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1 Abstract

In this work, we define the nearly uniform convexity and the ∆-uniform convexity in metric spaces, and prove their
equivalence. We also prove the nonlinear version of some classical results related to nearly uniformly convex metric
spaces.

I dedicate this paper to Ghiyath al-Din Jamshid Mas’ud al-Kashi (or al-Kashani) (c. 1380 Kashan - 22 June 1429 Samarkand) who was an as-
tronomer and one of the best mathematicians in the Islamic world.
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2 Introduction and Preliminaries

One of the basic concepts of geometry of Banach spaces is that of uniform convexity. It was introduced by J. A.
Clarkson [1] in 1936. Five years later V. L. Smulian [18] characterized the property dual to uniform convexity. It
is called uniform smoothness. The infinite dimensional counterparts of uniform convexity and uniform smoothness
were studied in [14]. Since then these two notions have been extensively studied. They turned out to be useful
for instance in the metric fixed point theory (see [3, 10]). It is pointed out that uniform convexity and uniform
smoothness describe geometric properties of finite dimensional subspaces of a normed space. However, most of the
problems in the fixed point theory have global character. This was a motivation for considering infinite dimensional
counterparts of the classical geometric notions. One of them is nearly uniform convexity introduced by R. Huff in
[7]. Independently, a similar idea appeared in [5], where the modulus corresponding to nearly uniform convexity was
defined.

Extension to metric spaces of this kind of linear properties was sought very early on. The early attempts were
based on the use of Menger convexity (see for example [4, 6, 12]). Recently, Khamsi and Khan [9] have used the
classical definition of uniform convexity in metric spaces to obtain an analogue of the Hilbert parallelogram identity
and another well-known inequality and have cited a number of applications of the new inequalities obtained.

In this work, we use Penot’s formulation of metric convexity based on the notion of convexity structures [16]. It is
worth to mention that Penot’s use of convexity structures was successful in obtaining some positive fixed point results
in metric spaces [8], similar to the classical Kirk’s fixed point result [13]. In particular we extend the notions of nearly
uniform convexity (U.N.C) and ∆-uniform convexity (∆-U.C.) to metric spaces. We introduce these properties and
prove their equivalence.

Throughout this note X denotes a metric space and B(x, r) will be the closed ball centered at x with radius r.

Definition 2.1. A nonempty family F of subsets of X is said to define a convexity structure if and only if F is stable
by intersection. The elements of F are called convex.

We will always assume that the closed balls and X are convex. In other words, the closed balls and X are in F .
Let A ⊂ X , set

co(A) =
⋂
{C;C ∈ F ;A ⊂ C}.

Next we define N.U.C. in metric spaces.

Definition 2.2. Let x ∈ X, r > 0 and ε > 0, define

δN (ε) = sup{η > 0;B(x, (1− η)r) ∩ co(xn) 6= ∅}

for any {xn} ⊂ X such that xn ∈ B(x, r) and the separation constant

sep(xn) = inf
n 6=m

d(xn, xm) ≥ r ε.

Set εN (X) = sup{ε > 0; δN (ε) = 0}. We say that X is F-N.U.C if and only if εN (X) = 0.
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In this definition we scale the N.U.C. property in a way which allows a classification of metric spaces and spe-
cially Banach spaces from their geometrical structure point of view.

In the next definition we introduce the ∆-U.C. in metric spaces. Recall that the ∆-U.C. was initiated by Goebel
and Sekowski [5] in Banach spaces. They proved that ∆-U.C. property hold in finite dimensional spaces as well as
in uniformly convex Banach spaces. The main interesting result concerns the link between reflexivity and normal
structure with ∆-U.C.

Let us recall the definitions of measures of noncompactness α and χ in a metric space X:

α(A) = inf{r > 0;A ⊂
⋃

1≤i≤n

Ai with diam(Ai) ≤ r}

and χ(A) = inf{r > 0;A ⊂
⋃

1≤i≤n

Bi}, where the Bi are closed balls.

Note that α and χ are defined for every bounded subset A of X .

Definition 2.3. Let x ∈ X, r > 0 and ε > 0, set

∆α(ε) = sup{η > 0;B(x, (1− η)r) ∩A 6= ∅}

for every A ∈ F such that A ⊂ B(x, r) and α(A) ≥ rε. Put

εα(X) = sup{ε > 0; ∆α(ε) = 0}.

Define ∆χ(ε) and εχ(X) with the same formulas except that one has to replace α by χ. We will say that X is
F − ∆-U.C. if and only if εα(X) = 0.

Another measures of noncompactness which will be useful in our work is the separation measure of noncompact-
ness [2].

Definition 2.4. LetX be a metric space. For any bounded nonempty subset A ofX , we define the separation constant
β(A) by

β(A) = sup{sep(xn); {xn} ⊂ A}.
The function β(.) is also known as the separation measure of noncompactness.

Clearly, the following properties are satisfied by β(.) (see [2]):

(i) For any bounded nonempty subset A of X , we have β(A) ≤ δ(A), where δ(A) is the diameter of A.

(ii) If A ⊂ B, then β(A) ⊂ β(B).
(iii) For any bounded nonempty subset A of X , we have β(A) = β(A), where A is the closure of A.

(iv) For any bounded nonempty subset A of X , we have β(A) = β(A \ F ), where F is any finite subset of A.

(v) For any bounded nonempty subset A of X , we have β(A) = 0 if and only if A is totally bounded. Recall that A
is totally bounded if and only if for any ε > 0, there exists a1, · · · , ak in A such that A ⊂

⋃
1≤i≤k

B(ai, ε), where

B(ai, ε) is either closed or open ball.

(vi) Assume X is complete. For any bounded nonempty subset A of X , we have β(A) = 0 if and only if A is
compact. This result explains why β is a measure of noncompactness.

(vii) AssumeX is compete. Let {xn} be a bounded sequence inX with no convergent subsequence. Then β({xn; n ≥
1}) > 0. In particular, there exists a subsequence {xnk} of {xn} such that sep(xnk) > 0.

The following technical result will be needed in the next section.

Lemma 2.5. Let X be a complete metric space. If {Cn} is a decreasing bounded sequence of nonempty closed
subsets with inf

n≥1
β(Cn) = 0, then

⋂
n≥1

Cn is a nonempty compact subset of X .

Proof. Pick xn ∈ Cn, for any n ≥ 1. Set C = {xn; n ≥ 1}. We have

β(C) = β
(
{xm; m ≥ n}

)
≤ β(Cn),

for any n ≥ 1. This will imply β(C) = 0. Hence C is compact. Therefore {xn} has a convergent subsequence.
Clearly its limit belongs to Cn, for all n ≥ 1. Therefore

⋂
n≥1

Cn is not empty. The compactness follows from the

properties of β(.).
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3 Nearly Uniformly Convex Metric Spaces are Reflexive

In this section we show an analogous result to the famous linear theorem which states that N.U.C. Banach spaces are
reflexive. Penot [16] gave a definition of reflexivity for convexity structures as follows.

Definition 3.1. A convexity structure F is said to be compact if and only if any family of closed convex subsets
(Cα)α∈Γ ⊂ F has a nonempty intersection provided any finite subfamily of (Cα)α∈Γ has a nonempty intersection.

Next we show that if X is F-N.U.C., then F is compact. First let us prove some needed technical lemmas.

Lemma 3.2. Let X be a metric space and F be a convexity structure in X . Assume that X is F-N.U.C. Then any
closed convex nonempty C ∈ F is proximinal; i.e. for any x ∈ X , we have

PC(x) = {c ∈ C; d(x, c) = d(x,C) = inf
a∈C

d(x, a)} 6= ∅.

Moreover the set PC(x) is totally bounded and convex. In particular, if X is complete, then PC(x) is compact.

Proof. Without loss of any generality we may assume d(x,C) > 0. Then there exists {cn} ⊂ C such that lim
n→∞

d(x, cn) =

d(x,C). If {cn} has a convergent subsequence, then its limit will belong to PC(x). Otherwise let us assume that {cn}
has no convergent subsequence. In this case there exists a subsequence {cnk} such that sep(cnk) > 0. Without loss
of any generality, we may assume sep(cn) > 0. Since X is F-N.U.C., so there exists η > 0 such that

B
(
x, (1− η) sup

m≥n
d(x, cm)

)
∩ co({cm; m ≥ n}) 6= ∅,

for any n ≥ 1. Since co({cm; m ≥ n}) ⊂ C, we get

d(x,C) ≤ (1− η) sup
m≥n

d(x, cm)

for any n ≥ 1. If we let n→∞, we get
d(x,C) ≤ (1− η)d(x,C).

This will contradict the fact d(x,C) > 0. Therefore PC(x) is not empty. In fact, the above proof shows that
β(PC(x)) = 0 which implies that PC(x) is totally bounded. Moreover, it is easy to see that PC(x) is a closed subset
of X . Since F contains closed balls, and PC(x) = C ∩ B(x, d(x,C)), therefore PC(x) ∈ F . If X is complete, then
PC(x) is also complete. Hence PC(x) being complete and totally bounded is compact.

In the linear case, a Banach space is reflexive if and only if any decreasing sequence of nonempty bounded closed
convex subsets has a nonempty intersection. For convexity structures, it is not clear that this conclusion is equivalent
to compactness. In fact, for more on this question, we refer to [11].

Lemma 3.3. Let X be a complete metric space and F be a convexity structure in X . Assume that X is F-N.U.C.
Then any decreasing bounded sequence of nonempty closed convex subsets {Cn} ⊂ F has a nonempty intersection.

Proof. Let x ∈ C1. Then for any n ≥ 2, choose cn ∈ PCn(x). Assume that {cn} has no convergent subsequence. In
this case there exists a subsequence {cnk} such that sep(cnk) > 0. Without loss of any generality, we may assume
sep(cn) > 0. As X is F-N.U.C., so there exists η > 0 such that

B
(
x, (1− η) sup

m≥n
d(x, cm)

)
∩ co({cm; m ≥ n}) 6= ∅,

for any n ≥ 2. Since {d(x,Cn)} = {d(x, cn)} is an increasing sequence and bounded (since C1 is bounded),
therefore it converges. Note that lim

n→∞
d(x, cn) = R > 0 because {cn} has no convergent subsequence. Since

co({cm; m ≥ n}) ⊂ Cn, we get

d(x, cn) = d(x,Cn) ≤ (1− η) sup
m≥n

d(x, cm)

for any n ≥ 1. If we let n→∞, we get
R ≤ (1− η)R.

This will contradict the fact R > 0. Therefore {cn} has a convergent subsequence and its limit will belong to Cn, for
any n ≥ 1. This implies that {Cn} has a nonempty intersection.

Now we prove the main result of this section.

Theorem 3.4. Let X be a complete metric space and F be a convexity structure in X . Assume that X is F-N.U.C.
Then F is compact.
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Proof. Let {Cα}α∈Γ ⊂ F be a nonincreasing family of nonempty, convex, closed bounded subsets, where Γ is a
directed index set. Let us prove that

⋂
α∈Γ

Cα 6= ∅. Recall that Γ is directed if there exists an order � defined on Γ such

that for any α, β ∈ Γ, there exists γ ∈ Γ such that α � γ and β � γ. {Cα}α∈Γ is nonincreasing if and only if for any
α, β ∈ Γ with α � β, then Cβ ⊂ Cα. Note that for any α0 ∈ Γ, we have⋂

α∈Γ

Cα =
⋂
α0�α

Cα.

Therefore without loss of any generality we may assume that there exists C ∈ F which is nonempty closed bounded
convex subset and Cα ⊂ C for any α ∈ Γ. Choose x ∈ C. Set R = sup

α∈Γ

d(x,Cα). Without loss of any generality we

may assume R > 0. Otherwise x ∈ Cα for any α ∈ Γ. For any α ∈ Γ pick cα ∈ PCα(x). Set Aα = {cγ ; α � γ}. Let
us prove that inf

α∈Γ
β(Aα) = 0. Assume not. Then there exists ε0 < β(Aα), for any α ∈ Γ. Then for any α ∈ Γ, there

exists a sequence {cβn} ∈ Aα such that sep(cβn) ≥ ε0. Since X is F-N.U.C., there exists η > 0 such that

B
(
x, (1− η)R

)
∩ co({cβn ; n ≥ 1}) 6= ∅.

Since co({cβn ; n ≥ 1}) ⊂ Cα, we get
d(x,Cα) ≤ R(1− η),

for any α ∈ Γ. This clearly implies R ≤ R(1 − η) which is a contradiction to the assumption R > 0. Therefore we
have inf

α∈Γ
β(Aα) = 0. Hence there exists a sequence {αn} ⊂ Γ such that lim

n→∞
β(Aαn) = 0. Since Γ is a directed

set, we may assume that αn � αn+1. Hence {Aαn} is a decreasing sequence of nonempty sets of X such that
inf
n≥1

β(Aαn) = 0. By Lemma 2.5, A =
⋂
n≥1

Aβn is a nonempty compact subset of X . Let α ∈ Γ. Then there exists

γn ∈ Γ such that α � γn and αn � γn. Hence Aγn ⊂ Aα ∩Aαn , which implies Aα ∩Aαn is not empty. Again using

Lemma 2.5, we conclude that
⋂
n≥1

(
Aα ∩ Aαn

)
is not empty. In other words, we have Aα ∩ A is not empty for any

α ∈ Γ. Since A is compact and the family {Aα} is downwards directed, we conclude that⋂
α∈Γ

(
A ∩Aα

)
6= ∅.

Since Aα ⊂ Cα for any α ∈ Γ, we conclude that the family {Cα} has a nonempty intersection.

4 Main result

In the following result we compare the modulus of ∆-U.C. and the modulus of N.U.C.

Theorem 4.1. Let X be a metric space and F be convexity structure in X . For any x ∈ X, r > 0 and ε > 0, we have

(a) ∆χ

( ε
2

)
≤ δN (ε) ≤ ∆χ(ε),

(b) δN
( ε

2

)
≤ ∆α(ε) ≤ δN (ε).

In particular, we have εα(X) = 0 if and only if εχ(X) = 0.

Proof. First notice that if A ∈ F , A 6= ∅ and α(A) > rε, so A contains a sequence {an} such that sep(an) ≥ r
ε

2
.

If χ(A) > rε, then A contains a sequence {an} such that sep(an) ≥ rε. Conversely, assume that {an} ⊂ X and
sep(an) > rε. Then α(co(an)) ≥ rε and χ(co(an)) ≥ r

ε

2
.

Let us show how (a) holds. (The proof of (b) will follow using the same argument).
Let x ∈ X and A ⊂ X,A ∈ F such that χ(A) ≥ rε and A ⊂ B(x, r). Then one can find {an} ⊂ A such that
sep(an) ≥ rε. Since {an} ⊂ B(x, r), so by using the definition of δN we get

B(x, (1− δN (ε)r) ∩ co(an) 6= ∅.

Therefore B(x, (1− δN (ε)r) ∩A 6= ∅ because co(an) ⊂ A. Using the definition of ∆χ we obtain

δN (ε) ≤ ∆χ(ε).
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Conversely, let {an} ⊂ X be such that sep(an) ≥ rε, for r > 0 and ε > 0. Assume that {an} ⊂ B(x, r) for x ∈ X .
Then co(an) ⊂ B(x, r) and χ(co(an)) ≥ r

ε

2
since sep(an) ≥ rε. By definition of ∆χ we deduce that

co(an) ∩B
(
x,
(

1− ∆χ

( ε
2

)
r
))
6= ∅.

This yields
∆χ

( ε
2

)
≤ δN (ε).

Hence the proof of Theorem 4.1 is complete.

As a direct corollary of Theorem 4.1, we get the following result.

Corollary 4.2. Let X be a metric space and F be a convexity structure. The following statements are equivalent.

(i) X is N.U.C. with respect to F ,

(ii) X is ∆-U.C. with respect to F .

Translating this result in normed linear spaces, we get the following theorem.

Theorem 4.3. Let X be a Banach space. Let F be the family of convex subsets of X . Then, the following statements
are equivalent.

(i) X is nearly uniformly convex,

(ii) X is ∆-uniformly convex (in the sense of Goebel and Sekowski [5]).

Note that Theorem 4.3 was known to Montesinos [15] and Prus [17].

The main result proved by Goebel and Sekowski [5] concerns Banach spaces with εα(X) < 1.
In the next result we compare the three coefficients introduced in our definitions.

Corollary 4.4. In a metric space X , we have:

(i) if εχ(X) < 2, then εN (X) < 1,

(ii) if εα(X) < 1, then εN (X) < 1.
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