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Abstract. LetR be a von Neumann regular ring. The main results of this paper assert whether
a von Neumann regular ring is expressible as a directed union of finite products of fields.

1 Introduction

All rings considered in this paper are commutative with unit and all ring-homomorphisms are
unital. If R is a subring of a ring S, we assume that R and S have the same unity. We let
Idem(R), C(R) and A(R) respectively be the set of idempotents of R, the set {char(R/M) :
M is a maximal ideal of R} and the set of Artinian subrings of R.
Recall that R is von Neumann regular (vNr for short) if R is reduced and zero-dimensional. If
R is vNr with Idem(R) finite then R is a finite product of fields, and hence Artinian [13, Lemma
1].
During the last ten years, many papers, that are source of motivation for this work, investigated
vNr rings, Artinian rings and directed unions of finite products of fields (see e.g. [4, 5, 10,
13]). Particularly, it was shown that a hereditarily zero-dimensional ring is a directed union of
finite products of fields, and that for a ring R, A(R) needs not be directed. On the other hand,
[4, Theorem 6.7] gave necessary and sufficient conditions for a product

∏
α∈ARα of non

zero rings to be directed union of Artinian subrings.
In this paper, we deal with the problem of when a vNr is expressible as a directed union of

finite products of fields, raised by Gilmer and Heinzer in 1992 ([2, Problem 42]). Of partic-
ular interest is [4, Corollary 5.5], which shows that any zero–dimensional ring R with a finite
spectrum is a directed union of finite products of fields. The result we give in Theorem 3.1 de-
termines necessary and sufficient conditions under which a vNr ring is a directed union of finite
products of fields. We also investigate this class of rings in connection with their families of
residue fields F(R) = {R/M : M a maximal ideal of R}. On the other hand, let {Rα}α∈A be
a nonempty family of nonzero rings and

∏
α∈ARα their direct product. We frequently consider∏

α∈ARα as the set of all functions f : A −→
⋃
α∈ARα, such that f(α) ∈ Rα for each α ∈ A,

with addition and multiplication defined pointwise. In this perspective, the direct sum ideal of∏
α∈ARα, denoted

⊕
α∈ARα, is the set of all functions f ∈

∏
α∈ARα that are finitely nonzero

(i.e. {α ∈ A : f(α) 6= 0 in Rα} is finite).
The paper is organized as follows. In Section 2, we consider conditions under which S is a di-
rected union of finite products of fields. Firstly, we show that if R is a von Neumann regular ring
such that R ⊂ S ⊂

∏
λ∈Λ

R
Mλ

, where {Mλ}λ∈Λ = Max(R) and S is a directed union of finite
products of fields, then R and S have the same set of residue fields. In Section 3, we investigate
some conditions under which a von Neumann regular ring is a directed union of finite products
of fields.

2 General results and counterexample

Let (Rj , fjk) be a directed system of rings, indexed by a directed set (I,≤). Let R =
⋃
j∈I Rj ,

together with the canonical maps fj : Rj −→ R. The ring R is said to be a directed union of the
Rj’s if the fjk’s are inclusion maps. Thus, directed unions can be treated by assuming all fjk to
be monomorphisms. Notice that R needs not be Artinian even if each Rj is Artinian.
There are several well–known results concerning rings which can be written as a directed union
of finite products of fields. For instance, every ring with only finitely many idempotent elements
is a directed union of Artinian subrings (see [4, Corollary 5.5 ]). Now, let F = {Fi}i∈I and
G = {Kj}j∈J be two indexed families of fields. We say that F = G if there exists a bijection
f : I −→ J such that Fi and Kf(i) are isomorphic fields for each i ∈ I . We say that F ⊆ G if
there exists an injection map f : I −→ J such that Fi ' Kf(i) for each i.
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Proposition 2.1. Let R be a Von Neumann regular ring and R ⊂ T ⊂
∏
λ∈Λ

R
Mλ

such that
T =

⋃
i∈I Ti is a directed union of finite products of fields. Then F(R) = F(T ).

Proof. Let K ∈ F(R) then there exists Mλo ∈ Max(R) such that K ' R/Mλo . If Q =∏
λ∈Λ

Aλ such that Aλo ≡ 0 modulo Mλo and Aλ = R/Mλ for λ 6= λo, then Q ∩ R = Mλo .
Let P = Q ∩ T , then R/Mλo ⊆ T/P and, up to isomorphism, T/P ⊆ (

∏
λ∈Λ

R/Mλ)/Q '
R/Mλo . Therefore R/Mλo ' T/P . Given L ∈ F(T ), there exists P ∈ Max(T ) such that
L ' T/P . Since T =

⋃
i∈I Ti, we have P =

⋃
i∈I Pi, where Pi = P ∩ Ti ∈ Spec(Ti). For

each i, Ti is a subring of
∏
λ∈Λ

R/Mλ and Ti is isomorphic to a finite product of fields. Since
{Ti}i∈I is directed, so is {Ti/Pi}i∈I . It follows that

⋃
i∈I Ti/Pi is a field. Hence, there exists

Mλo ∈Max(R) such that
⋃
i∈I Ti/Pi ⊆ R/Mλo . It is shown in [9, Proposition 6.1.2, page 128]

that T/P =
⋃
i∈I Ti/Pi. Let Q =

∏
λ∈Λ

Kλ such that Kλ = R/Mλ for each λ ∈ Λ�{λo} and
Kλo ≡ 0 moduloMλo . Therefore, P ⊆ Q∩T , and since P is maximal in T , we have P = Q∩T .
Since P ∩ R = Q ∩ T ∩ R = Q ∩ R = Mλo , R/Mλo ⊆ T/P , i.e., T/P = R/Mλo and hence
F(T ) ⊆ F(R). Thus, F(T ) = F(R).

From Proposition 2.1, we deduce that if R is a directed union of finite products of fields then
F(R) = F(T ), where R ⊂ T ⊂

∏
λ∈Λ

R
Mλ

, but the converse fails as shown in the following
example.

Counterexample 2.2. Let p be a positive prime integer and {qi}i∈N∗ be an infinite family of
positive prime integers. Let F = {GF (p)}

⋃
{GF (pqi)}∞i=1 be a family of finite Galois fields.

We denote by ϕi the natural imbedding of GF (p) into GF (pqi) for each i ∈ N∗. Let ϕ =∏∞
i=1 ϕi, T =

∏∞
i=1 GF (p

qi) and I =
⊕∞

i=1 GF (p
qi) be the direct sum ideal of T . We denote

Ro = GF (p)∗ = ϕ(GF (p)) the diagonal imbedding of GF (p) in T . Let V = Ro + I , since V
is a subring of T and dim(V )=0 [6, Proposition 2.7], then V is a Von Neumann regular ring. We
claim thatF(V ) = {GF (p)}

⋃
{GF (pqi)}∞i=1. Let pi : T → GF (pqi) be the canonical projection

and pi|V its restriction on V , which is a surjective homomorphism. We have Kerpi|V = (1 −
ei)T

⋂
V = (1 − ei)V = Mi, with ei the primitive idempotent with support {i}, and V/Mi '

GF (pqi) for each i ∈ N∗. Also, I is a maximal ideal of V and V/I ' (GF (p))∗ ' GF (p). Thus
{I} ∪ {Mi}∞i=1 ⊆ Max(V ). Let P ∈ Spec(V ), if I ⊆ P , then I = P . If I * P then ei /∈ P ,
for some i ∈ N∗, and hence 1 − ei ∈ P . Therefore, Mi ⊆ P and P = Mi. As consequence,
Max(V ) = {I}

⋃
{Mi}∞i=1. Thus F(V ) = {GF (p)}

⋃
{GF (pqi)}. From [11, Theorem 5.5

page 247], GF (pqi) = GF (p)(ai), where ai is a pqi-th primitive root of unity, for each i ∈ N∗.
Let Ro be the minimal zero-dimensional subring of

∏∞
i=1 GF (p

qi) containing V [a], where a =
{ai}∞i=1. Since V [a] = Ro[a] + I[a], we have V [a]/I[a] ' Ro[a] ' GF (p)[X] because a is a
transcendental element over Ro. Therefore, qf(V [a]/I[a]) ' GF (p)(X). By [7, Theorem 3.3],
F(Ro) = {qf(R/P ) : P ∈ Spec(R) is contracted from T} = {GF (pqi)}∞i=1

⋃
{GF (p)(X)}.

Since a ∈ Ro and a is in no finite product of fields, then Ro is not a directed union of finite
products of fields. By [4, Proposition 5.3 (2)], R = Ro ⊕ GF (p) is a Von Neumann regular
ring which is not a directed union of finite products of fields. Let Ω be a field containing each
GF (pqi) and GF (p)(X). Given y = {yi}i∈Z+ ∈

∏∞
i=1 GF (p

qi) × GF (p)(X) × GF (p), let
||y|| = {yi : i ∈ Z+} ⊆ Ω. Finally, put S = {y ∈ ΩZ+

: ||y|| is finite}. Let ϕ : ΩZ+ → ΩZ+

a
homomorphism defined by ϕ(X) = a and let S1 = ϕ(S). Therefore, S1 is a directed union of
finite products of fields and F(S1) = F(R).

Let R be a ring and {Rα}α∈A an infinite family of nonzero rings such that R is, up to isomor-
phism, a subring of eachRα. We useR∗ to denote the diagonal imbedding ofR in

∏
α∈ARα, that

is R∗ = ϕ(R), where ϕ : R ↪→
∏
α∈ARα is the monomorphism defined by ϕ(x) = {xα}α∈A

such that xα = x for each α ∈ A.

Proposition 2.3. LetR be a von Neumann regular ring withF(R) = {Lα}α∈A, C(R) = {p}, and
S = { {rα}α∈A ∈

∏
α∈A Lα : {rα}α∈A has only finitely many distinct coordinates}.

Assume that there exists a field Ω that contains all but finitely many Lα’s. Then S is a directed
union of finite products of fields.

Proof. To show that S is a directed union of finite products of fields, it suffices to prove that S
is covered by a directed union of finite products of fields. Let f ∈ S, then {f(α) : α ∈ A} =
{f1, ..., ft} a finite set. Let Ai = {α ∈ A : f(α) = fi} and denote f∗i = (fi, fi, ..., fi, ...) ∈∏
α∈Ai Lα. Then {f(α)}α∈A = (f∗1 , ..., f

∗
t ). Since A = ∪ti=1Ai, and all the fields Lα, α ∈ Ai,

have the same characteristic, then, up to isomorphism,
⋂
α∈Ai Lα = Ki is a field with f∗i ∈ K∗i ,

the diagonal imbedding of Ki in
∏
α∈Ai Lα. It follows that f ∈ K∗1 × ...×K∗t ' K1 × ...×Kt.

Therefore, S is covered by a directed union of finite products of fields.
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Theorem 2.4. LetR be a von Neumann regular ring withF(R) = {Lα}α∈A and S = { {rα}α∈A ∈∏
α∈A Lα : {rα}α∈A has only finitely many distinct coordinates} Then, S is a directed

union of finite products of fields if and only if C(R) is finite.

Proof. Assume that S is a directed union of finite products of fields and let f ∈ S. Then f
has only finitely many distinct components f1,..., ft. Now, let Ai = {α ∈ A : f(α) = fi}, for
each i = 1, ..., t. So A =

⋃t
i=1 Ai is a partition of A. We set f∗i = (fi, ..., fi, ...) ∈

∏
α∈Ai Lα.

Then, up to isomorphism, {f(α)}α∈A = (f∗1 , ..., f
∗
t ) belongs to a finite product of fields. In fact

(f∗1 , ..., f
∗
t ) ∈

∏t
i=1 K

∗
i '

∏t
i=1 Ki, where K∗i is the diagonal imbedding of Ki into

∏
α∈Ai Lα

for each i = 1, ..., t, with K∗i ' Ki =
⋂
α∈Ai Lα. Since S is a subring of

∏
α∈A Lα, this shows

that
∏t
i=1 Ki is isomorphic to a subring of

∏
α∈A Lα. It follows that C(R) is finite. Conversely,

let C(R) = {p1, ..., pn}. We can write
∏
α∈A Lα = ⊕ni=1Ti, where Ti =

∏
α∈Λi

Lα and Λi =
{α ∈ A : char(Lα) = pi}. Let ej be the idempotent element of

∏
α∈A Lα associated with {j}.

Hence S = Se1 ⊕ ... ⊕ Sen. Form Proposition 2.3, each Sej is a subring of Tj which is a
directed union of finite products of fields. By [4, Proposition 5.3], S is a directed union of finite
products of fields.

3 Behavior with respect to residue fields

Let R be a von Neumann regular ring with maximal ideals mi, i ∈ I and corresponding residue
fields Ki. We assume that there exists a field Ω containing each Ki. (We can always make this
assumption if the Ki have the same characteristic.) Assuming C(R) finite, we have the partition
F(R) = F1

⋃
...

⋃
Fn of F(R) with respect to the characteristic. We assume that for each

i ∈ {1, ..., n} there exists Fi such that Fi ∈ Fi and each element of Fi is an algebraic extension
of Fi. We use F ∗ to denote the diagonal imbedding of F into

∏
i∈I Fi.

Theorem 3.1. The ring R is a directed union of finite products of fields if and only if for each
f ∈ R, f is integral over F ∗1 × ... × F ∗n .

In order to prove this result, we need the following Lemma.

Lemma 3.2. Let R be a Von Neumann regular ring and F(R) = {Fi}i∈I . Assume that each Fi
is an algebraic extension of F . Then R is a directed union of finite products of fields if and only
if for each f ∈ R, f is integral over F ∗.

Proof. Suppose that R is a directed union of finite products of fields and let f ∈ R. Then f
belongs to a finite product of fields, in other words f is in only finitely many fields Fi. By [1,
Proposition 3, page 9], f is an integral over F ∗. Conversely, let f ∈ R to be integral over F ∗.
Then there exists a monic polynomial H(X) in F ∗[X] that vanishes at f . The polynomial H(X)
has only finitely many roots of H(X). We note also that {f(i)}i∈I is the unique solution of
H(X). It follows that f has only finitely many distinct components. We conclude that R ⊂ S
and Theorem 2.4 completes the proof.

Proof of Theorem 3.1. We can write
∏
i∈I Fi =

⊕n
j=1 Tj , where Tj =

∏
i∈Ij Fi and Ij = {i ∈

I : char(Fi) = pj}. From Lemma 3.2, to show that R is a directed union of finite products
of fields it suffices to show that R[e1, ..., en] has the same property, where ej is the idempotent
associated with j, for j = 1, ..., n. Moreover, since R[e1, ..., en] = Re1 ⊕ ... ⊕ Ren, to
prove that the condition of Theorem 3.1 is satisfied for R[e1, ..., en] it suffices to show that it is
satisfied for each Rej . Let f ∈ R be integral over

∏n
i=1 F

∗
i . Let H(X) be a monic polynomial

of
∏n
i=1 F

∗
i [X] such that H(f) = 0. Let Hj = Hej , for each j = 1, ... n. The polynomial Hj is

monic in F ∗i [X] and satisfy Hj({f(i)}i∈Ij ) = 0, for each j = 1, ... n. Therefore, {f(i)}i∈Ij is
integral over F ∗j . From Lemma 3.2, Rej is a directed union of finite products of fields, for each
j = 1 ... n. Conversely, assume that R is a directed union of Finite products of fields. We know
that fej is integral over F ∗j for each j = 1, ..., n. Let Hj(X) ∈ F ∗j [X] be a monic polynomial
that vanishes at fej , for j = 1, ..., n. If we set H =

∏n
i=1 Hj , then H is a monic polynomial∏n

j=1 F
∗
j that vanishes at f (cf. [1, Proposition 3, page 9]).

Example 3.3. Let p be a positive prime integer and {qi}i∈N∗ be an infinite family of distinct
prime integers. Let F = {Q}

⋃
{Q(ζi)}∞i=1 be an infinite family of fields, where ζi is a pqi–

primitive root of unity. We denote by ϕi the imbedding of Q into Q(ζi) for each i ∈ Z+.
Let ϕ =

∏∞
i=1 ϕi, T =

∏∞
i=1Q(ζi), I =

⊕∞
i=1Q(ζi) the direct sum ideal of T . We denote

Q∗ = ϕ(Q) = Ro ' Q the diagonal imbedding of Q in T . Let R1 = Ro + I . Then F(R1) =
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{Fi}∞i=1
⋃
{Q}. Let f ∈

∏∞
i=1 Fi such that f(i) = i for each i ∈ Z+. If R is the minimal zero-

dimensional subring of T containing R1[f ], then F(R) = {Fi}∞i=1
⋃
{Q(t)}, where Fi = Q(ζi)

for each i ∈ Z+. On the other hand, since S = Ro + J , where J = Q(t) + I , we have
F(S) = {Fi}∞i=1

⋃
{Q(t)}

⋃
{Q}. Now, by [4, Proposition 5.3 (2)], the ring R = R1 ⊕ Q is not

a directed union of finite products of fields, even if F(R) = F(S). Notice that Fi ∩ Fj = Q for
i 6= j and Fi ∩ Q(t) = Q with Q ∈ F(R). Even though, Q ∈ F(R) R is not a directed union of
finite products of fields.

Let R be a von Neumann regular ring and {Mi}i∈I its spectrum. Since R is a reduced
ring, we have

⋂
i∈IMi = (0) and hence the homomorphism ϕ : R →

∏
i∈I

R
Mi

, defined by
ϕ(x) = x +Mi, is injective. This allows us to view R as a subring of

∏
i∈I

R
Mi

. We identify x
with its image {xi}i∈I ∈

∏
i∈I

R
Mi

. Finally, we denote Fi = R
Mi

for each i ∈ I .

Corollary 3.4. With the notation and assumptions above, we assume that there is a field Ω con-
taining each Fi and F is the prime subfield of Ω. If each distinct pair of fields Fj and Fk in Fi
satisfying Fj

⋂
Fk = F /∈ F(R), then R is not a directed union of finite products of fields.

Proof. Suppose that F /∈ F(R). Let S be the subring of
∏
i∈I Fi consisting of eventually

constant sequences. Thus S = F ∗+ I , the F -subalgebra of
∏
i∈I Fi generated by the direct sum

ideal I = ⊕i∈IFi, where F ∗ is the diagonal imbedding of F into
∏
i∈I Fi. First claim that S is

the maximal subring of
∏
i∈I Fi with respect to being a directed union of finite product of fields.

Let T =
⋃
j∈J Tj be a subring of

∏
i∈I Fi which is a directed union of finite product of fields.

Let t = {ti}i∈I ∈ T then there exists jo ∈ J such that t ∈ Tjo which is a finite products of fields,
then t has only finitely many distinct coordinates, i.e., t ∈ S. If R is a directed union of finite
products of fields, then R ⊆ S and hence F(R) = F(S) (see Proposition 2.1), a contradiction
with F ∈ F(S)�F(R).

Example 3.5. Let Q be the field of rational numbers, α an element such that α2 = d (d without
squire factor in Q) and P be an infinite family of distinct prime integers. Let Ω = Q(α) be
a simple algebraic extension of Q and R = Q(α) + I , the Ω−subalgebra of T =

∏∞
i=1 Ω(ζi)

generated by the direct sum ideal I = ⊕∞i=1Ω(ζi), where ζi is a pq-primitive root of unity and p
is a prime integer with q ∈ P . For each i ∈ Z+, let φi : Ω→ Ω(ζi) be the field-homomorphism
taking α to ζi. Let φ = {φi}∞i=1 : T → T , a ring-homomorphism. Let Ro = φ(R). Being
isomorphic to R, Ro is a directed union of finite products fields. We remark that the element
{ζi}∞i=1 ∈ Ro which is not in S (the maximum among all subrings of T that are directed union
of finite products of fields in proof of Corollary 3.4).

Proposition 3.6. Let R be a zero-dimensional ring and N(R) be the nilradical of R. Then the
following conditions are equivalent:

(i) R is a directed union of zero-dimensional subrings with finite spectra;

(ii) R/N(R) is a directed union of finite products of fields.

Proof. (i)⇒(ii). Suppose that R =
⋃
i∈I Ri is a directed union of zero-dimensional subrings

with finite spectra, then by [15, Proposition 6.1.2, page 128], R/N(R) '
⋃
i∈I R/N(R) ∩Ri =⋃

i∈I Ri/N(Ri) is a directed union of Ri/N(Ri), where N(Ri) is the nilradical of Ri. The ring
Ri/N(Ri) is Von Neumann regular with finite spectra, then Ri/N(Ri) is Artinian.
(ii)⇒ (i). Suppose R/N(R) =

⋃
i∈I Si is a directed union of Finite products of fields and let

ϕ : R → R/N(R) be the canonical epimorphism. We denote Ri = ϕ−1(Si) the inverse image
of Si by ϕ, for each i ∈ I . Since {Si}i∈I is directed, the family {Ri}i∈I is also directed. We have
Ri/N(Ri) ' Si, as Spec(Si) is finite the ring Ri has only finitely many prime ideals, for each
i ∈ I . Because Si is zero-dimensional, Ri is also zero-dimensional but need not be Artinian. It
follows that R =

⋃
i∈I Ri is a directed union of zero-dimensional quasilocal subrings.
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