The generalized sequence space $B V_{\sigma}(\mathcal{M}, p, q, u, s)$ defined by a sequence of Orlicz functions

Suzan ZEREN and Çiğdem A. BEKTAŞ
Communicated by Ayman Badawi

MSC 2010 Classifications: 40C05, 46A45.
Keywords and phrases: Orlicz functions, convex function, invariant mean

Abstract

In this paper we introduce the sequence space $B V_{\sigma}(\mathcal{M}, p, q, u, s)$ defined by a sequence of Orlicz functions over a seminormed sequence space. We establish some inclusion relations on this space under some conditions and examine some properties of this space.

1. INTRODUCTION

Let ℓ_{∞} and ω denote the set of bounded and all sequences $x=\left(x_{k}\right)$ with complex terms.
An Orlicz function is a function $M:[0, \infty) \rightarrow[0, \infty)$ which is continuous, nondecreasing and convex with $M(0)=0, M(x)>0$ for $x>0$ and $M(x) \rightarrow \infty$ as $x \rightarrow \infty$. Lindenstrauss and Tzafriri [3] used the idea of Orlicz function to construct the sequence space

$$
\ell_{M}=\left\{x \in \omega: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty, \text { for some } \rho>0\right\}
$$

The space of ℓ_{M} is a Banach space, with the norm

$$
\|x\|=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq 1\right\}
$$

which is called an Orlicz space.
If M is a convex function and $M(0)=0$, then $M(\lambda x) \leq \lambda M(x)$ for all with $0 \leq \lambda \leq 1$.
An Orlicz function M is said to satisfy the Δ_{2} - condition for small x or at 0 if for each $k>0$ there exist $R_{k}>0$ and $x_{k}>0$ such that $M(k x) \leq R_{k} M(x), \forall x \in\left(0, x_{k}\right.$] [2].

Let σ be a one to one mapping of the set of positive integers into itself such that $\sigma^{k}(n)=$ $\sigma\left(\sigma^{k-1}(n)\right), k=1,2, \ldots$. A continuous linear functional φ on ℓ_{∞} is said to be an invariant mean or a σ - mean if and only if
(i) $\varphi(x) \geq 0$ when the sequence $x=\left(x_{k}\right)$ has $x_{k} \geq 0$ for all k,
(ii) $\varphi(e)=1$, where $e=(1,1,1, \ldots)$ and
(iii) $\varphi\left(\left\{x_{\sigma(k)}\right\}\right)=\varphi\left(\left\{x_{k}\right\}\right)$ for all $x \in \ell_{\infty}$.

If σ is the translation mapping $n \rightarrow n+1$, a σ - mean is often called a Banach limit, and V_{σ}, the set of σ - convergent sequences is

$$
V_{\sigma}=\left\{x=\left(x_{n}\right): \lim _{k} t_{k n}(x)=L e \text { uniformly in } n, L=\sigma-\lim x\right\}
$$

where

$$
t_{k n}(x)=\frac{1}{k+1} \sum_{j=0}^{k} T^{j} x_{n}
$$

Mursaleen [5] defined

$$
B V_{\sigma}=\left\{x \in \ell_{\infty}: \sum_{k}\left|\phi_{k, n}(x)\right|<\infty, \text { uniformly in } n\right\}
$$

where

$$
\phi_{k, n}(x)=t_{k n}(x)-t_{k-1, n}(x)
$$

assuming that $t_{k n}(x)=0$, for $k=-1$.
For any sequences x, y and scalar λ, we have

$$
\phi_{k, n}(x+y)=\phi_{k, n}(x)+\phi_{k, n}(y) \text { and } \phi_{k, n}(\lambda x)=\lambda \phi_{k, n}(x)
$$

Definitition 1.1. A sequence space E is said to be solid (or normal) if $\left(\alpha_{k} x_{k}\right) \in E$ whenever $\left(x_{k}\right) \in E$ for all sequences $\left(\alpha_{k}\right)$ of scalars with $\left|\alpha_{k}\right| \leq 1$ [2].

Remark. It is well known that a sequence space E is normal implies that E is monotone [2].
Definition 1.2. Let q_{1} and q_{2} be seminorms on a linear space X. Then q_{1} is said to be stronger than q_{2} if and only if there exists a constant T such that $q_{2}(x) \leq T q_{1}(x)$ for all $x \in X$ [7].

The following inequality and $p=\left(p_{k}\right)$ sequence will be used frequently throughout this paper

$$
\left|a_{k}+b_{k}\right|^{p_{k}} \leq D\left\{\left|a_{k}\right|^{p_{k}}+\left|b_{k}\right|^{p_{k}}\right\}
$$

where $a_{k}, b_{k} \in \mathbb{C}, 0<p_{k} \leq \sup _{k} p_{k}=G$ and $D=\max \left(1,2^{G-1}\right)$ [4].

2. MAIN RESULTS

Definition 2.1. Let X be a seminormed space over the field \mathbb{C} of complex numbers with the seminorm $q, \mathcal{M}=\left(M_{k}\right)$ be a sequence of Orlicz functions, $p=\left(p_{k}\right)$ be a sequence of strictly positive real numbers, $u=\left(u_{k}\right)$ be a sequence of positive real numbers and $s \geq 0$ be a fixed real number. Then we define the sequence space $B V_{\sigma}(\mathcal{M}, p, q, u, s)$ as follows:

$$
B V_{\sigma}(\mathcal{M}, p, q, u, s)=\left\{x=\left(x_{k}\right) \in X: \sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}}<\infty\right\}
$$

where for some $\rho>0$ and uniformly in n.
Theorem 2.2. The sequence space $B V_{\sigma}(\mathcal{M}, p, q, u, s)$ is a linear space over the field \mathbb{C} of complex numbers.

Proof. Let $x, y \in B V_{\sigma}(\mathcal{M}, p, q, u, s)$ and $\alpha, \beta \in \mathbb{C}$. There exist some positive numbers ρ_{1} and ρ_{2} such that

$$
\sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho_{1}}\right)\right)\right]^{p_{k}}<\infty, \text { uniformly in } n
$$

and

$$
\sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(y)}{\rho_{2}}\right)\right)\right]^{p_{k}}<\infty, \text { uniformly in } n
$$

Define $\rho_{3}=\max \left(2|\alpha| \rho_{1}, 2|\beta| \rho_{2}\right)$. Since M_{k} is non decreasing and convex, q is a seminorm, we have

$$
\begin{aligned}
& \sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(\alpha x+\beta y)}{\rho_{3}}\right)\right)\right]^{p_{k}} \\
& \leq \sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{\alpha u_{k} \phi_{k, n}(x)}{\rho_{3}}\right)+q\left(\frac{\beta u_{k} \phi_{k, n}(y)}{\rho_{3}}\right)\right)\right]^{p_{k}} \\
& \leq \sum_{k=1}^{\infty} \frac{1}{2^{p_{k}}} k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho_{1}}\right)+M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(y)}{\rho_{2}}\right)\right)\right)\right]^{p_{k}} \\
& \leq D \sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho_{1}}\right)\right)\right]^{p_{k}}+D \sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(y)}{\rho_{2}}\right)\right)\right]^{p_{k}} \\
& <\infty, \text { uniformly in } n
\end{aligned}
$$

where $D=\max \left(1,2^{H-1}\right)$. This proves that $B V_{\sigma}(\mathcal{M}, p, q, u, s)$ is a linear space.

Theorem 2.3. The sequence space $B V_{\sigma}(\mathcal{M}, p, q, u)$ is a paranormed (not necessarily total paranormed) space with

$$
g(x)=\inf \left\{\rho^{\frac{p_{m}}{H}}:\left(\sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \leq 1, m, n=1,2,3, \ldots\right\}
$$

where $H=\max \left(1, \sup _{k} p_{k}\right)$.

Proof. Since $q(\theta)=0$ and $M_{k}(0)=0$, we get $\inf \left\{\rho^{\frac{p_{m}}{H}}\right\}=0$ for $x=\theta$. Clearly $g(x)=g(-x)$. The subaddivity of g follows from (1), on taking $\alpha=1$ and $\beta=1$. Finally, we prove that the scalar multiplication is continuous. Let λ be any number. By definition,

$$
g(\lambda x)=\inf \left\{\rho^{\frac{p_{m}}{H}}:\left(\sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{\lambda u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \leq 1, m, n=1,2,3, \ldots\right\}
$$

Then

$$
g(\lambda x)=\inf \left\{(\lambda r)^{\frac{p_{m}}{H}}:\left(\sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{r}\right)\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \leq 1, m, n=1,2,3, \ldots\right\}
$$

where $r=\frac{\rho}{\lambda}$. Since $|\lambda|^{p_{k}} \leq \max \left(1,|\lambda|^{H}\right)$, it follows that $|\lambda|^{\frac{p_{k}}{H}} \leq\left(\max \left(1,|\lambda|^{H}\right)\right)^{\frac{1}{H}}$. Hence
$g(\lambda x)=\left(\max \left(1,|\lambda|^{H}\right)\right)^{\frac{1}{H}} . \inf \left\{r^{\frac{p_{m}}{H}}:\left(\sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{r}\right)\right)\right]^{p_{k}}\right)^{\frac{1}{H}} \leq 1, m, n=1,2,3, \ldots\right\}$
and therefore $g(\lambda x)$ converges to zero when $g(x)$ converges to zero in $B V_{\sigma}(\mathcal{M}, p, q, u, s)$. Now suppose that $\lambda_{n} \rightarrow 0$ and x is in $B V_{\sigma}(\mathcal{M}, p, q, u, s)$. For arbitrary $\varepsilon>0$, let N be a positive integer such that

$$
\sum_{k=N+1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}}<\left(\frac{\varepsilon}{2}\right)^{H}
$$

for some $\rho>0$ and all n. This implies that

$$
\left(\sum_{k=N+1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}}\right)^{\frac{1}{H}}<\frac{\varepsilon}{2}
$$

for some $\rho>0$ and all n.
Let $0<|\lambda|<1$, using convexity of M_{k}, we get for all n

$$
\begin{aligned}
\sum_{k=N+1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{\lambda u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}} & \leq \sum_{k=N+1}^{\infty} k^{-s}\left[|\lambda| M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}} \\
& <\left(\frac{\varepsilon}{2}\right)^{H}
\end{aligned}
$$

Since M_{k} is continuous everywhere in $[0, \infty)$, then

$$
f(t)=\sum_{k=1}^{N} k^{-s}\left[M_{k}\left(q\left(\frac{t u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}}
$$

is continuous at 0 . So there is $0<\delta<1$ such that $|f(t)|<\frac{\varepsilon}{2}$ for $0<t<\delta$. Let K be such that $\left|\lambda_{i}\right|<\delta$ for $i>K$. Then for $i>K$ and all n, we have

$$
\left(\sum_{k=1}^{N} k^{-s}\left[M_{k}\left(q\left(\frac{\lambda_{i} u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}}\right)^{\frac{1}{H}}<\frac{\varepsilon}{2}
$$

Since $0<\varepsilon<1$ we have

$$
\left(\sum_{k=1}^{N} k^{-s}\left[M_{k}\left(q\left(\frac{\lambda_{i} u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}}\right)^{\frac{1}{H}}<1
$$

for $i>K$ and all n. If we take limit on $\inf \left\{\rho^{\frac{p_{m}}{H}}\right\}$ we get $g(\lambda x) \rightarrow 0$.

Theorem 2.4. Let $\mathcal{M}=\left(M_{k}\right)$ and $\mathcal{T}=\left(T_{k}\right)$ be sequences of Orlicz functions, q, q_{1}, q_{2} be seminorms and $s, s_{1}, s_{2} \geq 0$. Then
(i) $B V_{\sigma}(\mathcal{M}, p, q, u, s) \cap B V_{\sigma}(\mathcal{T}, p, q, u, s) \subseteq B V_{\sigma}(\mathcal{M}+\mathcal{T}, p, q, u, s)$,
(ii) $B V_{\sigma}\left(\mathcal{M}, p, q_{1}, u, s\right) \cap B V_{\sigma}\left(\mathcal{M}, p, q_{2}, u, s\right) \subseteq B V_{\sigma}\left(\mathcal{M}, p, q_{1}+q_{2}, u, s\right)$,
(iii) If $s_{1} \leq s_{2}$ then $B V_{\sigma}\left(\mathcal{M}, p, q, u, s_{1}\right) \subseteq B V_{\sigma}\left(\mathcal{M}, p, q, u, s_{2}\right)$
(iv) If q_{1} is stronger than q_{2} and M_{k} are Orlicz functions that satisfy Δ_{2} - condition, then $B V_{\sigma}\left(\mathcal{M}, p, q_{1}, u, s\right) \subset B V_{\sigma}\left(\mathcal{M}, p, q_{2}, u, s\right)$.

Proof. (i) Let $x \in B V_{\sigma}(\mathcal{M}, p, q, u, s) \cap B V_{\sigma}(\mathcal{T}, p, q, u, s)$.

$$
\begin{aligned}
& k^{-s}\left[\left(M_{k}+T_{k}\right)\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}} \\
& \quad=k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)+T_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}} \\
& \quad \leq D k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}}+D k^{-s}\left[T_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}} .
\end{aligned}
$$

If we take summation from $k=1$ to ∞ on above inequality, we get $x \in B V_{\sigma}(\mathcal{M}+\mathcal{T}, p, q, u, s)$.
(ii) Let $x \in B V_{\sigma}\left(\mathcal{M}, p, q_{1}, u, s\right) \cap B V_{\sigma}\left(\mathcal{M}, p, q_{2}, u, s\right)$. If we take $\rho=\max \left\{2 \rho_{1}, 2 \rho_{2}\right\}$, then we have

$$
\begin{aligned}
& \sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(\left(q_{1}+q_{2}\right)\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}} \\
& \quad=\sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q_{1}\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)+q_{2}\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}} \\
& \quad \leq D \sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q_{1}\left(\frac{u_{k} \phi_{k, n}(x)}{\rho_{1}}\right)\right)\right]^{p_{k}}+D \sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q_{2}\left(\frac{u_{k} \phi_{k, n}(x)}{\rho_{2}}\right)\right)\right]^{p_{k}} \\
& \quad<\infty
\end{aligned}
$$

where uniformly in n. Hence we get $x \in B V_{\sigma}\left(\mathcal{M}, p, q_{1}+q_{2}, u, s\right)$.
(iii) For $s_{1} \leq s_{2}$ let $x \in B V_{\sigma}\left(\mathcal{M}, p, q, u, s_{1}\right)$. Then, we write

$$
\sum_{k=1}^{\infty} k^{-s_{1}}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}}<\infty
$$

for some $\rho>0$, uniformly in n. Then

$$
\sum_{k=1}^{\infty} k^{-s_{2}}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}} \leq \sum_{k=1}^{\infty} k^{-s_{1}}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}}
$$

$$
<\infty, \text { uniformly in } n
$$

(iv) Let $x \in B V_{\sigma}\left(\mathcal{M}, p, q_{1}, u, s\right)$. Then

$$
\sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q_{1}\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}}<\infty
$$

Since q_{1} is stronger than q_{2} and M_{k} is Orlicz function that satisfy Δ_{2} - condition, we have

$$
\sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q_{2}\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}} \leq R_{k} \sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q_{1}\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}}
$$

Hence $B V_{\sigma}\left(\mathcal{M}, p, q_{1}, u, s\right) \subset B V_{\sigma}\left(\mathcal{M}, p, q_{2}, u, s\right)$.

Theorem 2.5. Let $0<r_{k} \leq t_{k}$ and $\left(t_{k} / r_{k}\right)$ be bounded. Then $B V_{\sigma}(\mathcal{M}, r, q, u, s) \subseteq$ $B V_{\sigma}(\mathcal{M}, t, q, u, s)$ where $r=\left(r_{k}\right)$ and $t=\left(t_{k}\right)$ sequences of positive real numbers.
Proof. Let $x \in B V_{\sigma}(\mathcal{M}, r, q, u, s)$. Then there exists some $\rho>0$ such that

$$
\sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{r_{k}}<\infty, \text { uniformly in } n
$$

This implies that $k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right] \leq 1$ for suffeciently large values of k, say $k \geq k_{0}$ for some fixed $k_{0} \in \mathbb{N}$. Since $r_{k} \leq t_{k}$ for each $k \in \mathbb{N}$, we get

$$
\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{t_{k}} \leq\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{r_{k}}
$$

for all $k \geq k_{0}$, and therefore

$$
\sum_{k \geq k_{0}}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{t_{k}} \leq \sum_{k \geq k_{0}}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{r_{k}}
$$

Hence we have

$$
\sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{t_{k}}<\infty, \text { uniformly in } n
$$

Hence we have $x \in B V_{\sigma}(\mathcal{M}, t, q, u, s)$.

Theorem 2.6. (i) If $0<p_{k} \leq 1$ for all $k \in \mathbb{N}$, then $B V_{\sigma}(\mathcal{M}, p, q, u, s) \subseteq B V_{\sigma}(\mathcal{M}, q, u, s)$.
(ii) If $p_{k} \geq 1$ for all $k \in \mathbb{N}$, then $B V_{\sigma}(\mathcal{M}, q, u, s) \subseteq B V_{\sigma}(\mathcal{M}, p, q, u, s)$.

Proof. (i) If we take $t_{k}=1$ for all $k \in \mathbb{N}$ in Theorem 2.5, we have the result.
(ii) If we take $t_{k}=p_{k}$ and $r_{k}=1$ or all $k \in \mathbb{N}$ in Theorem 2.5, we have the result.

Theorem 2.7. The sequence space $B V_{\sigma}(\mathcal{M}, p, q, u, s)$ is solid.
Proof. Let $x \in B V_{\sigma}(\mathcal{M}, p, q, u, s)$, i.e,

$$
\sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}}<\infty, \text { uniformly in } n .
$$

Let $\alpha=\left(\alpha_{k}\right)$ be a sequence of scalars such that $\left|\alpha_{k}\right| \leq 1$ for all $k \in \mathbb{N}$. Then, since ϕ is lineer, q is seminorm and M_{k} is Orlicz function for each $k \in \mathbb{N}$, we have

$$
\begin{aligned}
\sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{\alpha_{k} u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}} & \leq \sum_{k=1}^{\infty} k^{-s}\left[M_{k}\left(q\left(\frac{u_{k} \phi_{k, n}(x)}{\rho}\right)\right)\right]^{p_{k}} \\
& <\infty, \text { uniformly in } n
\end{aligned}
$$

Hence $\alpha x \in B V_{\sigma}(\mathcal{M}, p, q, u, s)$ when $x \in B V_{\sigma}(\mathcal{M}, p, q, u, s)$ under the above restrictions. Therefore the space $B V_{\sigma}(\mathcal{M}, p, q, u, s)$ is a solid sequence space.

Corollary 2.8. The sequence space $B V_{\sigma}(\mathcal{M}, p, q, u, s)$ is monotone.
Proof. Proof is seen from Remark.

References

[1] Ç. A. Bektaş, Generalized sequence spaces on seminormed spaces, Acta Universitatis Apulensis, 26, 245-250 (2011).

2] P. K. Kamthan and M. Gupta, Sequence spaces and series, Marcel Dekkar, (1981).
[3] J. Linden strauss and L. Tzafriri, On Orlicz sequence spaces, Israel J. Math. 10, 379-390 (1971).
[4] I. J. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, (1970).
[5] M. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math., Oxford 34(2), 77-86 (1983).
[6] S. D. Parashar and B. Choudhary, Sequence spaces defined by Orlicz functions, Indian J. Pure Appl. Math., 25, 419-428 (1994).
[7] A. Wilansky, Functional Analysis, Blaisdell Publishing Company, New York, (1964).

Author information

Suzan ZEREN and Çiğdem A. BEKTAŞ, Department of Mathematics, Firat University, 23119, Elazığ, Turkey.
E-mail: cigdemas78@hotmail.com

