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Abstract. Let R be a von Neumann regular ring. The main results of this paper assert whether
a von Neumann regular ring is expressible as a directed union of finite products of fields.

1 Introduction

All rings considered in this paper are commutative with unit and all ring-homomorphisms are
unital. If R is a subring of a ring S, we assume that R and S have the same unity. We let
Idem(R), C(R) and A(R) respectively be the set of idempotents of R, the set {char(R/M) :
M is a maximal ideal of R} and the set of Artinian subrings of R.

Recall that R is von Neumann regular (vNr for short) if R is reduced and zero-dimensional. If
R is vNr with Idem(R) finite then R is a finite product of fields, and hence Artinian [13, Lemma
1].

During the last ten years, many papers, that are source of motivation for this work, investigated
vNr rings, Artinian rings and directed unions of finite products of fields (see e.g. [4, 5, 10,
13]). Particularly, it was shown that a hereditarily zero-dimensional ring is a directed union of
finite products of fields, and that for a ring R, A(R) needs not be directed. On the other hand,
[4, Theorem 6.7] gave necessary and sufficient conditions for a product [],., R of non
zero rings to be directed union of Artinian subrings.

In this paper, we deal with the problem of when a vNr is expressible as a directed union of

finite products of fields, raised by Gilmer and Heinzer in 1992 ([2, Problem 42]). Of partic-
ular interest is [4, Corollary 5.5], which shows that any zero—dimensional ring R with a finite
spectrum is a directed union of finite products of fields. The result we give in Theorem 3.1 de-
termines necessary and sufficient conditions under which a vINr ring is a directed union of finite
products of fields. We also investigate this class of rings in connection with their families of
residue fields F(R) = {R/M : M a maximal ideal of R}. On the other hand, let { R, },ca be
a nonempty family of nonzero rings and [ . 4 R, their direct product. We frequently consider
[1,ca Ra as the set of all functions f : A — [J,c 4 Ra, such that f(a) € R, for each a € A,
with addition and multiplication defined pointwise. In this perspective, the direct sum ideal of
[Ioca Ra» denoted P, 4 Ra, is the set of all functions f € [],c 4 Ra that are finitely nonzero
(i.e. {a € A: f(a) # 0in R,} is finite).
The paper is organized as follows. In Section 2, we consider conditions under which S is a di-
rected union of finite products of fields. Firstly, we show that if R is a von Neumann regular ring
such that R C S C [[,ca A%, where { M)} ea = Max(R) and S is a directed union of finite
products of fields, then R and S have the same set of residue fields. In Section 3, we investigate
some conditions under which a von Neumann regular ring is a directed union of finite products
of fields.

2 General results and counterexample

Let (R;, fjx) be a directed system of rings, indexed by a directed set (I, <). Let R = J,; R;,
together with the canonical maps f; : B; — R. The ring R is said to be a directed union of the
R;’s if the f};.’s are inclusion maps. Thus, directed unions can be treated by assuming all f;;, to
be monomorphisms. Notice that R needs not be Artinian even if each R; is Artinian.

There are several well-known results concerning rings which can be written as a directed union
of finite products of fields. For instance, every ring with only finitely many idempotent elements
is a directed union of Artinian subrings (see [4, Corollary 5.5 ]). Now, let F = {F;};cs; and
G = {Kj}jes be two indexed families of fields. We say that 7 = G if there exists a bijection
f I — J such that F; and K (i) are isomorphic fields for each i € I. We say that F C G if
there exists an injection map f : I — J such that F; ~ Kj; for each i.
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Proposition 2.1. Let R be a Von Neumann regular ring and R C T C [],ca TIZ such that
T = U, Ti is a directed union of finite products of fields. Then F(R) = F(T).

Proof. Let K € F(R) then there exists My, € Maxz(R) such that K ~ R/M,,. If Q =
[I.ca Ax such that Ay = 0 modulo M), and Ay = R/M) for A\ # )\, then Q N R = M,,.
Let P = QNT, then R/M,, C T/P and, up to isomorphism, T/P C ([],cpx R/Mx)/Q =~
R/M,,. Therefore R/M,,6 ~ T/P. Given L € F(T), there exists P € Maz(T) such that
L ~T/P. Since T = J;c; Ti, we have P = (J,.; P, where P, = P N T; € Spec(T;). For
each 4, T is a subring of J], cA R/M) and T; is isomorphic to a finite product of fields. Since
{T}}icr is directed, so is {T;/P;}icr. It follows that | J,; T3/ P; is a field. Hence, there exists
M, € Max(R) such that | J,.; T;/P; € R/M,, . It is shown in [9, Proposition 6.1.2, page 128]
that T/P = |J,c; Ti/P;. Let Q = [],cp K such that Ky = R/M) for each A € AN\ {\,} and
Ky, = 0 modulo My, . Therefore, P C QNT, and since P is maximal in 7', we have P = QNT.
Since PNR=QNTNR=QNR=M,, R/M\, CT/P,ie., T/P = R/M,, and hence
F(T) C F(R). Thus, F(T) = F(R). O

From Proposition 2.1, we deduce that if R is a directed union of finite products of fields then
F(R) 1: F(T), where R C T C [[yea TIZ’ but the converse fails as shown in the following
example.

Counterexample 2.2. Let p be a positive prime integer and {g¢; };cn+ be an infinite family of
positive prime integers. Let F = {GF(p)} | U{GF(p?%)}3°, be a family of finite Galois fields.
We denote by ¢, the natural imbedding of GF(p) into GF(p%) for each i € N*. Let ¢ =
12,06 T =112, GF(p%) and I = ;2 GF(p%) be the direct sum ideal of 7. We denote
R, = GF(p)* = ¢(GF(p)) the diagonal imbedding of GF(p) in T. Let V = R, + I, since V
is a subring of 7" and dim(V")=0 [6, Proposition 2.7], then V is a Von Neumann regular ring. We
claim that (V') = {GF(p)} U{GF(p%)}:°,. Let p;, : T — GF(p% ) be the canonical projection
and p;)y its restriction on V, which is a surjective homomorphism. We have Kerp;y = (1 —
e)) TV = (1 —e;)V = M;, with e; the primitive idempotent with support {i}, and V/M; ~
GF(p%) for each i € N*. Also, I is a maximal ideal of V and V/I ~ (GF(p))* ~ GF(p). Thus
{I} U {M;}2, € Max(V). Let P € Spec(V),if I C P,then I = P. If I ¢ P thene; ¢ P,
for some ¢ € N*, and hence 1 — e¢; € P. Therefore, M; C P and P = M,;. As consequence,
Max(V) = {I}U{M;}2,. Thus F(V) = {GF(p)} U{GF(p%)}. From [11, Theorem 5.5
page 247], GF(p%) = GF(p)(a;), where a; is a p%-th primitive root of unity, for each i € N*.
Let R° be the minimal zero-dimensional subring of [[;°, GF(p?) containing V[a], where a =
{a;}22,. Since V]a] = R,[a] + I[a], we have V[a]/I[a] ~ R,[a] ~ GF(p)[X] because a is a
transcendental element over R,,. Therefore, ¢ f(V[a]/I[a]) ~ GF(p)(X). By [7, Theorem 3.3],
F(R°) = {qf(R/P) : P € Spec(R) is contracted from T} = {GF(p%)}°, U{GF(p)(X)}.
Since a € R° and a is in no finite product of fields, then R° is not a directed union of finite
products of fields. By [4, Proposition 5.3 (2)], R = R° & GF(p) is a Von Neumann regular
ring which is not a directed union of finite products of fields. Let Q be a field containing each
GF(p%) and GF(p)(X). Given y = {y;}icz+ € [[io; GF(p%) x GF(p)(X) x GF(p), let
lyll = {yi : i € Z*} C Q. Finally, put § = {y € Q%" : ||y|| is finite}. Let ¢ : Q2" — Q%" a
homomorphism defined by ¢(X) = a and let S} = ¢(S). Therefore, S; is a directed union of
finite products of fields and F(S;) = F(R).

Let R be aring and { R, },c4 an infinite family of nonzero rings such that R is, up to isomor-
phism, a subring of each R,,. We use R* to denote the diagonal imbedding of Rin[] ., Ra. that
is R* = ¢(R), where ¢ : R < [[,c4 Rq is the monomorphism defined by ¢(z) = {Za}aca
such that z,, = x for each o € A.

Proposition 2.3. Let R be a von Neumann regular ring with F(R) = {Ls }aca, C(R) = {p}, and
S ={{rataca € [locala: {rataca has only finitely many distinct coordinates}.
Assume that there exists a field Q that contains all but finitely many L, ’s. Then S is a directed
union of finite products of fields.

Proof. To show that S is a directed union of finite products of fields, it suffices to prove that S
is covered by a directed union of finite products of fields. Let f € S, then {f(«a) : @ € A} =
{f1,-., ft} a finite set. Let A, = {a € A : f(a) = f;} and denote [ = (fi, fi,..., fi,--) €
[Taca, La- Then {f(a)}aca = (ff, ..., fi). Since A = Ul_| A;, and all the fields L, a € A;,
have the same characteristic, then, up to isomorphism, ﬂa cA, L, = K, is afield with f} € K7,
the diagonal imbedding of K in HaeA,-, L,. Itfollows that f € K} x ... x K} ~ Kj x ... X Kj.
Therefore, S is covered by a directed union of finite products of fields. O
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Theorem 2.4. Let R be a von Neumann regular ring with F(R) = {La}acaand S = { {ra}aca €
[locaLa: {rataca has only finitely many distinct coordinates} Then, S is a directed
union of finite products of fields if and only if C(R) is finite.

Proof. Assume that S is a directed union of finite products of fields and let f € S. Then f
has only finitely many distinct components fi,..., f;. Now, let A; = {a € A : f(a) = f;}, for
eachi=1,...,t. So A = UE:I A; is a partition of A. We set f = (fi,..., fi,..) € [[oea, La-
Then, up to isomorphism, {f(&)}aca = (f7, ..., fi) belongs to a finite product of fields. In fact
(ff o f7) € TIiey K¢ ~ T1:_, Ky, where K is the diagonal imbedding of K into [, 4, La
foreachi =1,...,¢t, with K} ~ K; = ﬂaeAl L. Since S is a subring of [, 4 La, this shows
that [];_, K; is isomorphic to a subring of [, . 4 L. It follows that C(R) is finite. Conversely,
let C(R) = {pi1,....pn}. We can write [, .4 Lo = @} T;, where T; = [Taca, Lo and A; =
{a € A: char(Ly) = pi}. Let ¢; be the idempotent element of ], 4 Lo associated with {j}.
Hence S = Se; @ ... ® Se,. Form Proposition 2.3, each Se; is a subring of T; which is a
directed union of finite products of fields. By [4, Proposition 5.3], S is a directed union of finite
products of fields. O

3 Behavior with respect to residue fields

Let R be a von Neumann regular ring with maximal ideals m;, ¢ € I and corresponding residue
fields K;. We assume that there exists a field € containing each K;. (We can always make this
assumption if the K; have the same characteristic.) Assuming C(R) finite, we have the partition
F(R) = ;iU ... UF, of F(R) with respect to the characteristic. We assume that for each
i € {1, ..., n} there exists F; such that F; € F; and each element of F; is an algebraic extension
of F;. We use F* to denote the diagonal imbedding of F into [[,.; F;.

Theorem 3.1. The ring R is a directed union of finite products of fields if and only if for each
f € R, fisintegral over F}' x ... x F}.

In order to prove this result, we need the following Lemma.

Lemma 3.2. Let R be a Von Neumann regular ring and F(R) = {F;};c;. Assume that each F;
is an algebraic extension of F. Then R is a directed union of finite products of fields if and only
if for each f € R, f is integral over F*.

Proof. Suppose that R is a directed union of finite products of fields and let f € R. Then f
belongs to a finite product of fields, in other words f is in only finitely many fields F;. By [1,
Proposition 3, page 9], f is an integral over F*. Conversely, let f € R to be integral over F™*.
Then there exists a monic polynomial H (X ) in F*[X] that vanishes at f. The polynomial H(X)
has only finitely many roots of H(X). We note also that {f(i)};c; is the unique solution of
H(X). It follows that f has only finitely many distinct components. We conclude that R C S
and Theorem 2.4 completes the proof. O

Proof of Theorem 3.1. We can write [],.; Fi = @®j_, Tj, where T = [[;c,; F;and I; = {i €
I : char(F;) = p;}. From Lemma 3.2, to show that R is a directed union of finite products

of fields it suffices to show that Rle, ..., e,] has the same property, where ¢; is the idempotent
associated with j, for j = 1, ..., n. Moreover, since Rley, ..., e,] = Re; & ... @ Rey, to
prove that the condition of Theorem 3.1 is satisfied for R[ey, ..., e,] it suffices to show that it is

satisfied for each Re;. Let f € R be integral over []!" | F;*. Let H(X) be a monic polynomial
of [T, F[X] such that H(f) = 0. Let H; = He,, for each j = 1, ... n. The polynomial H; is
monic in F*[X] and satisfy H;({f(i)}icr;) = 0, for each j = 1, ... n. Therefore, {f(i)}ics, is
integral over 7. From Lemma 3.2, Re; is a directed union of finite products of fields, for each
j =1 ... n. Conversely, assume that R is a directed union of Finite products of fields. We know
that fe; is integral over F for each j = 1, ..., n. Let H;(X) € F;[X] be a monic polynomial
that vanishes at fe;, for j = 1, ..., n. If we set H = [[;", H;, then H is a monic polynomial
H;;l F that vanishes at f (cf. [1, Proposition 3, page 9]). O

Example 3.3. Let p be a positive prime integer and {¢; };cn+ be an infinite family of distinct
prime integers. Let F = {Q}[J{Q(¢)}:2, be an infinite family of fields, where (; is a p%i—
primitive root of unity. We denote by (; the imbedding of Q into Q(¢;) for each i € Z*.
Let p = [[2, i, T = T1i0; Q(&), I = D;2, Q(¢) the direct sum ideal of 7. We denote
Q* = »(Q) = R, ~ Q the diagonal imbedding of Q in 7. Let Ry = R, + I. Then F(R;) =
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{F;}22, U{Q}. Let f € T[], F; such that f(i) = i for each i € Z*. If R is the minimal zero-
dimensional subring of T" containing R;[f], then F(R) = {F;}°, U{Q(¢)}, where F; = Q((;)
for each i € Z*. On the other hand, since S = R, + J, where J = Q(¢) + I, we have
F(S) ={F:}32, U{Q(¢)} U{Q}. Now, by [4, Proposition 5.3 (2)], the ring R = R; & Q is not
a directed union of finite products of fields, even if F(R) = F(S). Notice that F; N F; = Q for
i # jand F; N Q(t) = Q with Q € F(R). Even though, Q € F(R) R is not a directed union of
finite products of fields.

Let R be a von Neumann regular ring and {M,};c; its spectrum. Since R is a reduced
ring, we have (,c; M; = (0) and hence the homomorphism ¢ : R — [[;c; 7=, defined by

icl M’
@(x) = x + M;, is injective. This allows us to view R as a subring of [],; % We identify x
" ;

with its image {z;}icr € [[,c; ;- Finally, we denote F; = ﬁ foreach i € I.
Corollary 3.4. With the notation and assumptions above, we assume that there is a field Q. con-
taining each F; and F is the prime subfield of Q. If each distinct pair of fields F; and F}, in F;

satisfying F; (\F, = F ¢ F(R), then R is not a directed union of finite products of fields.

Proof. Suppose that F ¢ F(R). Let S be the subring of ], ; F; consisting of eventually
constant sequences. Thus S = F* + I, the F-subalgebra of [],_, F; generated by the direct sum
ideal I = @;¢; F;, where F'* is the diagonal imbedding of F' into Hie ; Fi. First claim that S is
the maximal subring of [, ; F; with respect to being a directed union of finite product of fields.
Let T = (J;c; T} be a subring of [ [, F; which is a directed union of finite product of fields.
Lett = {t;}icr € T then there exists j, € J such that ¢ € T;, which is a finite products of fields,
then ¢ has only finitely many distinct coordinates, i.e., t € S. If R is a directed union of finite
products of fields, then R C S and hence F(R) = F(S) (see Proposition 2.1), a contradiction
with F' € F(S)\F(R). o

Example 3.5. Let Q be the field of rational numbers, a an element such that o> = d (d without
squire factor in Q) and P be an infinite family of distinct prime integers. Let Q = Q(«) be
a simple algebraic extension of Q and R = Q(«) + I, the Q—subalgebra of T = []2, Q(&)
generated by the direct sum ideal I = &5°,Q((;), where (; is a p?-primitive root of unity and p
is a prime integer with ¢ € P. For each i € Z*, let ¢; : Q — Q((;) be the field-homomorphism
taking o to ¢;. Let ¢ = {¢;}3°, : T — T, a ring-homomorphism. Let R, = ¢(R). Being
isomorphic to R, R, is a directed union of finite products fields. We remark that the element
{Gi}2, € R, which is not in S (the maximum among all subrings of 7" that are directed union
of finite products of fields in proof of Corollary 3.4).

Proposition 3.6. Let R be a zero-dimensional ring and N (R) be the nilradical of R. Then the
following conditions are equivalent:

(i) R is a directed union of zero-dimensional subrings with finite spectra;

(ii) R/N(R) is a directed union of finite products of fields.

Proof. (i)=(ii). Suppose that R = |J,.; R; is a directed union of zero-dimensional subrings
with finite spectra, then by [15, Proposition 6.1.2, page 128], R/N(R) ~ |J;.; R/N(R) N R; =
U,cr Ri/N(R;) is a directed union of R; /N (R;), where N(R;) is the nilradical of R;. The ring
R;/N(R;) is Von Neumann regular with finite spectra, then R;/N(R;) is Artinian.

(ii))= (i). Suppose R/N(R) = J,c; Si is a directed union of Finite products of fields and let
¢: R — R/N(R) be the canonical epimorphism. We denote R; = ¢ ~!(S;) the inverse image
of S; by ¢, foreach i € I. Since {S;};¢; is directed, the family { R;};¢; is also directed. We have
R;/N(R;) ~ S;, as Spec(S;) is finite the ring R; has only finitely many prime ideals, for each
1 € I. Because S; is zero-dimensional, R; is also zero-dimensional but need not be Artinian. It
follows that R = | J,; R; is a directed union of zero-dimensional quasilocal subrings. O
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