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Abstract. In this paper, we study multi-step iteration with errors and give the necessary and
sufficient condition to converge to common fixed points for a finite family of generalized asymp-
totically quasi-nonexpansive mappings in the framework of Banach spaces. Also we establish
some strong convergence theorems to converge to common fixed points for a finite family of said
mappings and scheme in a uniformly convex Banach spaces. Our results extend and improve the
corresponding results of [1, 2, 5, 7, 8, 9, 11, 12, 17, 23].

1 Introduction

Let K be a subset of normed space E and T : K → K be a mapping. Then

(1) T is said to be an asymptotically nonexpansive mapping [3], if there exists a sequence
{rn} ⊂ [0,∞) with limn→∞ rn = 0 such that

‖Tnx− Tny‖ ≤ (1 + rn) ‖x− y‖ , (1.1)

for all x, y ∈ K.

(2) T is said to be (L,α)-uniformly Lipschitz [9] if there are constants L > 0 and α > 0 such
that

‖Tnx− Tny‖ ≤ L ‖x− y‖α , ∀n ≥ 1, (1.2)

for all x, y ∈ K. Every asymptotically nonexpansive mapping is (L, 1)-uniformly Lipschitz
mapping.

(3) T is said to be an asymptotically quasi-nonexpansive mapping, if F (T ) 6= ∅ and there
exists a sequence {rn} ⊂ [0,∞) with limn→∞ rn = 0 such that

‖Tnx− p‖ ≤ (1 + rn) ‖x− p‖ , ∀x ∈ K and p ∈ F (T ). (1.3)

(4) T is said to be generalized asymptotically quasi-nonexpansive [18] if there exist sequences
{rn}, {sn} in [0,∞) with limn→∞ rn = 0 = limn→∞ sn such that

‖Tnx− p‖ ≤ (1 + rn) ‖x− p‖+ sn, (1.4)

for all x ∈ K, p ∈ F (T ) and n ≥ 1.

If sn = 0 for all n ≥ 1, then T is known as an asymptotically quasi-nonexpansive mapping.

From the above definitions, it follows that if F (T ) is nonempty, then asymptotically non-
expansive mappings and asymptotically quasi-nonexpansive mappings are all special cases of
generalized asymptotically quasi-nonexpansive mappings. But the converse does not hold in
general.

In 1973, Petryshyn and Williamson [11] gave the necessary and sufficient condition for Mann
iterative sequence (cf.[10]) to converge to fixed points of quasi-nonexpansive mappings. In 1997,
Ghosh and Debnath [2] extended the results of Petryshyn and Williamson [11] and gave the nec-
essary and sufficient condition for Ishikawa iterative sequence to converge to fixed points for
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quasi-nonexpansive mappings.

Liu [8] extended the results of [2, 11] and gave the necessary and sufficient condition for
Ishikawa iterative sequence with errors to converge to fixed points of asymptotically quasi-
nonexpansive mappings.

Iterative techniques for approximating fixed points of asymptotically nonexpansive and asymp-
totically quasi nonexpansive mappings in Banach spaces have been studied by many authors; see
[3, 7, 8, 17, 19, 20, 21] and the references therein. Related work can be found in [1, 5, 12, 13,
14, 15, 23] and many others.

Recently, Tang and Peng [22] studied the following iteration scheme in Banach space:

Let {Ti : i = 1, 2, . . . , k} : K → K, where K is a nonempty subset of a Banach space E, be a
finite family of uniformly quasi-Lipschitzian mappings. For a given x1 ∈ K, then the sequence
{xn} is defined by

xn+1 = aknxn + bknT
n
k y(k−1)n + cknukn,

y(k−1)n = a(k−1)nxn + b(k−1)nT
n
k−1y(k−2)n + c(k−1)nu(k−1)n,

y(k−2)n = a(k−2)nxn + b(k−2)nT
n
k−2y(k−3)n + c(k−2)nu(k−2)n,

...

y2n = a2nxn + b2nT
n
2 y1n + c2nu2n

y1n = a1nxn + b1nT
n
1 xn + c1nu1n, n ≥ 1, (1.5)

where {ain}, {bin}, {cin} are sequences in [0, 1] with ain + bin + cin = 1 for all i = 1, 2, . . . , k
and n ≥ 1, {uin, i = 1, 2, . . . , k, n ≥ 1} are bounded sequences in K. Also, they gave the
necessary and sufficient condition to converge to common fixed points for a finite family of said
class of mappings.

Remark 1.1. The iterative algorithm (1.5) is called multi-step iterative algorithm with errors.
It contains well known iterations as special case. Such as, the modified Mann iteration (see,
[19]), the modified Ishikawa iteration (see, [21]), the three-step iteration (see, [23]), the multi-
step iteration (see, [5]).

The purpose of this paper is to study the multi-step iterative algorithm with bounded errors
(1.5) for a finite family of generalized asymptotically quasi-nonexpansive mappings to converge
to common fixed points in Banach spaces. The results obtained in this paper extend and improve
the corresponding results of [1, 2, 5, 7, 8, 9, 11, 17, 23] and many others.

2 Preliminaries

The following lemmas will be used to prove the main results of this paper:

Lemma 2.1. (see [20]) Let {an}, {bn} and {δn} be sequences of nonnegative real numbers
satisfying the inequality

an+1 ≤ (1 + δn)an + bn, n ≥ 1.

If
∑∞
n=1 δn < ∞ and

∑∞
n=1 bn < ∞, then limn→∞ an exists. In particular, if {an} has a subse-

quence converging to zero, then limn→∞ an = 0.

Lemma 2.2. (Schu [19]) Let E be a uniformly convex Banach space and 0 < a ≤ tn ≤ b < 1
for all n ≥ 1. Suppose that {xn} and {yn} are sequences in E satisfying lim supn→∞ ‖xn‖ ≤ r,
lim supn→∞ ‖yn‖ ≤ r and limn→∞ ‖tnxn + (1− tn)yn‖ = r for some r ≥ 0. Then limn→∞ ‖xn − yn‖ =
0.

Recall that the following:
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A family {Ti : i = 1, 2, . . . , k} of self-mappings of K with F = ∩ki=1F (Ti) 6= ∅ is said to
satisfy the following conditions.

(1) Condition (A) [1]. If there is a nondecreasing function f : [0,∞)→ [0,∞) with f(0) = 0
and f(r) > 0 for all r ∈ (0.∞) such that 1/k

∑k
i=1 ‖x− Tix‖

≥ f(d(x,F)) for all x ∈ K, where d(x,F) = inf{‖x− p‖ : p ∈ F}.

(2) Condition (B) [1]. If there is a nondecreasing function f : [0,∞)→ [0,∞) with f(0) = 0
and f(r) > 0 for all r ∈ (0.∞) such that max1≤i≤k{‖x− Tix‖}
≥ f(d(x,F)) for all x ∈ K.

(3) Condition (C) [1]. If there is a nondecreasing function f : [0,∞)→ [0,∞) with f(0) = 0
and f(r) > 0 for all r ∈ (0.∞) such that ‖x− Tlx‖} ≥ f(d(x,F)) for all x ∈ K and for at least
one Tl, l = 1, 2, . . . , k.

Note that condition (B) and (C) are equivalent, condition (B) reduces to condition (A) [16]
when all but one T ′l s are identities, and in addition, it also condition (A).

It is well known that every continuous and demicompact mapping must satisfy condition
(A) (see [16]). Since every completely continuous mapping T : K → K is continuous and
demicompact so that it satisfies condition (A). Thus we will use condition (C) instead of the
demicompactness and complete continuity of a family {Ti : i = 1, 2, . . . , k}.
Let K be a nonempty closed convex subset of a Banach space E. Then I − T is demiclosed at
zero if, for any sequence {xn} in K, condition xn → x weakly and limn→∞ ‖xn − Txn‖ = 0
implies (I − T )x = 0.

3 Main Results

In this section, we prove strong convergence theorems of multi-step iterative algorithm with
bounded errors for a finite family of generalized asymptotically quasi-nonexpansive mappings
in a real Banach space.

Theorem 3.1. Let E be a real arbitrary Banach space, K be a nonempty closed convex subset
of E. Let {Ti : i = 1, 2, . . . , k} : K → K be a finite family of generalized asymptotically
quasi-nonexpansive mappings. Let {xn} be the sequence defined by (1.5) with

∑∞
n=1 rin < ∞,∑∞

n=1 sin < ∞ and
∑∞
n=1 cin < ∞ for all i = 1, 2, . . . , k. If F = ∩ki=1F (Ti) 6= ∅. Then the

sequence {xn} converges strongly to a common fixed point of {Ti : i = 1, 2, . . . , k} if and only
if lim inf

n→∞
d(xn,F) = 0, where d(x,F) denotes the distance between x and the set F .

Proof. The necessity is obvious and it is omitted. Now we prove the sufficiency. Since
{uin, i = 1, 2, . . . , k, n ≥ 1} are bounded sequences in K, therefore there exists a M > 0,
such that

M = max

{
sup
n≥1
‖uin − p‖ , i = 1, 2, . . . , k

}
.

Let p ∈ F , rn = max{rin : i = 1, 2, . . . , k} and sn = max{sin : i = 1, 2, . . . , k} for all n.
Since

∑∞
n=1 rin < ∞ and

∑∞
n=1 sin < ∞, for all i = 1, 2, . . . , k, therefore

∑∞
n=1 rn < ∞ and
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∑∞
n=1 sn <∞. For each n ≥ 1, from (1.4) and (1.5), we note that

‖y1n − p‖ = ‖a1nxn + b1nT
n
1 xn + c1nu1n − p‖

≤ a1n ‖xn − p‖+ b1n ‖Tn1 xn − p‖+ c1n ‖u1n − p‖

≤ a1n ‖xn − p‖+ b1n

[
(1 + r1n) ‖xn − p‖+ s1n

]
+c1n ‖u1n − p‖

≤ a1n ‖xn − p‖+ b1n

[
(1 + rn) ‖xn − p‖+ sn

]
+c1n ‖u1n − p‖

≤
(
a1n + b1n

)
(1 + rn) ‖xn − p‖+ b1nsn + c1nM

=
(

1− c1n

)
(1 + rn) ‖xn − p‖+ b1nsn + c1nM

≤ (1 + rn) ‖xn − p‖+ sn + c1nM

= (1 + rn) ‖xn − p‖+A1n (3.1)

where A1n = sn + c1nM , since by assumption
∑∞
n=1 sn < ∞ and

∑∞
n=1 c1n < ∞, it follows

that
∑∞
n=1 A1n <∞.

Furthermore, from (1.5) and (3.1), we obtain

‖y2n − p‖ = ‖a2nxn + b2nT
n
2 y1n + c2nu2n − p‖

≤ a2n ‖xn − p‖+ b2n ‖Tn2 y1n − p‖+ c2n ‖u2n − p‖

≤ a2n ‖xn − p‖+ b2n

[
(1 + r2n) ‖y1n − p‖+ s2n

]
+c2n ‖u2n − p‖

≤ a2n ‖xn − p‖+ b2n

[
(1 + rn) ‖y1n − p‖+ sn

]
+c2n ‖u2n − p‖

≤ a2n ‖xn − p‖+ b2n(1 + rn) ‖y1n − p‖+ b2nsn + c2nM

≤ a2n ‖xn − p‖+ b2n(1 + rn)
[
(1 + rn) ‖xn − p‖+A1n

]
+b2nsn + c2nM

≤
(
a2n + b2n

)
(1 + rn)

2 ‖xn − p‖+ b2n(1 + rn)A1n

+b2nsn + c2nM

=
(
1− c2n

)
(1 + rn)

2 ‖xn − p‖+ b2n(1 + rn)A1n

+b2nsn + c2nM

≤ (1 + rn)
2 ‖xn − p‖+ (1 + rn)A1n + sn + c2nM

≤ (1 + rn)
2 ‖xn − p‖+A2n (3.2)

where A2n = (1 + rn)A1n + sn + c2nM , since by assumption
∑∞
n=1 rn < ∞,

∑∞
n=1 sn < ∞,∑∞

n=1 c2n < ∞ and
∑∞
n=1 A1n < ∞, it follows that

∑∞
n=1 A2n < ∞. Similarly, using (1.5) and
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(3.2), we see that

‖y3n − p‖ = ‖a3n(xn − p) + b3n(T
n
3 y2n − p) + c3n(u3n − p)‖

≤ a3n ‖xn − p‖+ b3n ‖Tn3 y2n − p‖+ c3n ‖u3n − p‖

≤ a3n ‖xn − p‖+ b3n

[
(1 + r3n) ‖y2n − p‖+ s3n

]
+c3n ‖u3n − p‖

≤ a3n ‖xn − p‖+ b3n

[
(1 + rn) ‖y2n − p‖+ sn

]
+c3n ‖u3n − p‖

≤ a3n ‖xn − p‖+ b3n(1 + rn) ‖y2n − p‖+ b3nsn + c3nM

≤ a3n ‖xn − p‖+ b3n(1 + rn)
[
(1 + rn)

2 ‖xn − p‖+A2n

]
+b3nsn + c3nM

≤
(
a3n + b3n

)
(1 + rn)

3 ‖xn − p‖+ b3n(1 + rn)A2n

+b3nsn + c3nM

=
(
1− c3n

)
(1 + rn)

3 ‖xn − p‖+ b3n(1 + rn)A2n

+b3nsn + c3nM

≤ (1 + rn)
3 ‖xn − p‖+ (1 + rn)A2n + sn + c3nM

≤ (1 + rn)
3 ‖xn − p‖+A3n (3.3)

where A3n = (1 + rn)A2n + sn + c3nM , since by assumption
∑∞
n=1 rn < ∞,

∑∞
n=1 sn < ∞,∑∞

n=1 c3n < ∞ and
∑∞
n=1 A2n < ∞, it follows that

∑∞
n=1 A3n < ∞. By continuing the above

process, there are nonnegative real sequences {Ain} in [0,∞) such that
∑∞
n=1 Ain <∞ and

‖yin − p‖ ≤ (1 + rn)
i ‖xn − p‖+Ain, ∀ i = 1, 2, . . . , k. (3.4)

For the case i = k, from (1.5) and (3.4), we have

‖xn+1 − p‖ ≤ (1 + rn)
k ‖xn − p‖+Akn, ∀n ≥ 1 and p ∈ F , (3.5)

whereAkn = (1+rn)A(k−1)n+sn+cknM , since by assumption
∑∞
n=1 rn <∞,

∑∞
n=1 sn <∞,∑∞

n=1 ckn <∞ and
∑∞
n=1 A(k−1)n <∞, it follows that

∑∞
n=1 Akn <∞. This implies that

d(xn+1,F) ≤ (1 + rn)
kd(xn,F) +Akn

=
(

1 +
k∑
t=1

k(k − 1) . . . (k − t+ 1)
t!

rtn

)
d(xn,F)

+Akn. (3.6)

Since
∑∞
n=1 rn < ∞, it follows that

∑∞
n=1

∑k
t=1(k(k − 1) . . . (k − t + 1)/t!)rtn < ∞ and∑∞

n=1 Akn < ∞. Therefore, applying Lemma 2.1 to the inequality (3.6), we conclude that
limn→∞ d(xn,F) exists. Since by hypothesis lim infn→∞ d(xn,F) = 0, so by Lemma 2.1, we
have

lim
n→∞

d(xn,F) = 0. (3.7)

Next, we will prove that {xn} is a Cauchy sequence. If x ≥ 0, then 1 + x ≤ ex and so,
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(1 + x)k ≤ ekx, for k = 1, 2, . . . . Thus, from (3.5), it follows that

‖xn+m − p‖ ≤ (1 + rn+m−1)
k ‖xn+m−1 − p‖+Ak(n+m−1)

≤ exp
{
krn+m−1

}
‖xn+m−1 − p‖+Ak(n+m−1)

≤ . . .

≤ . . .

≤ exp
{
k

n+m−1∑
i=n

ri
}
‖xn − p‖+

n+m−1∑
i=n

Aki

≤ exp
{
k

∞∑
i=1

ri
}
‖xn − p‖+

∞∑
i=n

Aki

≤ Q ‖xn − p‖+
∞∑
i=n

Aki (3.8)

where Q = exp
{
k
∑∞
i=1 ri

}
, for all p ∈ F and m,n ∈ N. Since lim

n→∞
d(xn,F) = 0, for each

ε > 0, there exists a natural number n1 such that for n ≥ n1,

d(xn,F) <
ε

4(1 +Q)
and

n+m−1∑
i=n1

Aki <
ε

2
. (3.9)

Hence, there exists a point q ∈ F such that

‖xn1 − q‖ <
ε

2(1 +Q)
. (3.10)

By (3.8), (3.9) and (3.10), for all n ≥ n1 and m ≥ 1, we have

‖xn+m − xn‖ ≤ ‖xn+m − q‖+ ‖xn − q‖

≤ Q ‖xn1 − q‖+
∞∑
i=n1

Aki + ‖xn1 − q‖

≤ (1 +Q) ‖xn1 − q‖+
∞∑
i=n1

Aki

< (1 +Q).
ε

2(1 +Q)
+
ε

2
= ε. (3.11)

This implies that {xn} is a Cauchy sequence. Since E is complete, there exists a p1 ∈ E such
that xn → p1 as n→∞.

Now we have to prove that p1 is a common fixed point of {Ti : i = 1, 2, . . . , k}, that is,
p1 ∈ F .

By contradiction, we assume that p1 is not in F . Since F = ∩ki=1F (Ti) is closed in Banach
spaces, d(p1,F) > 0. So for all p2 ∈ F , we have

‖p1 − p2‖ ≤ ‖p1 − xn‖+ ‖xn − p2‖ . (3.12)

By the arbitrary of p2 ∈ F , we know that

d(p1,F) ≤ ‖p1 − xn‖+ d(xn,F). (3.13)

By lim
n→∞

d(xn,F) = 0, above inequality and xn → p1 as n→∞, we have

d(p1,F) = 0, (3.14)

which contradicts d(p1,F) > 0. Thus p1 is a common fixed point of the mappings {Ti : i =
1, 2, . . . , k}. This completes the proof.

Theorem 3.2. Let K be a nonempty compact convex subset of a uniformly convex Banach
space E and for i = 1, 2, . . . , k, let Ti : K → K be a finite family of uniformly (Li, αi)-Lipschitz
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and generalized asymptotically quasi-nonexpansive mappings. Let {xn} be the sequence defined
by (1.5) with

∑∞
n=1 rin < ∞,

∑∞
n=1 sin < ∞,

∑∞
n=1 cin < ∞ and 0 < α ≤ bin ≤ β < 1 for

all i = 1, 2, . . . , k. If F = ∩ki=1F (Ti) 6= ∅. Then the sequence {xn} converges strongly to a
common fixed point of the mappings {Ti : i = 1, 2, . . . , k}.

Proof. Let p ∈ F , rn = max{rin : i = 1, 2, . . . , k} and sn = max{sin : i = 1, 2, . . . , k} for
all n. From Theorem 3.1, we have that limn→∞ ‖xn − p‖ exists for all p ∈ F . Let limn→∞ ‖xn − p‖ =
R for some R > 0. Then, from (3.1), we note that

lim sup
n→∞

‖y1n − p‖ ≤ lim sup
n→∞

(
(1 + rn) ‖xn − p‖+A1n

)
≤ lim sup

n→∞
‖xn − p‖ = R, (3.15)

and

lim sup
n→∞

‖Tn1 xn − p‖ ≤ lim sup
n→∞

(
(1 + r1n) ‖xn − p‖+ s1n

)
≤ lim sup

n→∞

(
(1 + rn) ‖xn − p‖+ sn

)
≤ lim sup

n→∞
‖xn − p‖ = R, (3.16)

and

lim
n→∞

‖y1n − p‖ = lim
n→∞

‖a1nxn + b1nT
n
1 xn + c1nu1n − p‖

= lim
n→∞

‖(1− b1n − c1n)xn + b1nT
n
1 xn + c1nu1n − p‖

= lim
n→∞

‖(1− b1n)(xn − p+ c1n(u1n − xn))

+ b1n(T
n
1 xn − p+ c1n(u1n − xn))‖

=R. (3.17)

Again since limn→∞ ‖xn − p‖ exists, so {xn} is a bounded sequence in K. By virtue of condi-
tion

∑∞
n=1 cin <∞ for all i = 1, 2, . . . , k and the boundedness of the sequence {xn} and {u1n},

we have

lim sup
n→∞

‖xn − p+ c1n(u1n − xn)‖ ≤ lim sup
n→∞

‖xn − p‖

+ lim sup
n→∞

(
c1n ‖u1n − xn‖

)
≤ R, p ∈ F . (3.18)

It follows from (3.16) that

lim sup
n→∞

‖Tn1 xn − p+ c1n(u1n − xn)‖ ≤ lim sup
n→∞

‖Tn1 xn − p‖

+ lim sup
n→∞

(
c1n ‖u1n − xn‖

)
≤ lim sup

n→∞

(
(1 + r1n) ‖xn − p‖+ s1n

)
+ lim sup

n→∞

(
c1n ‖u1n − xn‖

)
≤ lim sup

n→∞

(
(1 + rn) ‖xn − p‖+ sn

)
+ lim sup

n→∞

(
c1n ‖u1n − xn‖

)
≤ R, p ∈ F . (3.19)

Therefore, from (3.17) - (3.19) and Lemma 2.2 we know that

lim
n→∞

‖Tn1 xn − xn‖ = 0. (3.20)
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Again from (3.2), we note that

lim sup
n→∞

‖y2n − p‖ ≤ lim sup
n→∞

(
(1 + rn)

2 ‖xn − p‖+A2n

)
≤ lim sup

n→∞
‖xn − p‖ = R, (3.21)

and from (3.15), we note that

lim sup
n→∞

‖Tn2 y1n − p‖ ≤ lim sup
n→∞

(
(1 + r2n) ‖y1n − p‖+ s2n

)
≤ lim sup

n→∞

(
(1 + rn) ‖y1n − p‖+ sn

)
≤ lim sup

n→∞
‖y1n − p‖ = R. (3.22)

Next, consider

lim sup
n→∞

‖Tn2 y1n − p+ c2n(u2n − xn)‖ ≤ lim sup
n→∞

‖Tn2 y1n − p‖

+ lim sup
n→∞

(
c2n ‖u2n − xn‖

)
≤ lim sup

n→∞

(
(1 + r2n) ‖y1n − p‖+ s2n

)
+ lim sup

n→∞

(
c2n ‖u2n − xn‖

)
≤ lim sup

n→∞

(
(1 + rn) ‖y1n − p‖+ sn

)
+ lim sup

n→∞

(
c2n ‖u2n − xn‖

)
≤ R, p ∈ F . (3.23)

Also,

lim sup
n→∞

‖xn − p+ c2n(u2n − xn)‖ ≤ lim sup
n→∞

‖xn − p‖

+ lim sup
n→∞

(
c2n ‖u2n − xn‖

)
≤ R, p ∈ F , (3.24)

and

lim
n→∞

‖y2n − p‖ = lim
n→∞

‖a2nxn + b2nT
n
2 y1n + c2nu2n − p‖

= lim
n→∞

‖(1− b2n − c2n)xn + b2nT
n
2 y1n + c2nu2n − p‖

= lim
n→∞

‖(1− b2n)(xn − p+ c2n(u2n − xn))

+ b2n(T
n
2 y1n − p+ c2n(u2n − xn))‖

=R. (3.25)

Therefore, from (3.23) - (3.25) and Lemma 2.2 we know that

lim
n→∞

‖Tn2 y1n − xn‖ = 0. (3.26)

Now, we shall show that limn→∞ ‖Tn3 y2n − xn‖ = 0. For each n ≥ 1,

‖xn − p‖ ≤ ‖Tn2 y1n − xn‖+ ‖Tn2 y1n − p‖

≤ ‖Tn2 y1n − xn‖+
(
(1 + r2n) ‖y1n − p‖+ s2n

)
≤ ‖Tn2 y1n − xn‖+

(
(1 + rn) ‖y1n − p‖+ sn

)
. (3.27)
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Using (3.26), we have

R = lim
n→∞

‖xn − p‖

≤ lim inf
n→∞

‖y1n − p‖ .

It follows from (3.15) that

R = lim
n→∞

‖xn − p‖

≤ lim inf
n→∞

‖y1n − p‖

≤ lim sup
n→∞

‖y1n − p‖ ≤ R. (3.28)

This implies that

lim
n→∞

‖y1n − p‖ = R. (3.29)

On the other hand, we have

‖y2n − p‖ ≤
(
(1 + rn)

2 ‖xn − p‖+A2n

)
, ∀n ≥ 1,

where
∑∞
n=1 A2n <∞. Therefore

lim sup
n→∞

‖y2n − p‖ ≤ lim sup
n→∞

(
(1 + rn)

2 ‖xn − p‖+A2n

)
,

≤ R, (3.30)

and hence

lim sup
n→∞

‖Tn3 y2n − p‖ ≤ lim sup
n→∞

(
(1 + r3n) ‖y2n − p‖+ s3n

)
≤ lim sup

n→∞

(
(1 + rn) ‖y2n − p‖+ sn

)
≤ lim sup

n→∞
‖xn − p‖ = R. (3.31)

Next, consider

lim sup
n→∞

‖Tn3 y2n − p+ c3n(u3n − xn)‖ ≤ lim sup
n→∞

‖Tn3 y2n − p‖

+ lim sup
n→∞

(
c3n ‖u3n − xn‖

)
≤ lim sup

n→∞

(
(1 + r3n) ‖y2n − p‖+ s3n

)
+ lim sup

n→∞

(
c3n ‖u3n − xn‖

)
≤ lim sup

n→∞

(
(1 + rn) ‖y2n − p‖+ sn

)
+ lim sup

n→∞

(
c3n ‖u3n − xn‖

)
≤ R, p ∈ F . (3.32)

Also,

lim sup
n→∞

‖xn − p+ c3n(u3n − xn)‖ ≤ lim sup
n→∞

‖xn − p‖

+ lim sup
n→∞

(
c3n ‖u3n − xn‖

)
≤ R, p ∈ F , (3.33)
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and

lim
n→∞

‖y3n − p‖ = lim
n→∞

‖a3nxn + b3nT
n
3 y2n + c3nu3n − p‖

= lim
n→∞

‖(1− b3n − c3n)xn + b3nT
n
3 y2n + c3nu3n − p‖

= lim
n→∞

‖(1− b3n)(xn − p+ c3n(u3n − xn))

+ b3n(T
n
3 y2n − p+ c3n(u3n − xn))‖

=R. (3.34)

Therefore, from (3.32) - (3.34) and Lemma 2.2 we know that

lim
n→∞

‖Tn3 y2n − xn‖ = 0. (3.35)

Similarly, by using the same argument as in the proof above, we have

lim
n→∞

∥∥Tni y(i−1)n − xn
∥∥ = 0, (3.36)

for all i = 2, 3, . . . , k.

Since K is compact, {xn}∞n=1 has a convergent subsequence {xnj}∞j=1. Let

lim
j→∞

xnj
= p. (3.37)

Then from (1.5) and (3.36), we have∥∥xnj+1 − xnj

∥∥ ≤ bknj

∥∥Tnj

k y(k−1)nj
− xnj

∥∥+ cknj

∥∥∥uknj
− xnj

∥∥∥
→ 0, as j →∞. (3.38)

From (1.5) and (3.20), we have

‖y1n − xn‖ ≤ b1n ‖Tn1 xn − xn‖+ c1n ‖u1n − xn‖
→ 0, as n→∞. (3.39)

Again from (3.19) and (3.37), we have

lim
j→∞

T
nj

1 xnj
= p. (3.40)

Since limj→∞ xnj+1 = p, we have

lim
j→∞

T
nj+1
1 xnj+1 = p. (3.41)

From (3.38), (3.40) and (3.41), we have

0 ≤ ‖p− T1p‖

≤
∥∥∥p− Tnj+1

1 xnj+1

∥∥∥
+
∥∥∥Tnj+1

1 xnj+1 − T
nj+1
1 xnj

∥∥∥
+
∥∥∥Tnj+1

1 xnj − T1p
∥∥∥

≤
∥∥∥p− Tnj+1

1 xnj+1

∥∥∥+ L1
∥∥xnj+1 − xnj+1

∥∥α1

+L1
∥∥Tnj

1 xnj − p
∥∥α1

→ 0 as j →∞. (3.42)

From (3.26) and (3.37), we have

lim
j→∞

T
nj

2 y1nj
= p. (3.43)
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Since limj→∞ xnj+1 = p, we have

lim
j→∞

T
nj+1
2 y1nj+1 = p. (3.44)

From (3.38), (3.39), (3.43) and (3.44), we have

0 ≤ ‖p− T2p‖

≤
∥∥∥p− Tnj+1

2 y1nj+1

∥∥∥
+
∥∥∥Tnj+1

2 y1nj+1 − T
nj+1
2 xnj+1

∥∥∥
+
∥∥∥Tnj+1

2 xnj+1 − T
nj+1
2 xnj

∥∥∥
+
∥∥∥Tnj+1

2 xnj − T
nj+1
2 y1nj

∥∥∥
+
∥∥∥Tnj+1

2 y1nj
− T2p

∥∥∥
≤

∥∥∥p− Tnj+1
2 y1nj+1

∥∥∥+ L2
∥∥y1nj+1 − xnj+1

∥∥α2

+L2
∥∥xnj+1 − xnj

∥∥α2 + L2
∥∥xnj

− y1nj

∥∥α2

+L2
∥∥Tnj

2 y1nj
− p
∥∥α2

→ 0 as j →∞. (3.45)

Now, from (1.5) and (3.26), we have

‖y2n − xn‖ ≤ b2n ‖Tn2 y1n − xn‖+ c2n ‖u2n − xn‖
→ 0, as n→∞. (3.46)

Again from (3.35) and (3.37), we have

lim
j→∞

T
nj

3 y2nj
= p. (3.47)

Since limj→∞ xnj+1 = p, we have

lim
j→∞

T
nj+1
3 y2nj+1 = p. (3.48)

From (3.38), (3.46), (3.47) and (3.48), we have

0 ≤ ‖p− T3p‖

≤
∥∥∥p− Tnj+1

3 y2nj+1

∥∥∥
+
∥∥∥Tnj+1

3 y2nj+1 − T
nj+1
3 xnj+1

∥∥∥
+
∥∥∥Tnj+1

3 xnj+1 − T
nj+1
3 xnj

∥∥∥
+
∥∥∥Tnj+1

3 xnj
− Tnj+1

3 y2nj

∥∥∥
+
∥∥∥Tnj+1

3 y2nj
− T3p

∥∥∥
≤

∥∥∥p− Tnj+1
3 y2nj+1

∥∥∥+ L3
∥∥y2nj+1 − xnj+1

∥∥α3

+L3
∥∥xnj+1 − xnj

∥∥α3 + L3
∥∥xnj

− y2nj

∥∥α3

+L3
∥∥Tnj

3 y2nj
− p
∥∥α3

→ 0 as j →∞. (3.49)

Similarly, from (1.5) and (3.36), we have∥∥y(k−1)n − xn
∥∥ ≤ b(k−1)n

∥∥Tnk−1y(k−2)n − xn
∥∥+ c(k−1)n

∥∥u(k−1)n − xn
∥∥

→ 0, as n→∞. (3.50)
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Again from (3.36) and (3.37), we have

lim
j→∞

T
nj

k y(k−1)nj
= p. (3.51)

Since limj→∞ xnj+1 = p, we have

lim
j→∞

T
nj+1
k y(k−1)nj+1 = p. (3.52)

From (3.38), (3.50), (3.51) and (3.52), we have

0 ≤ ‖p− Tkp‖

≤
∥∥∥p− Tnj+1

k y(k−1)nj+1

∥∥∥
+
∥∥∥Tnj+1

k y(k−1)nj+1 − T
nj+1
k xnj+1

∥∥∥
+
∥∥∥Tnj+1

k xnj+1 − T
nj+1
k xnj

∥∥∥
+
∥∥∥Tnj+1

k xnj
− Tnj+1

k y(k−1)nj

∥∥∥
+
∥∥∥Tnj+1

k y(k−1)nj
− Tkp

∥∥∥
≤

∥∥∥p− Tnj+1
k y(k−1)nj+1

∥∥∥+ Lk
∥∥y(k−1)nj+1 − xnj+1

∥∥αk

+Lk
∥∥xnj+1 − xnj

∥∥αk + Lk
∥∥xnj − y(k−1)nj

∥∥αk

+Lk
∥∥Tnj

k y(k−1)nj
− p
∥∥αk

→ 0 as j →∞. (3.53)

Hence

lim
n→∞

‖p− Tip‖ = 0 ∀ i = 1, 2, . . . , k. (3.54)

Thus p is a common fixed point of the mappings {Ti : i = 1, 2, . . . , k}. Since the subse-
quence {xnj

}∞j=1 of {xn}∞n=1 converges to p and limn→∞ ‖xn − p‖ exists, we conclude that
limn→∞ xn = p. This completes the proof.

Theorem 3.3. Let K be a nonempty closed convex subset of a uniformly convex Banach
space E and for i = 1, 2, . . . , k, let Ti : K → K be a finite family of uniformly (Li, αi)-Lipschitz
and generalized asymptotically quasi-nonexpansive mappings. Let {xn} be the sequence defined
by (1.5) with

∑∞
n=1 rin < ∞,

∑∞
n=1 sin < ∞,

∑∞
n=1 cin < ∞ and 0 < α ≤ bin ≤ β < 1 for all

i = 1, 2, . . . , k. If F = ∩ki=1F (Ti) 6= ∅. Then limn→∞ ‖Tixn − xn‖ = 0 for all i = 1, 2, . . . , k.

Proof. From Theorem 3.2 equation (3.36), we have

lim
n→∞

∥∥Tni y(i−1)n − xn
∥∥ = 0, (3.55)

for all i = 2, 3, . . . , k.

In the case i = 1 that limn→∞ ‖Tn1 xn − xn‖ = 0, where y0n = xn. For i = 2, 3, . . . , k, we
obtain from (3.55) that

‖Tni xn − xn‖ ≤
∥∥Tni xn − Tni y(i−1)n

∥∥+ ∥∥Tni y(i−1)n − xn
∥∥

≤ Li
∥∥xn − y(i−1)n

∥∥αi +
∥∥Tni y(i−1)n − xn

∥∥
≤ Li

(
a(i−1)n

∥∥∥Tn(i−1)y(i−2)n − xn
∥∥∥+ c(i−1)n

∥∥u(i−1)n − xn
∥∥)αi

+
∥∥Tni y(i−1)n − xn

∥∥→ 0 as n→∞. (3.56)

Therefore

lim
n→∞

‖Tni xn − xn‖ = 0, ∀ i = 1, 2, . . . , k. (3.57)



62 Gurucharan Singh Saluja

This completes the proof.

Remark 3.1. Theorem 3.1 extend and improve the corresponding results of Khan et al. [5]
and Tang and Peng [22] to the case of more general class of asymptotically quasi-nonexpansive
or uniformly quasi-Lipschitzian mappings considered in this paper.

Remark 3.2. Theorem 3.1 also extend and improve the corresponding results of [1, 2, 7, 8,
11, 17]. Especially Theorem 3.1 extends and improves Theorem 1 and 2 in [8], Theorem 1 in [7]
and Theorem 3.2 in [17] in the following ways:

(1) The asymptotically quasi-nonexpansive mapping in [7], [8] and [17] is replaced by finite
family of generalized asymptotically quasi-nonexpansive mappings.

(2) The usual Ishikawa [4] iteration scheme in [7], the usual modified Ishikawa iteration
scheme with errors in [8] and the usual modified Ishikawa iteration scheme with errors for two
mappings in [17] are extended to the multi-step iteration scheme with errors for a finite family
of mappings.

Remark 3.3. Theorem 3.1 also extends and improves Theorem 2.0.3 in [12] in the following
aspects:

(1) Two asymptotically quasi-nonexpansive mappings in [12] is replaced by finite family of
generalized asymptotically quasi-nonexpansive mappings.

(2) The usual modified Ishikawa iteration scheme with errors in the sense of Liu [6] for two
mappings in [12] is extended to the multi-step iteration scheme with errors in the sense of Xu
[24] for a finite family of mappings.

Remark 3.4. Theorem 3.2 extends and improves the corresponding result of [9] in the fol-
lowing aspects:

(1) The asymptotically quasi-nonexpansive mapping in [9] is replaced by finite family of
generalized asymptotically quasi-nonexpansive mappings.

(2) The usual modified Ishikawa iteration scheme with errors in [9] is extended to the multi-
step iteration scheme with errors for a finite family of mappings.

Remark 3.5. Theorem 3.1 also extends the corresponding result of [23] to the case of more
general class of asymptotically nonexpansive mappings and multi-step iteration scheme with
errors for a finite family of mappings considered in this paper.

4 Application

In this section we give an application of the convergence criteria established in Theorem 3.1 is
given below to obtain yet another strong convergence result in our setting.

Theorem 4.1. Let K be a nonempty closed convex subset of a uniformly convex Banach
space E and for i = 1, 2, . . . , k, let Ti : K → K be a finite family of uniformly (Li, αi)-Lipschitz
and generalized asymptotically quasi-nonexpansive mappings. Let {xn} be the sequence defined
by (1.5) with

∑∞
n=1 rin < ∞,

∑∞
n=1 sin < ∞,

∑∞
n=1 cin < ∞ and 0 < α ≤ bin ≤ β < 1 for

all i = 1, 2, . . . , k. Assume that F = ∩ki=1F (Ti) 6= ∅ and the family {Ti : i = 1, 2, . . . , k}
satisfies condition (C). Then the sequence {xn} converges strongly to a common fixed point of
the family of mappings {Ti : i = 1, 2, . . . , k}.

Proof. From Theorem 3.3 we have limn→∞ ‖Tni xn − xn‖ = 0 for all i = 1, 2, . . . , k and the
family {Ti : i = 1, 2, . . . , k} satisfying condition (C), we have that lim infn→∞ f(d(xn,F)) =
0. Since f is a nondecreasing function with f(0) = 0 and f(r) > 0 for all r ∈ (0,∞), it follows
that lim infn→∞ d(xn,F) = 0. Now by Theorem 3.1, xn ∈ F , i.e., {xn} converges strongly to a
common fixed point of the family of mappings {Ti : i = 1, 2, . . . , k}. This completes the proof.

Example 1. Let E be the real line with the usual norm |.| and K = [0, 1]. Define T : K → K
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by

T (x) =

{
x/2, if x 6= 0,
0, if x = 0.

Obviously T (0) = 0, i.e., 0 is a fixed point of the mapping T . Thus, T is quasi-nonexpansive.
It follows that T is uniformly quasi-1 Lipschitzian and asymptotically quasi-nonexpansive with
constant sequence {kn} = {1} for each n ≥ 1 and hence it is generalized asymptotically quasi-
nonexpansive mapping with constant sequences {kn} = {1} and {sn} = {0} for each n ≥ 1 but
the converse is not true in general.
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