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Abstract. Let L be a finite abelian tamely ramified extension of a rational function field. In
the spirit of the Kronecker–Weber Theorem, we present a construction of a cyclotomic function
field and a constant field extension whose composite contains the given field L.

1 Introduction

The classical Kronecker–Weber Theorem establishes that every finite abelian extension of Q,
the field of rational numbers, is contained in a cyclotomic number field. In 1974, D. Hayes [2],
defined the concept of cyclotomic function field and proved the analogous result for rational
congruence function fields. The proof of this theorem uses class field theory.

In this note we present a proof of this result in the case of a finite abelian tamely ramified
extension L of a rational function field k. More precisely, we show that L is contained in the
composite of an explicit cyclotomic function field and a constant field extension. As a motiva-
tion, we study first quadratic extensions and in this case, we obtain explicitly the constant field
extension.

2 Notation

First we give some notations and some results in the theory of cyclotomic function fields [4].
Let k = Fq(T ) be a congruence rational function field, Fq denoting the finite field of q = ps

elements, where p is the characteristic of the fields. Let RT = Fq[T ] be the ring of polynomials.
For N ∈ RT \ {0}, ΛN denotes the N–torsion of the Carlitz module and k(ΛN ) denotes the N–
th cyclotomic function field. The degree of the extension k(ΛN )/k is Φ(N), where Φ, the phi
Euler function for function fields, is multiplicative and for an irreducible polynomial P of degree
d and n ∈ N, Φ(Pn) = q(n−1)d(qd−1). The extension k(ΛN )/k is geometric. We denote by p∞
the pole divisor of T in k. In k(ΛN )/k, p∞ has ramification index q − 1 and decomposes into
|GN |
q−1 different prime divisors of k(ΛN ) of degree 1, where GN := Gal(k(ΛN )/k). We denote

by R+
T the set of monic irreducible polynomials in RT . The primes that ramify in k(ΛN )/k are

p∞ and the polynomials P ∈ R+
T such that P | N , with the exception of the case q = 2 and

N ∈ {T, T + 1, T (T + 1)} since in these cases k(ΛN ) = k.

3 Quadratic Extensions

In this section we study quadratic extensions. This is a particular case of the general result but
we include it since it is useful as a concrete example of the general case.

Since we are considering tamely ramified extensions, in this section we assume that the char-
acteristic p of the fields is different from 2. We need a few lemmas.

Lemma 3.1. Let F/k be a quadratic extension. Then F = k(
√
M), where M = α

r∏
i=1

Pi is a

nonzero square-free polynomial, α ∈ F∗q , Pi ∈ R+
T for i ∈ {1, ..., r} with Pi 6= Pj if i 6= j.

Proof. Since the characteristic is different from 2, F = k(y), where y satisfies y2 + b1y + b0 =

0, for some b0, b1 ∈ k. Then y =
−b1 ±

√
b2

1 − 4b0

2
and therefore F = k(

√
b2

1 − 4b0) =
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k
(√

f(T )
g(T )

)
= k(

√
f(T )g(T )) = k(

√
M), where M is a nonzero square-free polynomial that

can be factored as above.

Lemma 3.2. Let P ∈ R+
T and d = degP. Then

(a) For d even we have k(
√
P ) ⊆ k(ΛP ),

(b) For d odd we have k(
√
−P ) ⊆ k(ΛP ).

Proof. Since q is odd, q − 1 = 2l for some l ∈ N. By [3, Exercise 5, page 303] we have two
cases:

(a) For d even we have k( q−1
√
P ) ⊆ k(ΛP ), then P

1
2 = P

l
q−1 =

(
P

1
q−1

)l
, then k(

√
P ) ⊆

k(ΛP ).

(b) For d odd we have k( q−1
√
−P ) ⊆ k(ΛP ), thus (−P )

1
2 = (−P )

l
q−1 =

(
(−P )

1
q−1

)l
, so that

k(
√
−P ) ⊆ k(ΛP ).

Lemma 3.3. Let P ∈ R+
T . Then k(

√
P ) ⊆ k(ΛP )Fq2 .

Proof. For the case when d is odd, k(
√
P ) = k(

√
−1
√
−P ) ⊆ k(

√
−1,
√
−P ) = k(

√
−1)k(

√
−P ) ⊆

kFq2 · k(ΛP ) = k(ΛP )Fq2 and for the case d even, we have k(
√
P ) ⊆ k(ΛP ) ⊆ k(ΛP )Fq2 .

From the above lemmas we obtain explicitly, for a quadratic extension F/k, a composite of
a cyclotomic function field and a constant field extension that contains F .

Proposition 3.4. Let F/k be a quadratic extension. Then F = k(
√
M) ⊆ k(ΛM )Fq2 , where

M = α
r∏
i=1

Pi is a nonzero square-free polynomial, α ∈ F∗q , Pi ∈ R+
T for i ∈ {1, ..., r} with

Pi 6= Pj if i 6= j.

Proof. By Lemma 3.1 such nonzero square-free polynomial M = α
r∏
i=1

Pi exists. We take
√
M =

√
α
√
P1 · · ·

√
Pr and since by Lemma 3.3 we have k(

√
Pi) ⊆ k(ΛPi)Fq2 for i ∈

{1, ..., r}, we have k(
√
M) = k(

√
α
√
P1 · · ·

√
Pr) ⊆ k(

√
P1) · · · k(

√
Pr)Fq2 ⊆ k(ΛP1) · · · k(ΛPr)Fq2 =

k(ΛP1···Pr
)Fq2 = k(ΛαP1···Pr

)Fq2 = k(ΛM )Fq2 . Therefore F = k(
√
M) ⊆ k(ΛM )Fq2 .

Example 3.5. Let k = F3(T ) and F = k(y), where y2 = T 3−T +1. The polynomial T 3−T +1
is irreducible modulo 3. For the Kummer extension F/k we have

F ⊆ k(ΛT 3−T+1)F9.

k(ΛT 3−T+1)F9

26F = k(y)

2

26

k = F3(T )
2

F9(T )

4 The result

In this section we prove our main result. First we prove the following proposition.

Proposition 4.1. Let L/k be a finite abelian extension, P ∈ R+
T and d := degP . Assume P is

tamely ramified in L/k. If e denotes the ramification index of P in L/k, we have e | qd − 1.
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Proof. First we consider in general a finite Galois extension L/k. Let G−1 = D be the decom-
position group of P , G0 = I be the inertia group and Gi, i ≥ 1 be the ramification groups. Let
P be a prime divisor in L dividing P . Then if OP denotes the valuation ring of P, we have

U (i) = 1 +Pi ⊆ O∗P = OP \P, i ≥ 1, U (0) = O∗P.

Let l(P) := OP/P be the residue field at P. The following are monomorphisms:

Gi/Gi+1
ϕi
↪→ U (i)/U (i+1) ∼=

{
l(P)∗, i = 0
Pi/Pi+1 ∼= l(P), i ≥ 1.

σ 7→ σπ/π

where π denotes a prime element for P.
We will prove that if G−1/G1 = D/G1 is abelian, then

ϕ = ϕ0 : G0/G1 −→ U (0)/U (1) ∼=
(
OP/P

)∗
satisfies that imϕ ⊆ OP /(P ) ∼= RT /(P ) ∼= Fqd . In particular it will follow that

∣∣G0/G1
∣∣ |∣∣F∗qd ∣∣ = qd − 1.

To prove this statement, note that

Gal((OP/P)/(OP /(P ))) ∼= D/I = G−1/G0

(see [4, Corollary 5.2.12]).
Let σ ∈ G0 and ϕ(σ̄) = ϕ(σ mod G1) = [α] = α mod P ∈

(
OP/P

)∗
. Therefore σπ ≡

απ mod P2.
Let θ ∈ G−1 = D be arbitrary and let π1 := θ−1π. Then π1 is a prime element for P. Since

ϕ is independent of the prime element, it follows that σπ1 ≡ απ1 mod P2, that is σθ−1π ≡
αθ−1π mod P2. Since G−1/G1 is an abelian group, we have

σπ = (θσθ−1)(π) ≡ θ(α)π mod P2.

Thus σπ ≡ θ(α)π mod P2 and σπ ≡ απ mod P2. It follows that θ(α) ≡ α mod P for all
θ ∈ G−1.

If we write θ̃ = θ mod G0, θ̃[α] = [α], that is, [α] is a fixed element under the action of
the group G−1/G0 ∼= Gal((OP/P)/(OP /(P ))). We obtain that [α] ∈ OP /(P ). Therefore
imϕ ⊆

(
OP /(P )

)∗
and

∣∣G0/G1
∣∣ | ∣∣(OP /(P ))∗∣∣ = qd − 1.

Finally, since L/k is abelian and P is tamely ramified, G1 = {1}, it follows that e = |G0| =
|G0/G1| | qd − 1.

Now consider a finite abelian tamely ramified extension L/k where P1, . . . , Pr are the finite
ramified primes. Set P = P1 and d = degP . Let e be the ramification index of P in L. Then
by Proposition 4.1 we have e | qd − 1. Now P is totally ramified in k(ΛP )/k with ramification
index qd − 1. In this extension p∞ has ramification index equal to q − 1.

Let k ⊆ E ⊆ k(ΛP ) with [E : k] = e. Set P̃ a prime divisor in LE dividing P . Let q := P̃|E
and P := P̃|L.

P P̃

L LE

M

H

k
e

E k(ΛP )

P q
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We have e = eL/k(P|P ) = eE/k(q|P ). By Abhyankar’s Lemma [4, Theorem 12.4.4], we
obtain

eLE/k(P̃|P ) = mcm[eL/k(P|P ), eE/k(q|P )] = mcm[e, e] = e.

Let H ⊆ Gal(LE/k) be the inertia group of P̃/P . Set M := (LE)H . Then P is unramified in
M/k. We want to see that L ⊆ k(ΛP )M . Indeed we have [LE : M ] = e and E ∩M = k since
P is totally ramified in E/k and unramified in M/k. It follows that [ME : k] = [M : k][E : k].
Therefore

[LE : k] = [LE : M ][M : k] = e
[ME : k]
[E : k]

= e
[ME : k]

e
= [ME : k].

Since ME ⊆ LE it follows that LE =ME = EM ⊆ k(ΛP )M . Thus L ⊆ k(ΛP )M .
In M/k the finite ramified primes are at most the elements of {P2, · · · , Pr}. In case r − 1 ≥

1, we may apply the above argument to M/k and we obtain M2/k such that at most r − 2
finite primes are ramified and M ⊆ k(ΛP2)M2, so that L ⊆ k(ΛP1)M ⊆ k(ΛP1)k(ΛP2)M2 =
(ΛP1P2)M2.

Performing the above process at most r times we have

L ⊆ k(ΛP1P2···Pr)M0 (4.1)

where in M0/k the only ramified prime is p∞.
We also have

Proposition 4.2. Let L/k be an abelian extension where at most a prime divisor p0 of degree 1
is ramified and the extension is tamely ramified. Then L/k is a constant extension.

Proof. By Proposition 4.1 we have e := eL/k(p0)|q − 1. Let H be the inertia group of p0. Then
|H| = e and p0 is unramified in E := LH/k. Therefore E/k is an unramified extension. Thus
E/k is a constant extension.

Let [E : k] = m. Then if P0 is a prime divisor in E dividing p0 then the relative degree
dE/k(P0|p0) is equal to m, the number of prime divisors in E/k is 1 and the degree of P0 is 1
(see [4, Theorem 6.2.1]). Therefore P0 is the only prime divisor ramified in L/E and it is of
degree 1 and totally ramified. Furthermore [L : E] = e | q − 1 = |F∗q |.

The (q − 1)-th roots of unity belong to Fq ⊆ k. Hence k contains the e–th roots of unity and
L/E is a Kummer extension, say L = E(y) with ye = α ∈ E = kFqm = Fqm(T ). We write α in
a normal form as prescribed by Hasse [1]: (α)E = Pa

0 a
b , 0 < a < e. Now since deg(α)E = 0 it

follows that degE a or degE b is not a multiple of e. This contradicts that p0 is the only ramified
prime. Therefore L/k is a constant extension.

Finally, we obtain our main result.

Theorem 4.3. If L/k is a finite abelian tamely ramified extension, where P1, . . . , Pr ∈ R+
T and

possibly p∞ are the ramified primes, then L ⊆ k(ΛP1···Pr)Fqm for some m ∈ N.

Proof. From (4.1) we have L ⊆ k(ΛP1P2···Pr)M0, for a finite abelian tamely ramified extension
M0/k ramified at most at p∞. By Proposition 4.2 we have that M0 = kFqm is a constant
extension. It follows that L ⊆ k(ΛP1···Pr)Fqm for some m ∈ N.
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