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1 Abstract

If one supposes a quantum logic L to be a σ-effect algebra, then the observables on L are identified with the L-
valued measures defined on the Borel subsets of the real line. In this structure (and without the aid of Hilbert space
formalism) we show that (1) the spectrum of an observable A can be completely characterized by studying the
observable (A−λ)−1, and (2) corresponding to every observable A there is a spectral resolution uniquely determined
by A.

2 Introduction

In the last two decades the notion of effect algebra has received much attention within the studies on the mathematical
foundation of quantum mechanics [2, 7, 8, 10]. Effect algebras appear to be the natural outcome in the search of a
mathematical structure that captures the fundamental aspects of the elementary two-valued physical quantities, or
effects, pertaining to a physical system. The notion of an effect algebra is sufficiently general to encompass the
traditional order structure accompanying classical systems (Boolean algebras), and it is sufficiently structured to
carry a meaningful interplay with the physically relevant notions of states and of observables [2, 7, 8, 10].

Until quite recently the observables in non-relativistic quantum mechanics have been identified with the set of self-
adjoint operators on a separable, infinite dimensional, complex Hilbert space. Likewise, on the same Hilbert space,
the states have been identified with the trace operators of trace class 1 [6]. However, with the advent of Mackey’s
book on the mathematical foundation of quantum mechanics [16], both observables and states have assumed a more
abstract character having no overt connection with Hilbert space. This has led some investigators to consider the
problem of deciding which quantum mechanical results are essentially consequences of Hilbert space formalism and
which can be obtained without involving Hilbert space [11, 21, 22]. In this paper we will show that most of the
desirable theorems involving spectra can be obtained without the use of Hilbert space. Indeed, we shall study the
relationship between the notions of observables and the so-called spectral resolutions on an effect algebra. In 1968,
D. Catlin [6] studied this relationship on an orthomodular poset (OMP). Our work mimics Catlin’s work, and our
results extend the results of Catlin to the more general setting of an effect algebra, a generalization of an OMP.
Some related results concerning spectral resolutions for σ-complete lattice effect algebras and a spectral theorem for
σ-MV-algebras can be found in [18, 19].

3 Basic Definitions

In this section we summarize the basic definitions concerning σ-effect algebras [10], σ-orthoalgebras [13], and σ-
OMPs [3, 5, 6, 16, 17], and we present some of the basic and important facts that link these structures together. We
further give the definitions of states and observables on such structures, and we define the spectrum of an observable.
An effect algebra is a system (E, 0, 1,⊕) consisting of a set E containing two special elements 0, 1 and equipped
with a partially defined binary operation ⊕ satisfying the following conditions ∀ a, b, c ∈ E:

(EA1) If a⊕ b is defined, then b⊕ a is defined and a⊕ b = b⊕ a.

(EA2) If b ⊕ c is defined and a ⊕ (b ⊕ c) is defined, then a ⊕ b is defined, (a ⊕ b) ⊕ c is defined, and a ⊕ (b ⊕ c)=
(a⊕ b)⊕ c.

(EA3) For every a ∈ E there exists a unique element a′ ∈ E such that a ⊕ a′ is defined and a ⊕ a′ = 1. The unique
element a′ is called the orthosupplement of a.

(EA4) If 1⊕ a is defined, then a = 0.

We shall write E for the effect algebra (E, 0, 1,⊕) if there is no danger of misunderstanding. Let E be an effect
algebra and a, b ∈ E. Following [6], we say that a is orthogonal to b in E and write a⊥b if and only if a⊕ b is defined
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in L. We define a ≤ b to mean that there exists c ∈ E such that a ⊥ c and b = a⊕ c. For any effect algebra E, it can
be easily proved (see [6]) that 0 ≤ a ≤ 1 holds for all a ∈ E, that a ⊥ b iff a ≤ b′, that, with ≤ as defined above,
(E,≤, 0, 1) is a partially ordered set.

Recall that an orthoalgebra may be regarded as an effect algebra E in which condition (EA4) is replaced by the
stronger consistency law:

a ∈ E, a ⊥ a ⇒ a = 0.

An orthomodular poset (OMP) may be regarded as an effect algebraE that satisfies the following additional condition
(see [6]):

a, b ∈ E, a ⊥ b ⇒ a ∨ b exists in E and a ∨ b = a⊕ b.

An orthomodular lattice (OML) may be defined as an OMP E in which a∨ b (and hence a∧ b) exists ∀ a, b ∈ E. Let
L be an effect algebra. A subset A ⊆ L is called a subeffect algebra if 0, 1 ∈ A and, whenever a, b ∈ A and a ⊥ b, it
follows that a′ ∈ A and a ⊕ b ∈ A. A subeffect algebra A of L is called a Boolean subalgebra if it is a distributive
suborthomodular lattice. An effect algebra L is sharp if every element a ∈ L is sharp; that is, a ∧ a′ = 0. It can be
easily checked that every sharp effect algebra L is an orthoalgebra. Indeed, if a ⊕ a is defined in L, then a ≤ a′ and
a ≤ a; hence a ≤ a ∧ a′ = 0, since a is sharp. Therefore a = 0.

Throughout this paper, the symbol R denotes the set of all real numbers, and the notation := means “equals by
definition”.

Example 3.1. Consider the unit interval [0, 1] ⊆ R, and for a, b ∈ [0, 1], define a ⊥ b if a+ b ≤ 1 in which case
a⊕ b := a+ b. It is easy to check that ([0, 1], 0, 1,⊕) is an effect algebra.

The following example plays an important role for unsharp measurements of quantum mechanics [4, 10].

Example 3.2. Consider the set E(H) of all self-adjoint operators A on a Hilbert space H with O ≤ A ≤ I , where
O and I are the zero and the identity operators, respectively, on H . For A,B ∈ E(H), define

A⊕B := A+B iff A+B ≤ I.

It is not difficult to show that, under this ⊕, the system (E(H), O, I,⊕) forms an effect algebra [10].
Let L be an effect algebra and let F = {a1, . . . , an} be a finite sequence in L. Recursively, we define for n ≥ 3

a1 ⊕ a2 ⊕ . . .⊕ an := (a1 ⊕ . . .⊕ an−1)⊕ an (3.1)

supposing that a1 ⊕ . . .⊕ an−1 and (a1 ⊕ . . .⊕ an−1)⊕ an exist in L. From the associativity of ⊕ in L, we conclude
that (3.1) is correctly defined. By definition, we put a1⊕ . . .⊕ an = a1 if n = 1 and a1⊕ . . .⊕ an = 0 if n = 0. Then
for any permutation (i1, . . . , in) of {1, 2, . . . , n} and any k with 1 ≤ k ≤ n, we have

a1 ⊕ a2 ⊕ . . .⊕ an = ai1 ⊕ . . .⊕ ain , (3.2)

a1 ⊕ a2 ⊕ . . .⊕ an = (a1 ⊕ . . .⊕ ak)⊕ (ak+1 ⊕ ak+2 ⊕ . . .⊕ an). (3.3)

We say that a finite sequence F = {a1, . . . , an} in L is ⊕-orthogonal if a1 ⊕ . . .⊕ an exists in L. In this case we say
that F has a ⊕-sum,

⊕n
i=1 ai, defined via

n⊕
i=1

ai = a1 ⊕ . . .⊕ an. (3.4)

It is clear that two elements a, b of L are orthogonal; i.e., a ⊥ b, iff {a, b} is ⊕-orthogonal.
An arbitrary system G = {ai}i∈I of not necessarily different elements of L is ⊕-orthogonal iff, for every finite

subset F of I , the system {ai}i∈F is ⊕-orthogonal. If G = {ai}i∈I is ⊕-orthogonal, so is any {ai}i∈J for any J ⊆ I .
An ⊕-orthogonal G = {ai}i∈I of L has a ⊕-sum in L, written as

⊕
i∈I ai, iff in L there exists the join⊕

i∈I
ai :=

∨
F

⊕
i∈F

ai (3.5)

where F runs over all finite subsets in I . In this case, we also write
⊕
G =

⊕
i∈I ai. It is evident that if G =

{a1, . . . , an} is ⊕-orthogonal, then the ⊕-sums defined by (3.4) and (3.5) coincide.
The proof of the following lemma is similar to that for orthoalgebras, and the latter can be found in [13].

Lemma 3.3 Let L be an effect algebra and let a, b, x, y ∈ L be such that a ≤ x, b ≤ y, x ⊥ y and a ⊥ b. If
a⊕ b = x⊕ y, then a = x and b = y.

We say that an effect algebra L is σ-orthocomplete iff
⊕

i∈I ai belongs to L for any countable system {ai : i ∈ I}
of ⊕-orthogonal elements from L. A σ-orthocomplete effect algebra is called a σ-effect algebra. An OMP L is called
σ-orthocomplete iff every countable orthogonal subset of L has a supremum in L, we also call L a σ-OMP. The proof
of the following theorem is similar to that for orthoalgebras, and the latter can be found in [13].
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Theorem 3.4 An OMP L is σ-orthocomplete iff it is σ-orthocomplete as an effect algebra.
A subeffect algebra M of an effect algebra L is called a σ-subeffect algebra iff

⊕
i∈I ai belongs to M for any

countable system {ai : i ∈ I} of ⊕-orthogonal elements from M . The next lemma was proved in [19] for orthoalge-
bras. The same proof can be used for effect algebras.

Lemma 3.5 Let L be an effect algebra, and let M ⊆ L be such that

(i) 0 ∈M , and a ∈M ⇒ a′ ∈M ;

(ii) if p, q, r are pairwise orthogonal elements of M , then p⊕ q ⊕ r exists in L and belongs to M ; and

(iii) if (ai)i∈N ⊆M is an increasing sequence, then it has a supremum in M .

Then M is a σ-subeffect algebra of L which is a σ-OMP.
For the remainder of this paper, unless otherwise stated, we will assume that L is a σ-effect algebra. Let B denote

the Borel subsets of the real line R. By an observable (or L-valued measure) on L we mean a mapping A : B → L
such that

(i) A(R) = 1, and

(ii) A(
⋃∞
i=1 Ei) =

⊕∞
i=1 A(Ei) whenever Ei ∈ B and Ei ∩ Ej = ∅ for i 6= j.

We denote the set of all observables on L by O.
By a state on an effect algebra L we mean a function α : L→ [0, 1] such that

(i) α(1) = 1, and

(ii) α(a⊕ b) = α(a) + α(b) whenever a ⊥ b in L.

If for a state α : L→ [0, 1] we have

α(
∞⊕
i=1

ai) =
∞∑
i=1

α(ai)

whenever
⊕∞

i=1 ai exists in L, then α is called a σ-additive state. It is clear that for any state α, α(0) = 0. Moreover,
for any observable A on L, if B1, B2 ∈ B and B1 ⊆ B2, then A(B1) ≤ A(B2). Indeed, we have B2 = B1 ∪ (B2−B1)
implies A(B2) = A(B1)⊕A(B2 −B1); hence A(B1) ≤ A(B2).

The following lemma was proved in [1].

Lemma 3.6 Let L be a σ-effect algebra. If A is an observable on L and if (Bi)i∈N ⊆ B is such that Bi ⊆
Bi+1 ∀ i ∈ N, then

A(
∞⋃
i=1

Bi) =
∞∨
i=1

A(Bi).

The following result was proved in [5, page 75].

Theorem 3.7 Let L be a σ-OMP. If A is an observable on L, then the range of A is a Boolean σ-subalgebra of L.
Let L be a σ-effect algebra and let A : B → L be an observable on L. If A(E) ∧ (A(E))′ = 0 for every E ∈ B,

then A is called a sharp observable.
The following result was proved in [15, Theorem 4.1].

Theorem 3.8 Let L be a σ-effect algebra and let A be a sharp observable on L. Then the range of A, R(A), is a
Boolean σ-subeffect algebra of L.

The spectrum s(A) of an observable A : B → L is the smallest closed subset F of R such that A(F ) = 1 (see [9,
17]).

The following theorem is a generalization of the result 4.1.12 in [17] to σ-effect algebras.

Theorem 3.9 Every observable A on L has a spectrum.
Proof: Let T = {Fα : α ∈ I} be the collection of all closed subsets of R such that A(Fα) = 1. Then T 6= ∅ since

R ∈ T . Set F =
⋂
α∈I Fα. Then the set {R \ Fα : α ∈ I} is an open covering of the second countable space R \ F

and, therefore, there is a countable subcollection {Fn : n ∈ N} ⊆ {Fα : α ∈ I} such that
⋃
n∈N(R \ Fn) = R \ F .

But we can find (Bi)i∈N such that Bi ∩ Bj = ∅ for i 6= j and Bi ⊆ R \ F such that
⋃
i∈NBi =

⋃
i∈NR \ Fi. Hence

A(R \ F ) = A(
⋃
i∈NR \ Fi = A(

⋃
i∈NBi) =

⊕
i∈NA(Bi) = 0. Therefore A(F ) = 1.

Theorem 3.10 For an observable A, λ ∈ s(A) if and only A(λ− ε, λ+ ε) 6= 0 for all ε > 0.
Proof: Assume, first, that λ ∈ s(A). If ∃ ε > 0 such that A(λ− ε, λ+ ε) = 0, then λ does not belong to the closed

set F := R \ (λ− ε, λ+ ε), where A(F ) = 1, which is a contradiction.
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Conversely, assume that A(λ − ε, λ + ε) 6= 0 ∀ ε > 0, and let F be a closed set such that A(F ) = 1. Then
A(R \ F ) = 0. To show that λ ∈ s(A), it suffices to show that λ ∈ F . To see this, assume on the contrary that
λ ∈ R \ F =

⋃∞
k=1 Ik, where the Ik are disjoint open intervals. Then λ ∈ Ik for some k ∈ N, so we can find an ε > 0

such that (λ− ε, λ+ ε) ⊆ Ik, and therefore

0 ≤ A(λ− ε, λ+ ε) ≤ A(Ik) ≤ A(R \ F ) = 0,

which is a contradiction.
The point spectrum of an observable A : B → L is is the set

p(A) := {λ ∈ R : A({λ}) 6= 0}.

It can be easily seen that p(A) ⊆ s(A). The continuous spectrum of an observable A is the set

c(A) := s(A) \ p(A).

4 Spectral Mapping Theorems and the ObservableA− λI

If the logic L is taken to be the projection lattice of a complex Hilbert space H, then via the spectral theorem, the set
of observables can be identified with the self adjoint operators on H. In 1968, D. Catlin [6] classified the spectra of
an observable A by considering the character of (A−λI)−1 on a σ-OMP without the aid of Hilbert space formalism.
Then he used this classification to prove some spectral mapping theorems. In this section we will extend the above-
mentioned results to a σ-effect algebra, a generalization of a σ-OMP. Throughout this section, (L, 0, 1,⊕) is assumed
to be a σ-effect algebra.

Let f be a real valued function whose domain, domf , is a subset of the reals R. We say that f is a Borel function
providing domf ∈ B and for each G ∈ B, f−1(G) ∈ B. Clearly any Borel function f can be extended to a Borel
function f̂ where domf̂ = R. (Just define f̂(x) = 0 for x ∈ R\domf .) If f is a Borel function with domf = R and if
A ∈ O, we define f(A) to be the observable A ◦ f−1. If domf 6= R we say that f(A) exists or is defined providing it
is the case that for every pair of Borel extensions f1, f2 of f with dom(f1) = dom(f2) = R we have f1(A) = f2(A).
If f(A) exists, we define f(A) to be f̂(A) for any extension f̂ of f with domf̂ = R.

Theorem 4.1 Let A ∈ O and let f be a Borel function. Then f(A) exists if and only if A(domf) = 1.
Proof: If f(A) exists, let λ2 ∈ f(domf) and let λ1 6= λ2. Define

fi(λ) :=

{
f(λ) if λ ∈ domf
λi if λ ∈ R \ domf,

i = 1, 2. Each fi is a Borel extension of f . Thus

A ◦ f−1
1 ({λ2}) = A ◦ f−1

2 ({λ2}),

and so
A(f−1

1 ({λ2}) = A(f−1
2 ({λ2}).

But
f−1

1 ({λ2}) = f−1({λ2}) and f−1
2 ({λ2}) = (R \ domf) ∪ f−1({λ2}).

Thus
A(f−1({λ2}) = A(R \ domf)⊕A(f−1({λ2})).

Whence A(R \ domf) = 0, and therefore A(domf) = 1.
Conversely, suppose that A(domf) = 1 so that A(R \ domf) = 0. Let f1, f2 be Borel extensions of f . Then

f−1
1 (E) ∩ domf = f−1

2 (E) ∩ domf

for all E ∈ B. Now ∀E ∈ B, we have

fi(A)(E) = A(f−1
i (E))

= A(f−1
i (E) ∩ (R \ domf))⊕A(f−1

i (E) ∩ domf)
= A(f−1

i (E) ∩ domf).

Therefore f1(A) = f2(A).

Theorem 4.2 Let A ∈ O and suppose that for a Borel function f, f(A) is defined.
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(i) A(domf ∩ s(A)) = 1.

(ii) s(A) ⊆ domf .

(iii) f(A) = A ◦ f−1.

(iv) If g(f(A)) is defined, then so is (g ◦ f)(A) and g(f(A)) = (g ◦ f)(A).

Proof: (i) We have

1 = A(domf ∪ s(A)) = A(domf \ s(A))⊕A(domf ∩ s(A))⊕A(s(A) \ domf)
= A(domf ∩ s(A)).

(ii) Since A(domf) = 1, A(domf) = 1. Now by definition of s(A), we have s(A) ⊆ domf .
(iii) Let f̂ be any extension of f . Then for all E ∈ B, we have

f(A)(E) = f̂(A)(E) = A(f̂−1(E))

= A(f̂−1(E) ∩ domf)⊕A(f̂−1(E) ∩ (R \ domf))
= A(f̂−1(E) ∩ domf) = A(f−1(E)).

(iv) This follows at once from (iii).

Lemma 4.3 Let A ∈ O and let f be a Borel function such that f(A) is defined. Then

s(f(A)) ⊆ f(s(A)).

Proof: We have f(A)(f(s(A))) = A(f−1f(s(A))) ≥ A(domf ∩ s(A)) = 1. Hence f(A)(f(s(A))) = 1 and, by
definition of s(A), s(f(A)) ⊆ f(s(A)).

Theorem 4.4 If f is continuous on s(A), or if f has a continuous extension to s(A) and if f(A) exists, then

s(f(A)) = f(s(A)).

Proof: By Lemma 4.3 it suffices to prove that f(s(A)) ⊆ s(f(A)). If f̂ is a continuous extension of f to s(A),
then f̂(A) = f(A) and f(s(A)) ⊆ f̂(s(A)). Thus it would suffice to show in this case that f̂(s(A)) ⊆ s(f̂(A)). In
other words, we can suppose that f is defined and continuous on all of s(A).

Let ξ ∈ f(s(A)). Then there exists a sequence {λi} ⊆ s(A) such that f(λi) −→ ξ. By Theorem 3.10, we have
that ∀ δ > 0, A(λi − δ, λi + δ) 6= 0. Therefore, by continuity, ∀ ε > 0, we have

f(A)(f(λi)− ε, f(λi) + ε) = A(f−1((f(λi)− ε, f(λi) + ε))

≥ A((λi − δf (ε, λi), λi + δf (ε, λi)) ∩ s(A)) 6= 0.

Thus, by Theorem 3.10, f(λi) ∈ s(f(A)) ∀ i. Since s(f(A)) is closed, ξ ∈ s(f(A)).
An observable A is said to be bounded providing s(A) is compact. For bounded observables, we obtain the

following result, which generalizes Corollary 3.5 of [6].

Theorem 4.5 (Spectral Mapping Theorem). Let A be a bounded observable, and let f be a Borel function
defined and continuous on s(A). If f(A) exists, then s(f(A)) = f(s(A)).

Proof: By continuity of f, f(s(A)) is compact; hence it is closed and bounded. Now apply Theorem 4.4.
An observable A is said to be invertible providing f(A) exists for the function f(λ) = 1

λ . In this case we write
A−1 = f(A). According to Theorem 4.1, A is invertible iff A({0}) = 0. In particular, if 0 /∈ s(A), then A−1 exists.
Indeed, if 0 /∈ s(A), then there exists a closed set F such that A(F ) = 1 and 0 /∈ F . Hence {0} ⊆ R \ F and
A(R \ F ) = 0. Therefore, A({0}) = 0; that is, A is invertible.

Theorem 4.6 Let A ∈ O be invertible. Then

(i) (A−1)−1 = A.

(ii) If 0 /∈ s(A), then A−1 is bounded.

(iii) If A is bounded, then 0 /∈ s(A−1).
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Proof: (i) Let

f(λ) :=

{
1
λ if λ 6= 0
0 if λ = 0.

Then A−1 = f(A). Now A−1({0}) = f(A)({0}) = A(f−1(0)) = A({0}) = 0. Hence A−1 is invertible and

(A−1)−1 = f(f(A)) = (f ◦ f)(A) = A.

(ii) Suppose that 0 /∈ s(A). Then, by Theorem 3.10, there exists an open interval I = (−γ, γ) such that A(I) = 0
and 0 ∈ R \ s(A). Indeed, we have C := R \ (−γ, γ) is closed and A(C) = 1, so by defintion of s(A) we have that
s(A) ⊆ R \ I . Since 0 /∈ s(A), f(λ) = 1

λ is continuous on s(A) and so, by Theorem 3.4,

s(A−1) = f(s(A)) ⊆ f(R \ I) = [−1
γ
,

1
γ
].

Thus s(A−1) is bounded. Since s(A−1) is also closed, it is compact. Therefore A−1 is bounded.
(iii) Suppose that A is bounded. Then s(A) is bounded, and so we can find k > 0 such that s(A) ⊆ [−k, k].

Since A(s(A)) = 1, A([−k, k]) = 1 and so A((−∞,−k) ∪ (k,∞)) = 0. Hence A(f−1(− 1
k ,

1
k ) = 0; that is,

f(A)(− 1
k ,

1
k ) = 0, and therefore A−1(− 1

k ,
1
k ) = 0. Thus, by Theorem 3.10, we have 0 /∈ s(A−1).

Define fλ : R→ R by fλ(ξ) := ξ − λ. Then it is natural to write A− λ = fλ(A). Now we show that spectra can
be classified by using A− λ in exactly the same manner as usually done in operator theory.

Theorem 4.7 Let A ∈ O.

(i) λ ∈ R \ s(A) ⇔ (A− λ)−1 exists and is bounded.

(ii) λ ∈ p(A) ⇔ (A− λ)−1 does not exist.

(iii) λ ∈ c(A) ⇔ (A− λ)−1 exists and is not bounded.

Proof: We, first, observe that ∀λ, fλ is continuous on s(A). It follows that

s(A− λ) = s(A)− {λ}.

(i) By Theorem 4.6, (A− λ)−1 exists and is bounded

⇔ 0 /∈ s(A− λ) ⇔ 0 /∈ s(A) \ {λ} ⇔ λ /∈ s(A).

(ii) (A− λ)−1 fails to exist ⇔ A(f−1
λ ({0})) 6= 0 ⇔ A({λ}) 6= 0 ⇔ λ ∈ p(A).

(iii) By definition of c(A), λ ∈ c(A) ⇔ λ ∈ s(A) \ p(A) ⇔ (A− λ)−1 exists and is not bounded.

5 The Spectral Theorem

As mentioned in Section 4, if the logic L is taken to be the projection lattice of a Hilbert spaceH, then the observables
on L can be identified with the self adjoint operators on H. Then, via the spectral theorem for self-adjoint operators,
there is a one-to-one correspondence between observables and spectral resolutions of the identity. In [6], D. Catlin
showed that the same result is possible when L is taken to be any σ-OMP. In this section we will extend this result to
any σ-effect algebra, a generalization of a σ-OMP.

Let L be an effect algebra. By a real (resp., rational) resolution in L we mean a function e : R → L (resp.,
e : Q→ L) such that the following conditions ar satisfied:

(i) λ ≤ µ in R (resp., in Q) ⇒ eλ ≤ eµ,

(ii) ∧λ eλ = 0,

(iii) ∨λ eλ = 1,

(iv) ∧µ<λ eλ = eµ ∀µ ∈ R (resp., ∀µ ∈ Q).

Theorem 5.1 If A is an observable on a σ-effect algebra L, then the function eA : R → L defined by eAλ :=
A((−∞, λ]) is a spectral resolution in L.

Proof: We shall verify the four conditions of the above-mentioned definition.
(i) If λ ≤ µ in R, then (−∞, λ] ⊆ (−∞, µ], and hence A((−∞, λ]) ≤ A((−∞, µ]); that is, eAλ ≤ eAµ .
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(ii) Since (−∞, n] ⊆ (−∞, n+ 1] ∀n ∈ N, then, by Lemma 3.6,∨∞
n=1 A((−∞, n]) = A(

⋃∞
n=1(−∞, n])

= A(R) = 1.

Now let t be any upper bound of (eAλ )λ∈R. Then eAn ≤ t ∀n ∈ N implies that 1 =
∨∞
n eAn ≤ t; hence t = 1, and

therefore
∨
λ∈R eAλ = 1.

(iii) Since (−n,∞) ⊆ (−(n+1),∞) ∀n ∈ N, we haveA(−n,∞) ≤ A(−(n+1),∞) ∀n ∈ N. Hence, by Lemma
3.6,

∨∞
n=1 A(−n,∞) = A(

⋃∞
n=1(−n,∞)) = A(R) = 1; that is,

∨∞
n=1 (e

A
−n)
′ = 1. Using De Morgan laws, we get∧∞

n=1 e
A
−n = 0. Now let t be a lower bound of (eAλ )λ∈R. Then t ≤ eA−n ∀n ∈ N implies that t ≤

∧∞
n=1 e

A
−n = 0; that

is, t = 0. Therefore
∧
λ∈R eAλ = 0.

(iv) If µ ∈ R, then (µ+ 1
n ,∞) ⊆ (µ+ 1

n+1 ,∞) ∀n ∈ N; so, by Lemma 3.6,
∨∞
n=1 A(µ+ 1

n ,∞) = A(
⋃∞
n=1(µ+

1
n ,∞)) = A(µ,∞). Hence, by De Morgan law,

∧∞
n=1 A((−∞, µ + 1

n ]) = A((−∞, µ]); that is,
∧∞
n=1 e

A
µ+ 1

n

= eAµ .

Finally, let t be a lower bound of (eAλ )µ<λ where λ ∈ R. Then t ≤
∧∞
n=1 e

A
µ+ 1

n

= eAµ , and therefore
∧
µ<λ e

A
λ = eµ.

Theorem 5.1 showed that to each observable A on a σ-effect algebra L, there corresponds a spectral resolution
(eAλ )λ∈R in L. On the other hand, if (eλ)λ∈R is a spectral resolution in L, where L is a σ-effect algebra, does there exist
an observable A on L such that (eλ)λ∈R = (eAλ )λ∈R? We will show that the answer is yes providing (eλ)λ∈R ⊆ B
where B is a Boolean σ-subeffect algebra.

For the remainder of this section, we shall assume thatB is a Boolean σ-algebra. By Loomis Theorem [14, p. 171,
15c], there exists a measurable space (X,M) and a σ-ideal K ⊆ M such that B ∼=M/K. Let φ : M →M/K be
the natural σ-epimorphism, where φ(M) = [M ] ∀M ∈M. Since B ∼=M/K, there exists a Boolean σ-isomorphism
θ :M/K → B. Hence η := θ ◦ φ is a σ-epimorphism fromM onto B. Let e : R → B be a real spectral resolution
and let f : Q → B be the restriction of e to Q. For each rational number λ ∈ Q, choose a set F̃λ ∈ M such that
η(F̃λ) = fλ. This can be done because η is surjective. Define

Fλ :=
⋂
λ<ρ

F̃λ, ρ, λ ∈ Q.

Remarks 5.2 (i) The definition of Fλ yields that λ, µ ∈ Q, λ ≤ µ ⇒ Fλ ⊆ Fµ. Also for each λ ∈ Q, η(Fλ) =
fλ. Define

F̂λ := Fλ \
⋂
σ∈Q

Fσ, λ ∈ Q.

(ii) If λ, µ ∈ Q with λ ≤ µ, it then follows that F̂λ ⊆ F̂µ. Also, we have
⋂
λ∈Q F̂λ = ∅ and for each λ ∈

Q, η(F̂λ) = fλ. Indeed, if x ∈
⋂
λ∈Q F̂λ 6= ∅, then x ∈ F̂λ for each λ ∈ Q. From the definition of F̂λ, x ∈ Fλ for

each λ ∈ Q and x /∈ Fσ for some σ ∈ Q, which is a contradiction.
(iii) We have ⋂

λ<µ

F̂µ = F̂λ.

Indeed, the definition of Fσ gives
⋂
λ<µ Fµ =

⋂
λ<µ(

⋂
µ<ρ F̃ρ) =

⋂
λ<ρ F̃ρ = Fλ, and hence⋂

λ<µ F̂µ =
⋂
λ<µ(Fµ \

⋂
σ∈Q Fσ) = (

⋂
λ<µ Fµ) \

⋂
ρ∈Q Fσ

= Fλ \
⋂
σ∈Q Fσ = F̂λ.

Finally, for λ ∈ Q, define

Fλ :=

{
F̂λ if λ < 0, λ ∈ Q
F̂λ ∪ (X \

⋃
σ∈Q F̂σ) if λ ≥ 0, λ ∈ Q.

Theorem 5.3 [6] {Fλ : λ ∈ Q} is a rational spectral resolution in M and η(Fλ) = fλ ∀λ ∈ Q. That is, the
rational spectral resolution {fλ : λ ∈ Q} in B is lifted through η to the rational spectral resolution {Fλ : λ ∈ Q} in
M.

Next, using Lemma 4.2 of [6], it can be easily checked that the rational spectral resolution {Fλ : λ ∈ Q} inM
can be extended to a real spectral resolution {Eλ : λ ∈ R} by defining

Eλ :=
⋂
λ≤ρ

Fρ, ρ ∈ Q, λ ∈ R.
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Moreover, η(Eλ) = eλ ∀λ ∈ R. Indeed, we have η(Eλ) = η(
⋂
λ≤ρ Fρ) =

∧
λ≤ρ η(Fρ) =

∧
λ≤ρ fρ = eλ.

Lemma 5.4 [6] Let (X,M) be a measurable space and let {Eλ : λ ∈ R} be a spectral resolution inM. Then
there exists a unique measurable function f : X → R such that

Eλ = f−1((−∞, λ]) ∀λ ∈ R.

Corollary 5.5 Let (X,M) be a measurable space and let {Eλ : λ ∈ R} be a spectral resolution inM. Then there
exists a uniqueM-valued measure Ã : B →M such that

Eλ = Ã((−∞, λ]) ∀λ ∈ R.

Proof: Define Ã : B →M by
Ã(B) := f−1(B) ∀B ∈ B,

where f is the unique function given in Lemma 5.4. Then

Ã(R) = f−1(R) = X, Ã(∅) = f−1(∅) = ∅,

and if Bi ∈ B, i ∈ N, then

Ã(
∞⋃
i=1

Bi) = f−1(
∞⋃
i=1

Bi) =
∞⋃
i=1

f−1(Bi) =
∞⋃
i=1

Ã(Bi).

Theorem 5.6 [6] Let B be a Boolean σ-algebra, and let e : R→ B be a real spectral resolution in B. Then there
exists a unique B-valued measure A : B → B such that

A((−∞, λ]) = eλ ∀λ ∈ R.

Theorem 5.7 Let L be a σ-effect algebra. If (eλ)λ∈R is a spectral resolution in L and B is a Boolean σ-subeffect
algebra of L containing (eλ)λ∈R, then there exists a unique observable A on L such that

(i) range A ⊆ B,

(ii) A((−∞, λ]) = eλ ∀λ ∈ R.

Proof: By Theorem 5.6, there exists a unique observable A on B such that

A((−∞, λ]) = eλ ∀λ ∈ R.

It remains to show that A is an observable on L. Let {Ei : i ∈ N} ⊆ B be pairwise disjoint. Since A is an observable
on B, {A(Ei) : i ∈ N} is a countable ⊕-orthogonal subset of B. So, by Theorem 3.4, we have

A(
⋃
i∈N

Ei) =
B∨
i∈N

A(Ei) =
⊕
i∈N

A(Ei),

where
∨B denotes the supremum in B.

The converse of Theorem 5.7 need not be true; that is, if A is an observable on L, then the spectral resolution
defined by Theorem 5.7 may fail to exist in any Boolean σ-subeffect algebra of L, as the following example shows.

Example 5.8 Let L = [0, 1] be the unit interval effect algebra of Example 2.1 and define A : B → [0, 1] by

A(E) := m∗(E ∩ [0, 1]) ∀E ∈ B,

where m∗ is Lebesgue’s outer measure on R. Then A is an observable on [0, 1]. Indeed, if (Ei)i∈N ⊆ B is pairwise
disjoint, then

A(
⋃∞
i=1 Ei) = m∗((

⋃∞
i=1 Ei) ∩ [0, 1])

=
∑∞
i=1 m

∗(Ei ∩ [0, 1])
=

∑∞
i=1 A(Ei) =

⊕∞
i=1 A(Ei).
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Define e : R→ [0, 1] by
eλ := A(−∞, λ] ∀λ ∈ R.

By Theorem 5.1, (eλ)λ∈R is a spectral resolution in [0, 1]. We now claim that (eλ)λ∈R = [0, 1]. Indeed, let λ ∈ R.
If λ < 0, then eλ = A(−∞, λ] = m∗([0, 1] ∩ (−∞, λ]) = m∗(∅) = 0, and if λ = 0, then eλ = A(−∞, λ] =
m∗([0, 1]∩ (−∞, 0]) = m∗({0}) = 0. If 0 < λ < 1, then eλ = A(−∞, λ] = m∗([0, 1]∩ (−∞, λ]) = m∗([0, λ]) = λ.
Finally, if λ > 1, then eλ = A(−∞, λ] = m∗([0, 1]) = 1. It follows that (eλ)λ∈R = [0, 1].

We finally show that the effect algebra ([0, 1],⊕, 0, 1) is not Boolean. In fact, we have 1
2 + 1

4 ≤ 1 ⇒ 1
2 ⊥

1
4 , but

1
2 ⊕

1
4 = 1

2 + 1
4 = 3

4 6=
1
2 = 1

2 ∨
1
4 ; so that ([0, 1],⊕, 0, 1) is not an OMP and, hence, not a Boolean effect algebra.

The following theorem shows, however, that the converse of Theorem 5.7 would be true if the observable A is
sharp.

Theorem 5.9 If A is an observable on a σ-effect algebra L, then the function e : R → L defined by eλ :=
A((−∞, λ]) is a spectral resolution in L. Moreover, if A is sharp, then range A is a Boolean σ-subeffect algebra of
L.

Proof: It follows immediately from Theorems 5.1 and 3.8.

Theorems 5.7 and 5.9 are combined in the following main theorem.

Theorem 5.10 (The Spectral Theorem) Let L be a σ-effect algebra. If (eλ)λ∈R is a spectral resolution in L and
B is a Boolean σ-subeffect algebra of L containing (eλ)λ∈R, then there exists a unique observable A on L such that

(i) range A ⊆ B,

(ii) A((−∞, λ]) = eλ ∀λ ∈ R.

Conversely, if A is an observable on L, then eλ := A((−∞, λ]) defines a real spectral resolution in L. Moreover, if
A is sharp, then range A is a Boolean σ-subeffect algebra of L.

Finally, since each orthoalgebra is a sharp effect algebra, it follows that every observable on a σ-orthoalgebra is
sharp. Hence, as a consequence of Theorem 5.10, we obtain the following theorem which generalizes Theorem 5.5
of [6].

Theorem 5.11 (The Spectral Theorem) Let L be a σ-orthoalgebra. If (eλ)λ∈R is a spectral resolution in L and
B is a Boolean σ-suborthoalgebra of L containing (eλ)λ∈R, then there exists a unique observable A on L such that

(i) range A ⊆ B,

(ii) A((−∞, λ]) = eλ ∀λ ∈ R.

Conversely, if A is an observable on L, then eλ := A((−∞, λ]) defines a real spectral resolution in L and range A is
a Boolean σ-suborthoalgebra of L.

References

[1] Abu Lamdy, H., Spectral Theory in Effect Algebras, Master Thesis, Islamic University of Gaza, 2010.

[2] Beltrametti, E. G. and Bugajski, S., Effect algebras and statistical physical theory, Inter. J. Theor. Phys. 38 (6) (1997), 3020-3030.

[3] Beran, L., Orthomodular Lattices, D. Reidel publishing company, 1985.

[4] Busch, P., Lahti, P. J. and Middlestaedt, P., The Quantum Theory of Measurements, Springer-Verlag, Berlin, 1991.

[5] Catlin, D. E., Lectures on the Mathematical Foundation of Quantum Mechanics, Department of Mathematics, University of
Massachusetts, 1966.

[6] Catlin, D. E., Spectral theory in quantum logics, Inter. J. Theor. Phys. 1 (3) (1968), 285-297.
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