Direct limits of finite products of fields

D. Karim
Communicated by Ayman Badawi

MSC 2010 Classifications: $16 E 50$
Keywords and phrases: Direct limit, von Neumann regular rings, fields, direct sum, directed union, product.

Abstract

Let R be a von Neumann regular ring. The main results of this paper assert whether a von Neumann regular ring is expressible as a directed union of finite products of fields.

1 Introduction

All rings considered in this paper are commutative with unit and all ring-homomorphisms are unital. If R is a subring of a ring S, we assume that R and S have the same unity. We let $\operatorname{Idem}(R), \mathcal{C}(R)$ and $\mathcal{A}(R)$ respectively be the set of idempotents of R, the set $\{\operatorname{char}(R / M)$: M is a maximal ideal of $R\}$ and the set of Artinian subrings of R.
Recall that R is von Neumann regular (vNr for short) if R is reduced and zero-dimensional. If R is vNr with $\operatorname{Idem}(R)$ finite then R is a finite product of fields, and hence Artinian [13, Lemma 1].
During the last ten years, many papers, that are source of motivation for this work, investigated vNr rings, Artinian rings and directed unions of finite products of fields (see e.g. [4, 5, 10, 13]). Particularly, it was shown that a hereditarily zero-dimensional ring is a directed union of finite products of fields, and that for a ring $R, \mathcal{A}(R)$ needs not be directed. On the other hand, [4, Theorem 6.7] gave necessary and sufficient conditions for a product $\prod_{\alpha \in A} R_{\alpha}$ of non zero rings to be directed union of Artinian subrings.

In this paper, we deal with the problem of when a $v \mathrm{Nr}$ is expressible as a directed union of finite products of fields, raised by Gilmer and Heinzer in 1992 ([2, Problem 42]). Of particular interest is [4, Corollary 5.5], which shows that any zero-dimensional ring R with a finite spectrum is a directed union of finite products of fields. The result we give in Theorem 3.1 determines necessary and sufficient conditions under which a vNr ring is a directed union of finite products of fields. We also investigate this class of rings in connection with their families of residue fields $\mathcal{F}(R)=\{R / M: M$ a maximal ideal of $R\}$. On the other hand, let $\left\{R_{\alpha}\right\}_{\alpha \in A}$ be a nonempty family of nonzero rings and $\prod_{\alpha \in A} R_{\alpha}$ their direct product. We frequently consider $\prod_{\alpha \in A} R_{\alpha}$ as the set of all functions $f: A \longrightarrow \bigcup_{\alpha \in A} R_{\alpha}$, such that $f(\alpha) \in R_{\alpha}$ for each $\alpha \in A$, with addition and multiplication defined pointwise. In this perspective, the direct sum ideal of $\prod_{\alpha \in A} R_{\alpha}$, denoted $\bigoplus_{\alpha \in A} R_{\alpha}$, is the set of all functions $f \in \prod_{\alpha \in A} R_{\alpha}$ that are finitely nonzero (i.e. $\left\{\alpha \in A: f(\alpha) \neq 0\right.$ in $\left.R_{\alpha}\right\}$ is finite).

The paper is organized as follows. In Section 2, we consider conditions under which S is a directed union of finite products of fields. Firstly, we show that if R is a von Neumann regular ring such that $R \subset S \subset \prod_{\lambda \in \Lambda} \frac{R}{M_{\lambda}}$, where $\left\{M_{\lambda}\right\}_{\lambda \in \Lambda}=\operatorname{Max}(R)$ and S is a directed union of finite products of fields, then R and S have the same set of residue fields. In Section 3, we investigate some conditions under which a von Neumann regular ring is a directed union of finite products of fields.

2 General results and counterexample

Let $\left(R_{j}, f_{j k}\right)$ be a directed system of rings, indexed by a directed set (I, \leq). Let $R=\bigcup_{j \in I} R_{j}$, together with the canonical maps $f_{j}: R_{j} \longrightarrow R$. The ring R is said to be a directed union of the R_{j} 's if the $f_{j k}$'s are inclusion maps. Thus, directed unions can be treated by assuming all $f_{j k}$ to be monomorphisms. Notice that R needs not be Artinian even if each R_{j} is Artinian.
There are several well-known results concerning rings which can be written as a directed union of finite products of fields. For instance, every ring with only finitely many idempotent elements is a directed union of Artinian subrings (see [4, Corollary 5.5]). Now, let $\mathcal{F}=\left\{F_{i}\right\}_{i \in I}$ and $\mathcal{G}=\left\{K_{j}\right\}_{j \in J}$ be two indexed families of fields. We say that $\mathcal{F}=\mathcal{G}$ if there exists a bijection $f: I \longrightarrow J$ such that F_{i} and $K_{f(i)}$ are isomorphic fields for each $i \in I$. We say that $\mathcal{F} \subseteq \mathcal{G}$ if there exists an injection map $f: I \longrightarrow J$ such that $F_{i} \simeq K_{f(i)}$ for each i.

Proposition 2.1. Let R be a Von Neumann regular ring and $R \subset T \subset \prod_{\lambda \in \Lambda} \frac{R}{M_{\lambda}}$ such that $T=\bigcup_{i \in I} T_{i}$ is a directed union of finite products of fields. Then $\mathcal{F}(R)=\mathcal{F}(T)$.
Proof. Let $K \in \mathcal{F}(R)$ then there exists $M_{\lambda_{o}} \in \operatorname{Max}(R)$ such that $K \simeq R / M_{\lambda_{o}}$. If $Q=$ $\prod_{\lambda \in \Lambda} A_{\lambda}$ such that $A_{\lambda_{o}} \equiv \overline{0}$ modulo $M_{\lambda_{o}}$ and $A_{\lambda}=R / M_{\lambda}$ for $\lambda \neq \lambda_{o}$, then $Q \cap R=M_{\lambda_{o}}$. Let $P=Q \cap T$, then $R / M_{\lambda_{o}} \subseteq T / P$ and, up to isomorphism, $T / P \subseteq\left(\prod_{\lambda \in \Lambda} R / M_{\lambda}\right) / Q \simeq$ $R / M_{\lambda_{o}}$. Therefore $R / M_{\lambda_{o}} \simeq T / P$. Given $L \in \mathcal{F}(T)$, there exists $P \in \operatorname{Max}(T)$ such that $L \simeq T / P$. Since $T=\bigcup_{i \in I} T_{i}$, we have $P=\bigcup_{i \in I} P_{i}$, where $P_{i}=P \cap T_{i} \in \operatorname{Spec}\left(T_{i}\right)$. For each i, T_{i} is a subring of $\prod_{\lambda \in \Lambda} R / M_{\lambda}$ and T_{i} is isomorphic to a finite product of fields. Since $\left\{T_{i}\right\}_{i \in I}$ is directed, so is $\left\{T_{i} / P_{i}\right\}_{i \in I}$. It follows that $\bigcup_{i \in I} T_{i} / P_{i}$ is a field. Hence, there exists $M_{\lambda_{o}} \in \operatorname{Max}(R)$ such that $\bigcup_{i \in I} T_{i} / P_{i} \subseteq R / M_{\lambda_{o}}$. It is shown in [9, Proposition 6.1.2, page 128] that $T / P=\bigcup_{i \in I} T_{i} / P_{i}$. Let $Q=\prod_{\lambda \in \Lambda} K_{\lambda}$ such that $K_{\lambda}=R / M_{\lambda}$ for each $\lambda \in \Lambda \backslash\left\{\lambda_{o}\right\}$ and $K_{\lambda_{o}} \equiv \overline{0}$ modulo $M_{\lambda_{o}}$. Therefore, $P \subseteq Q \cap T$, and since P is maximal in T, we have $P=Q \cap T$. Since $P \cap R=Q \cap T \cap R=Q \cap R=M_{\lambda_{o}}, R / M_{\lambda_{o}} \subseteq T / P$, i.e., $T / P=R / M_{\lambda_{o}}$ and hence $\mathcal{F}(T) \subseteq \mathcal{F}(R)$. Thus, $\mathcal{F}(T)=\mathcal{F}(R)$.
From Proposition 2.1, we deduce that if R is a directed union of finite products of fields then $\mathcal{F}(R)=\mathcal{F}(T)$, where $R \subset T \subset \prod_{\lambda \in \Lambda} \frac{R}{M_{\lambda}}$, but the converse fails as shown in the following example.

Counterexample 2.2. Let p be a positive prime integer and $\left\{q_{i}\right\}_{i \in \mathbb{N}^{*}}$ be an infinite family of positive prime integers. Let $\mathcal{F}=\{G F(p)\} \bigcup\left\{G F\left(p^{q_{i}}\right)\right\}_{i=1}^{\infty}$ be a family of finite Galois fields. We denote by φ_{i} the natural imbedding of $G F(p)$ into $G F\left(p^{q_{i}}\right)$ for each $i \in \mathbb{N}^{*}$. Let $\varphi=$ $\prod_{i=1}^{\infty} \varphi_{i}, T=\prod_{i=1}^{\infty} G F\left(p^{q_{i}}\right)$ and $I=\bigoplus_{i=1}^{\infty} G F\left(p^{q_{i}}\right)$ be the direct sum ideal of T. We denote $R_{o}=G F(p)^{*}=\varphi(G F(p))$ the diagonal imbedding of $G F(p)$ in T. Let $V=R_{o}+I$, since V is a subring of T and $\operatorname{dim}(V)=0$ [6, Proposition 2.7], then V is a Von Neumann regular ring. We claim that $\mathcal{F}(V)=\{G F(p)\} \bigcup\left\{G F\left(p^{q_{i}}\right)\right\}_{i=1}^{\infty}$. Let $p_{i}: T \rightarrow G F\left(p^{q_{i}}\right)$ be the canonical projection and $p_{i \mid V}$ its restriction on V, which is a surjective homomorphism. We have $\operatorname{Kerp}_{i \mid V}=(1-$ $\left.e_{i}\right) T \bigcap V=\left(1-e_{i}\right) V=M_{i}$, with e_{i} the primitive idempotent with support $\{i\}$, and $V / M_{i} \simeq$ $G F\left(p^{q_{i}}\right)$ for each $i \in \mathbb{N}^{*}$. Also, I is a maximal ideal of V and $V / I \simeq(G F(p))^{*} \simeq G F(p)$. Thus $\{I\} \cup\left\{M_{i}\right\}_{i=1}^{\infty} \subseteq \operatorname{Max}(V)$. Let $P \in \operatorname{Spec}(V)$, if $I \subseteq P$, then $I=P$. If $I \nsubseteq P$ then $e_{i} \notin P$, for some $i \in \mathbb{N}^{*}$, and hence $1-e_{i} \in P$. Therefore, $M_{i} \subseteq P$ and $P=M_{i}$. As consequence, $\operatorname{Max}(V)=\{I\} \bigcup\left\{M_{i}\right\}_{i=1}^{\infty}$. Thus $\mathcal{F}(V)=\{G F(p)\} \bigcup\left\{G F\left(p^{q_{i}}\right)\right\}$. From [11, Theorem 5.5 page 247], $G F\left(p^{q_{i}}\right)=G F(p)\left(a_{i}\right)$, where a_{i} is a $p^{q_{i}}$-th primitive root of unity, for each $i \in \mathbb{N}^{*}$. Let R^{o} be the minimal zero-dimensional subring of $\prod_{i=1}^{\infty} G F\left(p^{q_{i}}\right)$ containing $V[a]$, where $a=$ $\left\{a_{i}\right\}_{i=1}^{\infty}$. Since $V[a]=R_{o}[a]+I[a]$, we have $V[a] / I[a] \simeq R_{o}[a] \simeq G F(p)[X]$ because a is a transcendental element over R_{o}. Therefore, $q f(V[a] / I[a]) \simeq G F(p)(X)$. By [7, Theorem 3.3], $\mathcal{F}\left(R^{o}\right)=\{q f(R / P): P \in \operatorname{Spec}(R)$ is contracted from $T\}=\left\{G F\left(p^{q_{i}}\right)\right\}_{i=1}^{\infty} \bigcup\{G F(p)(X)\}$. Since $a \in R^{o}$ and a is in no finite product of fields, then R^{o} is not a directed union of finite products of fields. By [4, Proposition 5.3 (2)], $R=R^{o} \oplus G F(p)$ is a Von Neumann regular ring which is not a directed union of finite products of fields. Let Ω be a field containing each $G F\left(p^{q_{i}}\right)$ and $G F(p)(X)$. Given $y=\left\{y_{i}\right\}_{i \in \mathbb{Z}^{+}} \in \prod_{i=1}^{\infty} G F\left(p^{q_{i}}\right) \times G F(p)(X) \times G F(p)$, let $\|y\|=\left\{y_{i}: i \in \mathbb{Z}^{+}\right\} \subseteq \Omega$. Finally, put $S=\left\{y \in \Omega^{\mathbb{Z}^{+}}:\|y\|\right.$ is finite $\}$. Let $\varphi: \Omega^{\mathbb{Z}^{+}} \rightarrow \Omega^{\mathbb{Z}^{+}}$a homomorphism defined by $\varphi(X)=a$ and let $S_{1}=\varphi(S)$. Therefore, S_{1} is a directed union of finite products of fields and $\mathcal{F}\left(S_{1}\right)=\mathcal{F}(R)$.

Let R be a ring and $\left\{R_{\alpha}\right\}_{\alpha \in A}$ an infinite family of nonzero rings such that R is, up to isomorphism, a subring of each R_{α}. We use R^{*} to denote the diagonal imbedding of R in $\prod_{\alpha \in A} R_{\alpha}$, that is $R^{*}=\varphi(R)$, where $\varphi: R \hookrightarrow \prod_{\alpha \in A} R_{\alpha}$ is the monomorphism defined by $\varphi(x)=\left\{x_{\alpha}\right\}_{\alpha \in A}$ such that $x_{\alpha}=x$ for each $\alpha \in A$.

Proposition 2.3. Let R be a von Neumann regular ring with $\mathcal{F}(R)=\left\{L_{\alpha}\right\}_{\alpha \in A}, \mathcal{C}(R)=\{p\}$, and $\mathcal{S}=\left\{\left\{r_{\alpha}\right\}_{\alpha \in A} \in \prod_{\alpha \in A} L_{\alpha}: \quad\left\{r_{\alpha}\right\}_{\alpha \in A}\right.$ has only finitely many distinct coordinates $\}$. Assume that there exists a field Ω that contains all but finitely many L_{α} 's. Then \mathcal{S} is a directed union of finite products of fields.

Proof. To show that \mathcal{S} is a directed union of finite products of fields, it suffices to prove that \mathcal{S} is covered by a directed union of finite products of fields. Let $f \in \mathcal{S}$, then $\{f(\alpha): \alpha \in A\}=$ $\left\{f_{1}, \ldots, f_{t}\right\}$ a finite set. Let $A_{i}=\left\{\alpha \in A: f(\alpha)=f_{i}\right\}$ and denote $f_{i}^{*}=\left(f_{i}, f_{i}, \ldots, f_{i}, \ldots\right) \in$ $\prod_{\alpha \in A_{i}} L_{\alpha}$. Then $\{f(\alpha)\}_{\alpha \in A}=\left(f_{1}^{*}, \ldots, f_{t}^{*}\right)$. Since $A=\cup_{i=1}^{t} A_{i}$, and all the fields $L_{\alpha}, \alpha \in A_{i}$, have the same characteristic, then, up to isomorphism, $\bigcap_{\alpha \in A_{i}} L_{\alpha}=K_{i}$ is a field with $f_{i}^{*} \in K_{i}^{*}$, the diagonal imbedding of K_{i} in $\prod_{\alpha \in A_{i}} L_{\alpha}$. It follows that $f \in K_{1}^{*} \times \ldots \times K_{t}^{*} \simeq K_{1} \times \ldots \times K_{t}$. Therefore, \mathcal{S} is covered by a directed union of finite products of fields.

Theorem 2.4. Let R be a von Neumann regular ring with $\mathcal{F}(R)=\left\{L_{\alpha}\right\}_{\alpha \in A}$ and $\mathcal{S}=\left\{\left\{r_{\alpha}\right\}_{\alpha \in A} \in\right.$ $\prod_{\alpha \in A} L_{\alpha}:\left\{r_{\alpha}\right\}_{\alpha \in A}$ has only finitely many distinct coordinates $\}$ Then, \mathcal{S} is a directed union of finite products of fields if and only if $\mathcal{C}(R)$ is finite.

Proof. Assume that \mathcal{S} is a directed union of finite products of fields and let $f \in \mathcal{S}$. Then f has only finitely many distinct components f_{1}, \ldots, f_{t}. Now, let $A_{i}=\left\{\alpha \in A: f(\alpha)=f_{i}\right\}$, for each $i=1, \ldots, t$. So $A=\bigcup_{i=1}^{t} A_{i}$ is a partition of A. We set $f_{i}^{*}=\left(f_{i}, \ldots, f_{i}, \ldots\right) \in \prod_{\alpha \in A_{i}} L_{\alpha}$. Then, up to isomorphism, $\{f(\alpha)\}_{\alpha \in A}=\left(f_{1}^{*}, \ldots, f_{t}^{*}\right)$ belongs to a finite product of fields. In fact $\left(f_{1}^{*}, \ldots, f_{t}^{*}\right) \in \prod_{i=1}^{t} K_{i}^{*} \simeq \prod_{i=1}^{t} K_{i}$, where K_{i}^{*} is the diagonal imbedding of K_{i} into $\prod_{\alpha \in A_{i}} L_{\alpha}$ for each $i=1, \ldots, t$, with $K_{i}^{*} \simeq K_{i}=\bigcap_{\alpha \in A_{i}} L_{\alpha}$. Since \mathcal{S} is a subring of $\prod_{\alpha \in A} L_{\alpha}$, this shows that $\prod_{i=1}^{t} K_{i}$ is isomorphic to a subring of $\prod_{\alpha \in A} L_{\alpha}$. It follows that $\mathcal{C}(R)$ is finite. Conversely, let $\mathcal{C}(R)=\left\{p_{1}, \ldots, p_{n}\right\}$. We can write $\prod_{\alpha \in A} L_{\alpha}=\oplus_{i=1}^{n} T_{i}$, where $T_{i}=\prod_{\alpha \in \Lambda_{i}} L_{\alpha}$ and $\Lambda_{i}=$ $\left\{\alpha \in A: \operatorname{char}\left(L_{\alpha}\right)=p_{i}\right\}$. Let e_{j} be the idempotent element of $\prod_{\alpha \in A} L_{\alpha}$ associated with $\{\mathrm{j}\}$. Hence $\mathcal{S}=\mathcal{S} e_{1} \oplus \ldots \oplus \mathcal{S} e_{n}$. Form Proposition 2.3, each $\mathcal{S} e_{j}$ is a subring of T_{j} which is a directed union of finite products of fields. By [4, Proposition 5.3], \mathcal{S} is a directed union of finite products of fields.

3 Behavior with respect to residue fields

Let R be a von Neumann regular ring with maximal ideals $\mathfrak{m}_{i}, i \in I$ and corresponding residue fields K_{i}. We assume that there exists a field Ω containing each K_{i}. (We can always make this assumption if the K_{i} have the same characteristic.) Assuming $\mathcal{C}(R)$ finite, we have the partition $\mathcal{F}(R)=\mathcal{F}_{1} \bigcup \ldots \bigcup \mathcal{F}_{n}$ of $\mathcal{F}(R)$ with respect to the characteristic. We assume that for each $i \in\{1, \ldots, n\}$ there exists F_{i} such that $F_{i} \in \mathcal{F}_{i}$ and each element of \mathcal{F}_{i} is an algebraic extension of F_{i}. We use F^{*} to denote the diagonal imbedding of F into $\prod_{i \in I} F_{i}$.

Theorem 3.1. The ring R is a directed union of finite products of fields if and only if for each $f \in R, f$ is integral over $F_{1}^{*} \times \ldots \times F_{n}^{*}$.

In order to prove this result, we need the following Lemma.
Lemma 3.2. Let R be a Von Neumann regular ring and $\mathcal{F}(R)=\left\{F_{i}\right\}_{i \in I}$. Assume that each F_{i} is an algebraic extension of F. Then R is a directed union of finite products of fields if and only iffor each $f \in R, f$ is integral over F^{*}.

Proof. Suppose that R is a directed union of finite products of fields and let $f \in R$. Then f belongs to a finite product of fields, in other words f is in only finitely many fields F_{i}. By [1, Proposition 3, page 9], f is an integral over F^{*}. Conversely, let $f \in R$ to be integral over F^{*}. Then there exists a monic polynomial $H(X)$ in $F^{*}[X]$ that vanishes at f. The polynomial $H(X)$ has only finitely many roots of $H(X)$. We note also that $\{f(i)\}_{i \in I}$ is the unique solution of $H(X)$. It follows that f has only finitely many distinct components. We conclude that $R \subset \mathcal{S}$ and Theorem 2.4 completes the proof.

Proof of Theorem 3.1. We can write $\prod_{i \in I} F_{i}=\bigoplus_{j=1}^{n} T_{j}$, where $T_{j}=\prod_{i \in I_{j}} F_{i}$ and $I_{j}=\{i \in$ $\left.I: \operatorname{char}\left(F_{i}\right)=p_{j}\right\}$. From Lemma 3.2, to show that R is a directed union of finite products of fields it suffices to show that $R\left[e_{1}, \ldots, e_{n}\right]$ has the same property, where e_{j} is the idempotent associated with j, for $j=1, \ldots, n$. Moreover, since $R\left[e_{1}, \ldots, e_{n}\right]=R e_{1} \oplus \ldots \oplus R e_{n}$, to prove that the condition of Theorem 3.1 is satisfied for $R\left[e_{1}, \ldots, e_{n}\right]$ it suffices to show that it is satisfied for each $R e_{j}$. Let $f \in R$ be integral over $\prod_{i=1}^{n} F_{i}^{*}$. Let $H(X)$ be a monic polynomial of $\prod_{i=1}^{n} F_{i}^{*}[X]$ such that $H(f)=0$. Let $H_{j}=H e_{j}$, for each $j=1, \ldots n$. The polynomial H_{j} is monic in $F_{i}^{*}[X]$ and satisfy $H_{j}\left(\{f(i)\}_{i \in I_{j}}\right)=0$, for each $j=1, \ldots n$. Therefore, $\{f(i)\}_{i \in I_{j}}$ is integral over F_{j}^{*}. From Lemma 3.2, $R e_{j}$ is a directed union of finite products of fields, for each $j=1 \ldots n$. Conversely, assume that R is a directed union of Finite products of fields. We know that $f e_{j}$ is integral over F_{j}^{*} for each $j=1, \ldots, n$. Let $H_{j}(X) \in F_{j}^{*}[X]$ be a monic polynomial that vanishes at $f e_{j}$, for $j=1, \ldots, n$. If we set $H=\prod_{i=1}^{n} H_{j}$, then H is a monic polynomial $\prod_{j=1}^{n} F_{j}^{*}$ that vanishes at f (cf. [1, Proposition 3, page 9]).

Example 3.3. Let p be a positive prime integer and $\left\{q_{i}\right\}_{i \in \mathbb{N}^{*}}$ be an infinite family of distinct prime integers. Let $\mathcal{F}=\{\mathbb{Q}\} \bigcup\left\{\mathbb{Q}\left(\zeta_{i}\right)\right\}_{i=1}^{\infty}$ be an infinite family of fields, where ζ_{i} is a $p^{q_{i}}-$ primitive root of unity. We denote by φ_{i} the imbedding of \mathbb{Q} into $\mathbb{Q}\left(\zeta_{i}\right)$ for each $i \in \mathbb{Z}^{+}$. Let $\varphi=\prod_{i=1}^{\infty} \varphi_{i}, T=\prod_{i=1}^{\infty} \mathbb{Q}\left(\zeta_{i}\right), I=\bigoplus_{i=1}^{\infty} \mathbb{Q}\left(\zeta_{i}\right)$ the direct sum ideal of T. We denote $\mathbb{Q}^{*}=\varphi(\mathbb{Q})=R_{o} \simeq \mathbb{Q}$ the diagonal imbedding of \mathbb{Q} in T. Let $R_{1}=R_{o}+I$. Then $\mathcal{F}\left(R_{1}\right)=$
$\left\{F_{i}\right\}_{i=1}^{\infty} \bigcup\{\mathbb{Q}\}$. Let $f \in \prod_{i=1}^{\infty} F_{i}$ such that $f(i)=i$ for each $i \in \mathbb{Z}^{+}$. If R is the minimal zerodimensional subring of T containing $R_{1}[f]$, then $\mathcal{F}(R)=\left\{F_{i}\right\}_{i=1}^{\infty} \bigcup\{\mathbb{Q}(t)\}$, where $F_{i}=\mathbb{Q}\left(\zeta_{i}\right)$ for each $i \in \mathbb{Z}^{+}$. On the other hand, since $\mathcal{S}=R_{o}+J$, where $J=\mathbb{Q}(t)+I$, we have $\mathcal{F}(\mathcal{S})=\left\{F_{i}\right\}_{i=1}^{\infty} \bigcup\{\mathbb{Q}(t)\} \bigcup\{\mathbb{Q}\}$. Now, by [4, Proposition 5.3 (2)], the ring $R=R_{1} \oplus \mathbb{Q}$ is not a directed union of finite products of fields, even if $\mathcal{F}(R)=\mathcal{F}(\mathcal{S})$. Notice that $F_{i} \cap F_{j}=\mathbb{Q}$ for $i \neq j$ and $F_{i} \cap \mathbb{Q}(t)=\mathbb{Q}$ with $\mathbb{Q} \in \mathcal{F}(R)$. Even though, $\mathbb{Q} \in \mathcal{F}(R) R$ is not a directed union of finite products of fields.

Let R be a von Neumann regular ring and $\left\{M_{i}\right\}_{i \in I}$ its spectrum. Since R is a reduced ring, we have $\bigcap_{i \in I} M_{i}=(0)$ and hence the homomorphism $\varphi: R \rightarrow \prod_{i \in I} \frac{R}{M_{i}}$, defined by $\varphi(x)=x+M_{i}$, is injective. This allows us to view R as a subring of $\prod_{i \in I} \frac{R}{M_{i}}$. We identify x with its image $\left\{x_{i}\right\}_{i \in I} \in \prod_{i \in I} \frac{R}{M_{i}}$. Finally, we denote $F_{i}=\frac{R}{M_{i}}$ for each $i \in I$.

Corollary 3.4. With the notation and assumptions above, we assume that there is a field Ω containing each F_{i} and F is the prime subfield of Ω. If each distinct pair of fields F_{j} and F_{k} in \mathcal{F}_{i} satisfying $F_{j} \cap F_{k}=F \notin \mathcal{F}(R)$, then R is not a directed union of finite products of fields.

Proof. Suppose that $F \notin \mathcal{F}(R)$. Let S be the subring of $\prod_{i \in I} F_{i}$ consisting of eventually constant sequences. Thus $S=F^{*}+I$, the F-subalgebra of $\prod_{i \in I} F_{i}$ generated by the direct sum ideal $I=\oplus_{i \in I} F_{i}$, where F^{*} is the diagonal imbedding of F into $\prod_{i \in I} F_{i}$. First claim that S is the maximal subring of $\prod_{i \in I} F_{i}$ with respect to being a directed union of finite product of fields. Let $T=\bigcup_{j \in J} T_{j}$ be a subring of $\prod_{i \in I} F_{i}$ which is a directed union of finite product of fields. Let $t=\left\{t_{i}\right\}_{i \in I} \in T$ then there exists $j_{o} \in J$ such that $t \in T_{j_{o}}$ which is a finite products of fields, then t has only finitely many distinct coordinates, i.e., $t \in S$. If R is a directed union of finite products of fields, then $R \subseteq S$ and hence $\mathcal{F}(R)=\mathcal{F}(S)$ (see Proposition 2.1), a contradiction with $F \in \mathcal{F}(S) \backslash \mathcal{F}(R)$.

Example 3.5. Let \mathbb{Q} be the field of rational numbers, α an element such that $\alpha^{2}=d$ (d without squire factor in $\mathbb{Q})$ and \mathcal{P} be an infinite family of distinct prime integers. Let $\Omega=\mathbb{Q}(\alpha)$ be a simple algebraic extension of \mathbb{Q} and $R=\mathbb{Q}(\alpha)+I$, the Ω-subalgebra of $T=\prod_{i=1}^{\infty} \Omega\left(\zeta_{i}\right)$ generated by the direct sum ideal $I=\oplus_{i=1}^{\infty} \Omega\left(\zeta_{i}\right)$, where ζ_{i} is a p^{q}-primitive root of unity and p is a prime integer with $q \in \mathcal{P}$. For each $i \in \mathbb{Z}^{+}$, let $\phi_{i}: \Omega \rightarrow \Omega\left(\zeta_{i}\right)$ be the field-homomorphism taking α to ζ_{i}. Let $\phi=\left\{\phi_{i}\right\}_{i=1}^{\infty}: T \rightarrow T$, a ring-homomorphism. Let $R_{o}=\phi(R)$. Being isomorphic to R, R_{o} is a directed union of finite products fields. We remark that the element $\left\{\zeta_{i}\right\}_{i=1}^{\infty} \in R_{o}$ which is not in \mathcal{S} (the maximum among all subrings of T that are directed union of finite products of fields in proof of Corollary 3.4).

Proposition 3.6. Let R be a zero-dimensional ring and $N(R)$ be the nilradical of R. Then the following conditions are equivalent:
(i) R is a directed union of zero-dimensional subrings with finite spectra;
(ii) $R / N(R)$ is a directed union of finite products of fields.

Proof. (i) \Rightarrow (ii). Suppose that $R=\bigcup_{i \in I} R_{i}$ is a directed union of zero-dimensional subrings with finite spectra, then by [15, Proposition 6.1.2, page 128], $R / N(R) \simeq \bigcup_{i \in I} R / N(R) \cap R_{i}=$ $\bigcup_{i \in I} R_{i} / N\left(R_{i}\right)$ is a directed union of $R_{i} / N\left(R_{i}\right)$, where $N\left(R_{i}\right)$ is the nilradical of R_{i}. The ring $R_{i} / N\left(R_{i}\right)$ is Von Neumann regular with finite spectra, then $R_{i} / N\left(R_{i}\right)$ is Artinian.
(ii) \Rightarrow (i). Suppose $R / N(R)=\bigcup_{i \in I} S_{i}$ is a directed union of Finite products of fields and let $\varphi: R \rightarrow R / N(R)$ be the canonical epimorphism. We denote $R_{i}=\varphi^{-1}\left(S_{i}\right)$ the inverse image of S_{i} by φ, for each $i \in I$. Since $\left\{S_{i}\right\}_{i \in I}$ is directed, the family $\left\{R_{i}\right\}_{i \in I}$ is also directed. We have $R_{i} / N\left(R_{i}\right) \simeq S_{i}$, as $\operatorname{Spec}\left(S_{i}\right)$ is finite the ring R_{i} has only finitely many prime ideals, for each $i \in I$. Because S_{i} is zero-dimensional, R_{i} is also zero-dimensional but need not be Artinian. It follows that $R=\bigcup_{i \in I} R_{i}$ is a directed union of zero-dimensional quasilocal subrings.

References

[1] N. Bourbaki, Algèbre commutative, Chapitres 5 à 7, Masson, 1985.
[2] Daniel D. Anderson, Some Problems in Commutative Ring Theory, Zero-dimensional commutative rings, (Knoxville, TN, 1994), Lecture Notes in Pure and Appl. Math., 171 Dekker, New York, 363-372 (1995).
[3] R. Gilmer, Zero-dimensional subrings of commutative rings, Abelian groups and modules (Padova, 1994), 209-219,Math.Appl., 343, Kluwer Acad. Publ., Dordrecht, 1995.
[4] R. Gilmer and W. Heinzer, Products of commutative rings and zero-dimensionality, Trans. Amer. Math. soc. 331, 662-680 (1992).
[5] R. Gilmer and W. Heinzer, Artinian subrings of a commutative ring, Trans. Amer. Math. soc. 336, 295-310 (1993).
[6] R. Gilmer and W. Heinzer, Imbeddability of a commutative ring in a finite-dimensional ring, Manus. Math. 84, 401-414 (1994).
[7] R. Gilmer and W. Heinzer, The family of residue fields of a zero-dimensional commutative ring, J. Pure. Appl. Algebra 82, 131-153 (1992).
[8] L. Gillman, and M. Jerison, Rings of Continuous Functions, Van Nostrand, Princeton, NJ, 1960.
[9] A. Grothendieck and J. Dieudonné, Eléments de géométrie algébrique, I, Springer-Verlag. Berlin, 1971.
[10] W. Heinzer, D. Lantz, R. Weigand, The residue fields of a zero-dimensional ring, J. Pure. Appl. Algebra 129, 67-85 (1998).
[11] S. Lang, Algebra, Addison-Wesley Publishing Company, Inc, 1993.
[12] J. Huckaba, Commutative rings with zero divisors, Marcel Dekker, New york, 1988.
[13] A. R. Magid, Direct limits of finite products of fields, Zero-dimensional commutative rings, Lecture Notes in Pure and Appl. Math., 171 (Knoxville, TN, 299-305 (1994)), Dekker, NewYork.
[14] P. Maroscia, Sur les anneaux de dimension zéro, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 56, 451-459 (1974).
[15] M.-P. Malliavin, Algèbre commutative, applications en géométrie et théorie des nombres, Masson (1985).

Author information

D. Karim, Departement of Mathematics, Faculty of Nador, B. O. Box 62702, Nador, Morocco.

E-mail: ikarim@ucam.ac.ma

Received: February 3, 2012
Accepted: May 25, 2012

