u + n_4(x, y, z, u)
\end{aligned}$$
(4.1)

can be reduced to a hyperjerk dynamic form x'''' = H(x, x', x'', x''') if the following conditions hold:

$$b_{12} \neq 0, b_{23} \neq 0, b_{34} \neq 0 \tag{4.2}$$

That is, $b_{13} = b_{14} = b_{24} = 0$ in system (2.1). First, we notice that if n_2 and n_3 do not depend on z and u, respectively, then there is no need to consider the functions g_1 and g_2 defined above. In this case, we have $y(x, x') = -\frac{1}{b_{12}}(-x' + c_1 + n_1(x) + b_{11}x)$. Thus $y'(x, x', x'') = f_5 = -\frac{b_{11}b_{12}+b_{12}n_{11}(x)}{b_{12}^2}x' + \frac{1}{b_{12}}x''$, and $f_1 = 0$, $f_2 = 0$, $f_3 = 0$, $f_4 = 0$. Also, $z(x, x', x'') = f_7 f_6$, where $f_6 = \left(\frac{b_{11}b_{22}-b_{12}b_{21}}{b_{12}}\right)x - \frac{b_{22}}{b_{12}}x' - c_2 + \frac{b_{22}c_{11}}{b_{12}} + \frac{b_{22}}{b_{12}}n_1(x) + f_5, f_7 = \frac{1}{b_{23}}, f_8(x) = 0$. Hence $z' = f_7\left(\frac{1}{b_{12}}x''' + f_{10}(x)x'' + f_{9}x'\right)$, where $f_9 = \left(\frac{b_{12}(f_2-b_{21})+b_{22}b_{11}+b_{22}n_{11}(x)-n_{111}(x)x'}{b_{12}}\right)$ and $f_{10}(x) = \left(-\frac{b_{22}}{b_{12}} - \frac{(b_{11}+n_{11}(x))}{b_{12}}\right)$. By equating the formula for z' with the third equation of (26), we obtain $u = \frac{f_{12}x'''+b_{12}f_{11}+b_{12}f_{12}}{b_{12}b_{34}}$, where $f_{11} = \frac{b_{11}b_{32}-b_{12}b_{31}}{b_{12}}x + \frac{-b_{32}+f_7f_9(x,x')b_{12}}{b_{12}}x' + f_7f_{10}(x)x''$ and $f_{12} = -n_3 - c_3 + \frac{b_{32}(c_1+n_1(x))}{b_{12}} - f_6f_7b_{33}$. Hence we have $u' = f_{13}x^{(4)} + f_{14}$, where $f_{13} = \frac{f_7}{b_{12}b_{34}}$ and $f_{14} = \frac{f_{11}'}{b_{34}} + \frac{f_{12}}{b_{34}}$. Finally, we obtain $x^{(4)} = \frac{f_{15}+f_{16}}{f_{13}} = H(x, x', x'', x''')$, where $f_{15} = c_4 + b_{41}x + b_{43}f_7$, $f_6 + \rho_0$ and $f_{16} = b_{42}\left(-\frac{1}{b_{12}}\left(-x' + c_1 + n_1(x) + b_{11}x\right)\right)$ with $\rho_0 = b_{44}\left(\frac{f_{7}x'''+b_{12}f_{11}+b_{12}f_{12}}{b_{12}b_{34}}\right) + n_4 - f_{14}$. In this case, the expression for the transformation T = T(x, x', x'', x''') is given by

$$\begin{cases} T_{1}(x, y, z, u) = x \\ T_{2}(x, y, z, u) = x' = c_{1} + b_{11}x + b_{12}y + n_{1}(x) \\ T_{3}(x, y, z, u) = x'' = f_{17}(x, y) + f_{18}(x, z, u) + f_{19}(x, y, z, u) \\ T_{4}(x, y, z, u) = x''' = \Psi_{1} + \Psi_{2} \\ \Psi_{1} = f_{20}x^{3} + f_{21}x^{2}y + f_{22}x^{2} + f_{23}xy + f_{24}xz \\ \Psi_{2} = f_{26}x + f_{27}y^{2} + f_{30}y + f_{31}z + f_{32}u + f_{33} \end{cases}$$
(4.3)

and its inverse is defined by

$$\begin{cases} T_1^{-1}(x, x', x'', x''') = x \\ T_4^{-1}(x, x', x'', x''') = u = \frac{f_7 x''' + b_{12} f_{11}(x, x', x'') + b_{12} f_{12}(x, x', x'')}{b_{12} b_{34}} \\ T_3^{-1}(x, x', x'', x''') = z = f_7 f_6(x, x', x'') \\ T_2^{-1}(x, x', x'', x''') = y = -\frac{1}{b_{12}}(-x' + c_1 + n_1(x) + b_{11}x) \end{cases}$$
(4.4)

where

$$\begin{cases} f_{17} = (b_{11}^2 + n_{11}(x) b_{11} + b_{12}b_{21}) x + (b_{11}b_{12} + b_{12}b_{22} + b_{12}n_{11}(x)) y \\ f_{18} = b_{12}b_{23}z \\ f_{19} = (b_{11}(c_1 + n_1(x)) + b_{12}(c_2 + n_2(x, y)) + n_{11}(x) (c_1 + n_1(x))) \\ f_{20} = b_{11}^2 n_{111}(x) , f_{21} = b_{11}b_{12}n_{111}(x) , f_{22} = \xi_1 + \xi_2 \\ f_{23} = \xi_3 + \xi_4, f_{24} = b_{12}b_{23}n_{11}(x) , f_{25} = 0, f_{28} = 0, f_{29} = 0 \\ f_{26} = \xi_5 + \xi_6 + \xi_7 + \xi_8, f_{27} = b_{12}^2 n_{111} \\ f_{30} = \xi_{10} + \xi_{11} + \xi_{12}, f_{31} = \xi_{13} + \xi_{14}, f_{32} = \xi_{15} + \xi_{16} \\ f_{33} = \xi_{17} + \xi_{18} + \xi_{19} + \xi_{20} \end{cases}$$

$$(4.5)$$

where

$$\begin{aligned} \xi_{1} &= b_{11} \left(n_{11}^{2} + b_{11}n_{11} + c_{1}n_{111} + n_{1}n_{111} \right) (x) \\ \xi_{2} &= b_{11}n_{111} (x) (c_{1} + n_{1} (x)) + (b_{12}b_{21}) n_{11} (x) \\ \xi_{3} &= b_{12} \left(n_{11}^{2} (x) + b_{11}n_{11} (x) + (c_{1} + n_{1} (x)) n_{111} (x) \right) \\ \xi_{4} &= (b_{12}b_{22}) n_{11} (x) + b_{11}b_{12}n_{111} (x) \\ \xi_{5} &= (c_{1} + n_{1} (x)) \left(n_{11}^{2} (x) + b_{11}n_{11} (x) + (c_{1} + n_{1} (x)) n_{111} (x) \right) \\ \xi_{6} &= b_{11} \left(b_{11}^{2} + (b_{11} + c_{1} + n_{1}) n_{11} (x) + b_{12}b_{21} + b_{12}n_{21} (x, y) \right) \\ \xi_{7} &= b_{21} \left(b_{11}b_{12} + b_{12}b_{22} + b_{12}n_{22} (x, y) \right) + b_{31} \left(b_{12}b_{23} + b_{12}n_{23} (x, y) \right) \\ \xi_{8} &= b_{41} \left(b_{12}n_{24} (x, y) \right) + b_{12}n_{11} (x) \left(c_{2} + n_{2} (x, y) \right) \\ \xi_{9} &= 0 \\ \xi_{10} &= b_{12} \left(b_{11}^{2} + n_{11}b_{11} + c_{1}n_{11} + n_{1}n_{11} + b_{12}b_{21} + b_{12}n_{21} \right) \end{aligned}$$

$$(4.6)$$

and

$$\begin{aligned} \xi_{11} &= b_{22} \left(b_{11}b_{12} + b_{12}b_{22} + b_{12}n_{22} \right) + b_{32} \left(b_{12}b_{23} + b_{12}n_{23} \right) \\ \xi_{12} &= b_{42} \left(b_{12}n_{24} \right) + b_{12}n_{111} \left(c_1 + n_1 \right) \\ \xi_{13} &= b_{23} \left(b_{11}b_{12} + b_{12}b_{22} + b_{12}n_{22} \right) + b_{33} \left(b_{12}b_{23} + b_{12}n_{23} \right) \\ \xi_{14} &= b_{43} \left(b_{12}n_{24} \right) \\ \xi_{15} &= b_{34} \left(b_{12}b_{23} + b_{12}n_{23} \right) \\ \xi_{16} &= b_{44}b_{12}n_{24} \end{aligned}$$

$$\begin{aligned} \xi_{17} &= \left(c_1 + n_1 \right) \left(b_{11}^2 + n_{11}b_{11} + c_1n_{11} + n_1n_{11} + b_{12}b_{21} + b_{12}n_{21} \right) \\ \xi_{18} &= \left(c_2 + n_2 \left(x, y \right) \right) \left(b_{11}b_{12} + b_{12}b_{22} + b_{12}n_{22} \left(x, y \right) \right) \\ \xi_{19} &= \left(c_4 + n_4 \left(x, y, z, u \right) \right) \left(b_{12}n_{24} \left(x, y \right) \right) \\ \xi_{20} &= \left(c_3 + n_3 \left(x, y, z \right) \right) \left(b_{12}b_{23} + b_{12}n_{23} \left(x, y \right) \right) \end{aligned}$$

We remark that if $n_1(x) = 0$, then the expression for the transformation T = T(x, x', x'', x''') is given by

$$\begin{cases} T_{1}(x, y, z, u) = x \\ T_{2}(x, y, z, u) = x' = c_{1} + b_{11}x + b_{12}y \\ T_{3}(x, y, z, u) = x'' = f_{17}(x, y) + f_{18}(z) + f_{19}(x, y) \\ T_{4}(x, y, z, u) = x''' = f_{26}x + f_{30}y + f_{31}z + f_{32}u + f_{33}(x, y, z, u) \end{cases}$$

$$(4.8)$$

and its inverse is defined by

$$T_{4}^{-1}(x, x', x'', x''') = x$$

$$T_{4}^{-1}(x, x', x'', x''') = u = \frac{f_{7}x''' + b_{12}f_{11}(x, x', x'') + b_{12}f_{12}(x, x', x'')}{b_{12}b_{34}}$$

$$T_{3}^{-1}(x, x', x'', x''') = z = f_{7}f_{6}(x, x', x'')$$

$$T_{2}^{-1}(x, x', x'', x''') = y = -\frac{1}{b_{12}}(-x' + c_{1} + n_{1}(x) + b_{11}x)$$
(4.9)

where

$$f_{17} = (b_{11}^2 + b_{12}b_{21}) x + (b_{11}b_{12} + b_{12}b_{22}) y$$

$$f_{18} = b_{12}b_{23}z, f_{19} = (b_{11} (c_1) + b_{12} (c_2 + n_2 (x, y)))$$

$$f_{20} = 0, f_{21} = 0, f_{22} = 0, f_{23} = 0, f_{24} = 0, f_{25} = 0, f_{28} = 0, f_{29} = 0, f_{27} = 0$$

$$f_{26} = \xi_6 + \xi_7 + \xi_8, f_{30} = \xi_{10} + \xi_{11} + \xi_{12}, f_{31} = \xi_{13} + \xi_{14}$$

$$f_{32} = \xi_{15} + \xi_{16}, f_{33} = \xi_{17} + \xi_{18} + \xi_{19} + \xi_{20}$$
(4.10)

where

$$\begin{cases} \xi_1 = 0, \xi_2 = 0, \xi_3 = 0, \xi_4 = 0, \xi_5 = 0, \xi_9 = 0 \\ \xi_6 = b_{11} \left(b_{11}^2 + b_{12}b_{21} + b_{12}n_{21} \left(x, y \right) \right) \\ \xi_7 = b_{21} \left(b_{11}b_{12} + b_{12}b_{22} + b_{12}n_{22} \left(x, y \right) \right) + b_{31} \left(b_{12}b_{23} + b_{12}n_{23} \left(x, y \right) \right) \\ \xi_8 = b_{41} \left(b_{12}n_{24} \left(x, y \right) \right), \xi_{10} = b_{12} \left(b_{11}^2 + b_{12}b_{21} + b_{12}n_{21} \left(x, y \right) \right) \\ \xi_{11} = b_{22} \left(b_{11}b_{12} + b_{12}b_{22} + b_{12}n_{22} \left(x, y \right) \right) + b_{32} \left(b_{12}b_{23} + b_{12}n_{23} \left(x, y \right) \right) \\ \xi_{12} = b_{42} \left(b_{12}n_{24} \right) \\ \xi_{13} = b_{23} \left(b_{11}b_{12} + b_{12}b_{22} + b_{12}n_{22} \left(x, y \right) \right) + b_{33} \left(b_{12}b_{23} + b_{12}n_{23} \left(x, y \right) \right) \\ \xi_{14} = b_{43} \left(b_{12}n_{24} \right) \end{cases}$$

$$(4.11)$$

and

$$\xi_{15} = b_{34} (b_{12}b_{23} + b_{12}n_{23} (x, y))$$

$$\xi_{16} = b_{44}b_{12}n_{24} (x, y)$$

$$\xi_{17} = c_1 (b_{11}^2 + b_{12}b_{21} + b_{12}n_{21} (x, y))$$

$$\xi_{18} = (c_2 + n_2 (x, y)) (b_{11}b_{12} + b_{12}b_{22} + b_{12}n_{22} (x, y))$$

$$\xi_{19} = b_{12}n_{24} (x, y) (c_4 + n_4 (x, y, z, u))$$

$$\xi_{20} = (c_3 + n_3 (x, y, z)) (b_{12}b_{23} + b_{12}n_{23} (x, y))$$

(4.12)

Now we find sufficient conditions for the equivalence of a 4-D quadratic system with a hyperjerk system. According to the previous analysis, the general 4-D quadratic system has the following form

$$x' = c_1 + b_{11}x + b_{12}y + n_1(x)$$

$$y' = c_2 + b_{21}x + b_{22}y + b_{23}z + n_2(x, y, z, u)$$

$$z' = c_3 + b_{31}x + b_{32}y + b_{33}z + b_{34}u + n_3(x, y, z, u)$$

$$u' = c_4 + b_{41}x + b_{42}y + b_{43}z + b_{44}u + n_4(x, y, z, u)$$

(4.13)

where

$$\begin{cases} n_1(x) = a_4 x^2 \\ n_2 = b_4 x^2 + b_5 y^2 + b_6 z^2 + b_7 u^2 + b_8 xy + b_9 xz + b_{10} yz + b_{11} xu + b_{12} zu + b_{13} yu \\ n_3 = e_4 x^2 + e_5 y^2 + e_6 z^2 + e_7 u^2 + e_8 xy + e_9 xz + e_{10} yz + e_{11} xu + e_{12} zu + e_{13} yu \\ n_4 = d_4 x^2 + d_5 y^2 + d_6 z^2 + d_7 u^2 + d_8 xy + d_9 xz + d_{10} yz + d_{11} xu + d_{12} zu + d_{13} yu \end{cases}$$

(4.14)

By using the form (4.1), it is easy to show that any 4-D quadratic system of the form

$$\begin{cases} x' = c_1 + b_{11}x + b_{12}y + a_4x^2 \\ y' = c_2 + b_{21}x + b_{22}y + b_{23}z + b_4x^2 + b_5y^2 + b_8xy \\ z' = c_3 + b_{31}x + b_{32}y + b_{33}z + b_{34}u + e_4x^2 + e_5y^2 + e_6z^2 + e_8xy + e_9xz + e_{10}yz \\ u' = c_4 + b_{41}x + b_{42}y + b_{43}z + b_{44}u + n_4(x, y, z, u) \end{cases}$$

$$(4.15)$$

can be reduced to a hyperjerk dynamic form x'''' = H(x, x', x'', x''') if the conditions (4.2) hold. We remark that the form (4.15) contains 20 nonlinearities, and the best known hyperchaotic 4-D quadratic system is the Rössler system that contains one nonlinearity xz and is given by x' = -y-z, y' = x+ay+u, z' = b+xz, u' = cu-dz, but this system is not equivalent to any hyperjerk system due to the presence of singularities. In [8] the algebraically simplest hyperchaotic snap system was studied, and it is given by $x'''' + x^4x''' + Ax'' + x' + x = 0$. This system displays hyperchaos when A = 3.6 with Lyapunov exponents (0.1310, 0.0358, 0, -1.2550).

5 Conclusion

The possible cases for equivalence between four-dimensional autonomous dynamical systems and hyperjerk dynamics were studied in this paper. Some examples were also presented and discussed.

References

- K. E. Chlouverakis, J. C. Sprott. *Chaotic hyperjerk systems. Chaos*, Solitons and Fractals, 28,739–746 (2006).
- [2] R. Eichhorn, S. J. Linz, and P. Hanggi. Transformations of nonlinear dynamical systems to jerky motion and its application to minimal chaotic flows. Phys. Rev. E, 58, 7151–7164 (1998).
- [3] D. W. Moore, E. A. Spiegel. A thermally excited nonlinear oscillator. Astrophys. J, 143, 871-887 (1966).
- [4] S. J. Linz. On hyperjerky systems. Chaos, Solitons and Fractals, 37, 741-747 (2008).
- [5] S. J. Linz. Newtonian jerky dynamics: Some general properties. Am. J. Phys, 66, 1109–1114 (1998).
- [6] J. C. Sprott. Some simple chaotic flows. Phys. Rev. E, 50, R647–R650 (1994).
- [7] J. C. Sprott. Some simple chaotic jerk functions. Am. J. Phys, 65, 537-543 (1997).
- [8] J. C. Sprott. Simplest dissipative chaotic flow. Phys. Lett. A, 228, 271-274 (1997).

[9] J. C. Sprott. *Elegant Chaos: Algebraically simple chaotic flows*, World Scientific, Singapore (2010).

Author information

Zeraoulia Elhadj, Department of Mathematics, University of Tébessa, (12002), Algeria. E-mail: zeraoulia@mail.univ-tebessa.dz

J. C. Sprott, Department of Physics, University of Wisconsin, Madison, WI 53706, U.S.A.. E-mail: sprott@physics.wisc.edu

Received: March 22, 2012

Accepted: May 7, 2012