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1 Abstract

This work concerns itself on two new coupled mKdV systems, the first with time-dependent coefficients, and
the second with constant coefficients. The soliton ansatz will be used for the first system to obtain 1-bright
soliton solution. The simplified form of the bilinear method will be used to derive multiple-soliton solutions
and multiple singular soliton solutions for the second coupled mKdV system.

2 Introduction

In solitary waves theory, the integrable coupled mKdV systems attract the interest of many mathematicians and
physicists. The coupled variable coefficient mKdV is usually derived from a two-layer fluid model by using
the multiple scale scheme with the reductive perturbation method.

Various methods [1–19] have been used to conduct analysis on the coupled nonlinear KdV and mKdV
equations. Examples of the methods that have been used so far are the Hirota bilinear method, the Bäcklund
transformation method, Darboux transformation, Pfaffian technique, the inverse scattering method, the Painlevé
analysis, the generalized symmetry method, the subsidiary ordinary differential equation method (sub-ODE for
short), the coupled amplitude-phase formulation, sine-cosine method, sech-tanh method, the mapping and the
deformation approach, and many other methods. The Hirota’s bilinear method [7–14], and the Hereman’s
simplified form [15] are rather heuristic and significant. These approaches possess powerful features that make
it practical for the determination of multiple soliton solutions [16–31] for a wide class of nonlinear evolution
equations. Moreover, the soliton ansatz [3] has been used for the determination of the bright soliton solutions.

In this work, two coupled modified KdV (mKdV) equations, the first with time-dependent coefficients, and
the second with constant coefficients, will be investigated for the determination of multiple soliton solutions
and bright soliton solutions. The coupled mKdV equations that we will examine are given by

ut + f(t)uxxx + g(t)u2ux + h(t)uvwx = 0,

vt + f(t)vxxx + g(t)v2ux + h(t)vwux = 0,

wt + f(t)wxxx + g(t)w2wx + h(t)wuvx = 0,

(1)

where f(t), g(t) and h(t) are time-dependent coefficients. If we set f(t) = 1, g(t) = 6, and h(t) = 3, Eq. (1)
will be reduced to

ut + uxxx + 6u2ux + 3uvwx = 0,

vt + vxxx + 6v2ux + 3vwux = 0,

wt + wxxx + 6w2wx + 3wuvx = 0.

(2)
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The first coupled KdV equation (1) will be studied for bright solitons, whereas the latter will be investigated
for complete integrability and for the determination of multiple soliton solutions and multiple singular soliton
solutions. The computer algebra systems such as Maple and Mathematica allow us to perform complicated and
tedious calculations.

This work is organized as follows. In Section 2, we make use of the soliton ansatz to determine bright
solitons for the first model of coupled mKdV equations with time-dependent coupling coefficients. In Section
3, we derive multiple soliton solutions and multiple singular soliton solutions for the second model of coupled
mKdV equations with constant linear coupling coefficients. Conclusions are contained in Section 4.

3 The first coupled mKdV system

We first begin our analysis on the first coupled mKdV system with time-dependent coefficients

ut + f(t)uxxx + g(t)u2ux + h(t)uvwx = 0,

vt + f(t)vxxx + g(t)v2ux + h(t)vwux = 0,

wt + f(t)wxxx + g(t)w2wx + h(t)wuvx = 0,

(1)

where u(x, t), v(x, t) and w(x, t) are real functions of the spatial variable x and the temporal variable t,
f(t), g(t) and h(t) are real coupling coefficients which are time-dependent functions, and subscripts denote
partial derivatives.

As stated before, this model is derived from a two-layer fluid model which is used to study the interaction
between the atmosphere and oceanic phenomena. The derivation of (1) was achieved by using the multiple
scale approach with the reductive perturbation method [1].

In this section, our goal is to find the exact bright soliton solutions for the coupled mKdV system (1),
governing the mutual interaction in addition to nonlinear self-interaction of two solitary waves in a mKdV
system. For definiteness, we look to study the problem when linear and nonlinear coupling terms are present.
It should be mentioned that consideration of linear coupling terms to study the propagation of soliton pulses is
just a particular case because most of real physical systems exhibit nonlinear interaction between waves.

To obtain the bright soliton solutions of (1), we assume the solitary wave ansätze of the form [3–5]

u(x, t) = A(t)sechp {η(t) (x− vt)} ,
v(x, t) = B(t)sechq {η(t) (x− vt)} ,
w(x, t) = C(t)sechr {η(t) (x− vt)} ,

(2)

where v = v(t) is a time- dependent coefficient that will be determined. Here A,B, or C is the amplitude of
solitons, η and v are the inverse width and the velocity of the solitons respectively. The exponents p, q and r
are unknown at this point and will be determined later.

From the first part of ansätz (2), one obtains

ut =
dA

dt
sechpθ −Ap

{
dη

dt
(x− vt)− η

(
v + t

dv

dt

)}
sechpθ tanh θ, (3)

ux = −Apη sechpθ tanh θ, (4)

uxxx = −A (pη)
3 sechpθ tanh θ + p(p+ 1)(p+ 2)η3Asechp+2θ tanh θ. (5)

From the second part of ansätz (2) we find
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vt =
dB

dt
sechqθ −Bq

{
dη

dt
(x− vt)− η

(
v + t

dv

dt

)}
sechqθ tanh θ, (6)

vx = −Bqη sechqθ tanh θ, (7)

vxxx = −B (qη)
3 sechqθ tanh θ + q(q + 1)(q + 2)η3Bsechq+2θ tanh θ. (8)

From the third part of ansätz (2) we find

wt =
dC

dt
sechrθ − Cr

{
dη

dt
(x− vt)− η

(
v + t

dv

dt

)}
sechrθ tanh θ, (9)

wx = −Crη sechrθ tanh θ, (10)

wxxx = −C (rη)
3 sechrθ tanh θ + r(r + 1)(r + 2)η3Csechr+2θ tanh θ, (11)

where
θ = η(t) (x− v(t)t) . (12)

Substituting Eqs. (2)–(12) into Eqs. (1) gives

sechpθ
dA

dt
− pA

{
dη

dt
(x− vt)− η

(
v + t

dv

dt

)}
sechpθ tanh θ

+f(t)
{
−A (pη)

3 sechpθ tanh θ + p(p+ 1)(p+ 2)η3Asechp+2θ tanh θ
}

+g(t)
{
−A3pηsech3pθ tanh θ

}
+h(t)

{
−ABCrηsechp+q+rθ tanh θ

}
= 0, (13)

sechqθ
dB

dt
− qB

{
dη

dt
(x− vt)− η

(
v + t

dv

dt

)}
sechqθ tanh θ

+f(t)
{
−B(qη)3sechqθ tanh θ + q(q + 1)(q + 2)η3Bsechq+2θ tanh θ

}
+g(t)

{
−AB2pηsech2p+qθ tanh θ

}
+h(t)

{
−ABCpηsechp+q+rθ tanh θ

}
= 0, (14)

and

sechrθ
dC

dt
− rC

{
dη

dt
(x− vt)− η

(
v + t

dv

dt

)}
sechrθ tanh θ

+f(t)
{
−C(rη)3sechrθ tanh θ + r(r + 1)(r + 2)η3Csechr+2θ tanh θ

}
+g(t)

{
−C3rηsech3rθ tanh θ

}
+h(t)

{
−ABCqηsechp+q+rθ tanh θ

}
= 0. (15)

Equating the exponents of sechp+2θ tanh θ and sech3pθ tanh θ terms in Eq. (13), one gets

p+ 2 = 3p, (16)

so that
p = 1. (17)
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We next match the exponents of sechq+2θ tanh θ and sechp+2qθ tanh θ in (14) to obtain

q + 2 = p+ 2q, (18)

which gives
q = 1. (19)

We finally match sechr+2θ tanh θ and sech3rθ tanh θ in (15) to obtain

r + 2 = 3r, (20)

which gives
r = 1. (21)

If we put p = 1 in Eq. (13), we can determine the inverse width η of the soliton pulses by setting the corre-
sponding coefficients of sech3θ tanh θ to zero, hence we find

6Af(t)η3 −A3g(t)η −ABCh(t)η = 0, (22)

which gives

η =

√
A2g(t) +BCh(t)

6f(t)
, f(t) 6= 0. (23)

Similarly we find from setting the coefficients of sech3θ tanh θ terms to zero in Eq. (14) that

η =

√
ABg(t) +ACh(t)

6f(t)
, f(t) 6= 0. (24)

Proceeding as before, we find from (15) that

η =

√
C2g(t) +ABh(t)

6f(t)
, f(t) 6= 0. (25)

Equating the three values of η from (23)–(25) gives

A(t) = B(t) = C(t). (26)

This in turn gives the inverse width by

η = A(t)

√
g(t) + h(t)

6f(t)
, f(t) 6= 0. (27)

Setting the coefficients of sechpθ tanh θ, sechqθ tanh θ, and sechrθ tanh θ terms to zero in Eqs. (13) – (15),
respectively, we get

−pA
{
dη

dt
(x− vt)− η

(
v + t

dv

dt

)}
− f(t)A(pη)3 = 0, (28)

−qB
{
dη

dt
(x− vt)− η

(
v + t

dv

dt

)}
− f(t)B(qη)3 = 0, (29)

and

−rC
{
dη

dt
(x− vt)− η

(
v + t

dv

dt

)}
− f(t)C(rη)3 = 0. (30)
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Taking into account the fact that the soliton velocity v(t) we want to determine from Eqs. (28) – (30) is a
function of time, one can split these three equations into four equations as follows:

dη

dt
= 0, (31)

d (vtη)

dt
− fη3 = 0, (32)

d (vtη)

dt
− fη3 = 0, (33)

d (vtη)

dt
− fη3 = 0. (34)

It is clear that (32)–34) are equivalent. By integrating the above equations with respect to the time variable t,
one obtains

η (t) = k, (35)

and

v (t) =
k2

t

∫ t

0
f(t

′
)dt
′
, (36)

where k is an integral constant related to the initial pulse inverse width as defined in (35). From Eq. (35),
it is apparent that the inverse width of the solitons remains constant when the pulse propagates in the varying
mKdV system. We remark also from Eq. (36) that the pulse velocity is affected by the time-dependent coupling
coefficients f (t) .

Lastly, we find from setting the coefficients of sechpθ and sechqθ terms to zero in Eqs. (13)–(15), respec-
tively, that

dA

dt
= 0, (37)

dB

dt
= 0, (38)

dC

dt
= 0, (39)

which gives after integration

A (t) = A0, (40)

B (t) = B0, (41)

C (t) = C0, (42)

where A0, B0 and C0 are integral constants related to the initial pulse amplitudes of the three solitons. As
A (t) = B (t) = C(t) from (26), we get A0 = B0 = C0 = α where α is a constant.

It is interesting to note also from (26) that, since A(t) = α, and the inverse width η = k, then it is necessary
that

g(t) + h(t)

6f(t)
= β. (43)

Finally we find that the three bright soliton solutions are symmetric and given by

u(x, t) = v(x, t) = w(x, t) = A0sech {k (x− v(t)t)} , (44)
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where the velocity v (t) is given by (36) and k is given by (35).
One concludes that the first coupled equation (1) possesses the soliton solution and anti-soliton solutions

since u(x, t) = ±v(x, t).

4 The second coupled mKdV system

In this section, we will study the second coupled mKdV system, with constant coefficients, given by

ut + uxxx + 6u2ux + 3uvwx = 0,

vt + vxxx + 6v2ux + 3vwux = 0,

wt + wxxx + 6w2wx + 3wuvx = 0.

(1)

4.1 Multiple soliton solutions

Substituting
u(x, t) = eθi , θi = kix− cit,
v(x, t) = Aeθi ,

w(x, t) = Beθi ,

(2)

where A and B are constants, into the linear terms of (1) gives the dispersion relation by

ci = k3
i , (3)

and as a result we obtain
θi = kix− k3

i t. (4)

The multi-soliton solutions of the coupled mKdV system are given by

u(x, t) = R
(

arctan( f(x,t)
g(x,t) )

)
x
= R fxg−gxf

f 2+g2 ,

v(x, t) = R1

(
arctan( f(x,t)

g(x,t) )
)
x
= R1

fxg−gxf
f 2+g2 ,

w(x, t) = R2

(
arctan( f(x,t)

g(x,t) )
)
x
= R2

fxg−gxf
f 2+g2 ,

(5)

where the auxiliary functions f(x, t) and g(x, t) for the single soliton solution are given by

f(x, t) = 1 + eθ1 = 1 + ek1x−k3
1t,

g(x, t) = 1− eθ1 = 1− ek1x−k3
1t.

(6)

Substituting (5) and (6) into (1) and solving for R,R1 and R2 we find three sets of solutions given by

R =
2√
7
, R1 =

12√
7
, R2 =

4√
7
, (7)

R = − 4√
3
, R1 = −

4√
3
, R2 =

2√
3
, (8)

and

R = 2

√
2
3
, R1 = 2

√
2
3
, R2 = 2

√
2
3
. (9)
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Combining (5)–(9) gives the following three sets of single soliton solutions

u(x, t) = 2k1 e
k1(x−(k2

1+α)t)

√
7(1+e2k1(x−(k2

1
+α)t)

)
,

v(x, t) = 12k1 e
k1(x−(k2

1+α)t)

√
7(1+e2k1(x−(k2

1
+α)t)

)
,

w(x, t) = 4k1 e
k1(x−(k2

1+α)t)

√
7(1+e2k1(x−(k2

1
+α)t)

)
,

(10)

u(x, t) = − 4k1 e
k1(x−(k2

1+α)t)

√
3(1+e2k1(x−(k2

1
+α)t)

)
,

v(x, t) = − 4k1 e
k1(x−(k2

1+α)t)

√
3(1+e2k1(x−(k2

1
+α)t)

)
,

w(x, t) = 2k1 e
k1(x−(k2

1+α)t)

√
3(1+e2k1(x−(k2

1
+α)t)

)
,

(11)

and
u(x, t) = 2

√
2k1 e

k1(x−(k2
1+α)t)

√
3(1+e2k1(x−(k2

1
+α)t)

)
,

v(x, t) = 2
√

2k1 e
k1(x−(k2

1+α)t)

√
3(1+e2k1(x−(k2

1
+α)t)

)
,

w(x, t) = 2
√

2k1 e
k1(x−(k2

1+α)t)

√
3(1+e2k1(x−(k2

1
+α)t)

)
.

(12)

The last set gives symmetric solutions similar to what we obtained before for coupled mKdV system with
time-dependent coefficients.

To determine the two-soliton solutions we set

f(x, t) = 1 + eθ1 + eθ2 − a12e
θ1+θ2 ,

g(x, t) = 1− eθ1 − eθ2 − a12e
θ1+θ2 .

(13)

Substituting (13) into (5) and using the obtained result in the coupled mKdV system (1), one obtains the phase
shift a12 by

a12 =
(k1 − k2)2

(k1 + k2)2 , (14)

and this can be generalized to

aij =
(ki − kj)2

(ki + kj)2 , 1 ≤ i < j ≤ 3. (15)

Substituting (14) and (13) into (5), and using the three sets (7)–(9) we obtain three sets of two solitons solutions.
It is interesting to point out that the system (1) does not show any resonant phenomenon [8] because the phase
shift term a12 in (14) cannot be 0 or∞ for |k1| 6= |k2|.

To determine the three soliton solutions, we set

f(x, t) = 1 + eθ1 + eθ2 + eθ3

− a12e
θ1+θ2 − a13e

θ1+θ3 − a23e
θ2+θ3 − b123e

θ1+θ2+θ3 ,

g(x, t) = 1− eθ1 − eθ2 − eθ3

− a12e
θ1+θ2 − a13e

θ1+θ3 − a23e
θ2+θ3 + b123e

θ1+θ2+θ3 ,

(16)

where the phase shifts aij are derived above in (15). Proceeding as before we find

b123 = a12a13a23. (17)

This shows that the coupled mKdV system (1) is completely integrable andN -soliton solutions can be obtained
for finiteN , whereN ≥ 1. Three sets of three soliton solutions for the coupled mKdV equation (1) are therefore
obtained by substituting (16) into (5).
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4.2 Multiple singular soliton solutions

In this section, we will determine multiple singular soliton solutions for the coupled mKdV system (1). Fol-
lowing [13–16], the singular soliton solution of the coupled mKdV system (1) is assumed to be of the form

u(x, t) = R
(

ln( f(x,t)
g(x,t) )

)
x
= R gfx−fgx

gf ,

v(x, t) = R1

(
ln( f(x,t)

g(x,t) )
)
x
= R1

gfx−fgx
gf ,

w(x, t) = R2

(
ln( f(x,t)

g(x,t) )
)
x
= R2

gfx−fgx
gf ,

(18)

where R,R1 and R2 are constants that will be determined. The auxiliary functions f(x, t) and g(x, t) have
expansions of the form

f(x, t) = 1 +
∑∞
n=1 fn(x, t),

g(x, t) = 1−
∑∞
n=1 gn(x, t).

(19)

Following the discussion presented in the previous section, the dispersion relation is given by

ci = k3
i , (20)

and as a result we obtain
θi = kix− k3

i t. (21)

The obtained results give a new definition to (19) in the form

f(x, t) = 1 + ek1(x−k2
1t),

g(x, t) = 1− ek1(x−k2
1t).

(22)

Substituting (22) into (18), and using the outcome in (1), one obtains three sets of solutions given by

R =
1√
7
, R1 =

6√
7
, R2 =

2√
7
, (23)

R = − 2√
3
, R1 = −

2√
3
, R2 =

1√
3
, (24)

and

R =

√
2
3
, R1 =

√
2
3
, R2 =

√
2
3
. (25)

Combining the previous results gives the following three sets of single singular soliton solutions

u(x, t) = 2k1 e
k1(x−(k2

1+α)t)

√
7(1−e2k1(x−(k2

1
+α)t)

)
,

v(x, t) = 12k1 e
k1(x−(k2

1+α)t)

√
7(1−e2k1(x−(k2

1
+α)t)

)
,

w(x, t) = 4k1 e
k1(x−(k2

1+α)t)

√
7(1−e2k1(x−(k2

1
+α)t)

)
,

(26)

u(x, t) = − 4k1 e
k1(x−(k2

1+α)t)

√
3(1−e2k1(x−(k2

1
+α)t)

)
,

v(x, t) = − 4k1 e
k1(x−(k2

1+α)t)

√
3(1−e2k1(x−(k2

1
+α)t)

)
,

w(x, t) = 2k1 e
k1(x−(k2

1+α)t)

√
3(1−e2k1(x−(k2

1
+α)t)

)
,

(27)
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and
u(x, t) = 2

√
2k1 e

k1(x−(k2
1+α)t)

√
3(1−e2k1(x−(k2

1
+α)t)

)
,

v(x, t) = 2
√

2k1 e
k1(x−(k2

1+α)t)

√
3(1−e2k1(x−(k2

1
+α)t)

)
,

w(x, t) = 2
√

2k1 e
k1(x−(k2

1+α)t)

√
3(1−e2k1(x−(k2

1
+α)t)

)
.

(28)

The last set gives symmetric solutions. The singularity behavior of each solution is clearly observed from the
denominators.

To determine the singular two soliton solutions, we set

f(x, t) = 1 + eθ1 + eθ2 + a12e
θ1+θ2 ,

g(x, t) = 1− eθ1 − eθ2 + b12e
θ1+θ2 .

(29)

Substituting (29) into (19) and using the outcome into (1), we find that (29) is a solution of this equation if the
phase shifts a12 and b12, and therefore aij and bij , are equal and given by

aij = bij =
(ki − kj)2

(ki + kj)2 . (30)

For the singular two soliton solutions we use 1 ≤ i < j ≤ 2 to obtain

f(x, t) = 1 + ek1(x−k2
1t) + ek2(x−k2

2t) + (k1−k2)
2

(k1+k2)2 e
(k1+k2)x−(k3

1+k
3
2)t,

g(x, t) = 1− ek1(x−k2
1t) − ek2(x−k2

2t) + (k1−k2)
2

(k1+k2)2 e
(k1+k2)x−(k3

1+k
3
2)t.

(31)

This in turn gives the singular two soliton solutions if we substitute (31) into (18).
To determine the singular three soliton solutions, we can proceed in a similar manner and set

f(x, t) = 1 + eθ1 + eθ2 + eθ3

+ a12e
θ1+θ2 + a23e

θ2+θ3 + a13e
θ1+θ3 + f3(x, t),

g(x, t) = 1− eθ1 − eθ2 − eθ3

+ a12e
θ1+θ2 + a23e

θ2+θ3 + a13e
θ1+θ3 + g3(x, t).

(32)

Substituting (32) into (18) and using the result into (1) to find that

f3(x, t) = b123e
θ1+θ2+θ3 ,

g3(x, t) = −b123e
θ1+θ2+θ3 ,

b123 = a12a13a23.

(33)

For the singular three-soliton solutions we use 1 ≤ i < j ≤ 3, we therefore obtain

f(x, t) = 1 + ek1(x−k2
1t) + ek2(x−k2

2t) + ek3(x−k2
3t)

+ (k1−k2)
2

(k1+k2)2 e
(k1+k2)x−(k3

1+k
3
2)t + (k1−k3)

2

(k1+k3)2 e
(k1+k3)x−(k3

1+k
3
3)t

+ (k2−k3)
2

(k2+k3)2 e
(k2+k3)x−(k3

2+k
3
3)t

+ (k1−k2)
2(k1−k3)

2(k2−k3)
2

(k1+k2)2(k1+k3)2(k2+k3)2 e
(k1+k2+k3)x−(k3

1+k
3
2+k

3
3)t,

g(x, t) = 1− ek1(x−k2
1t) − ek2(x−k2

2t) − ek3(x−k2
3t)

+ (k1−k2)
2

(k1+k2)2 e
(k1+k2)x−(k3

1+k
3
2)t + (k1−k3)

2

(k1+k3)2 e
(k1+k3)x−(k3

1+k
3
3)t

+ (k2−k3)
2

(k2+k3)2 e
(k2+k3)x−(k3

2+k
3
3)t

− (k1−k2)
2(k1−k3)

2(k2−k3)
2

(k1+k2)2(k1+k3)2(k2+k3)2 e
(k1+k2+k3)x−(k3

1+k
3
2+k

3
3)t.

(34)

The singular three-soliton solutions follow immediately upon substituting (34) into (18).
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5 Discussion

In this work we studied two coupled mKdV systems. The first system includes time-dependent coefficients,
where we obtained only symmetric solutions with the wave speed v(t) depends on the function f(t). The
second model with constant coefficients was handled by the simplified bilinear method. Three sets of multiple
soliton solutions were obtained, one set consists of symmetric solutions whereas the other two sets are asym-
metric solutions. Moreover, three sets of multiple singular soliton solutions, one of them is symmetric, were
obtained. The approach used for the second system is different than the approach used by Hietarinta [14]. We
believe that this approach will be applicable to other applications.
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[7] R.Hirota, Discretization of coupled modified KdV equations, Chaos, Solitons and Fractals, 11 (2000) 77–84.

[8] R. Hirota and M. Ito, Resonance of solitons in one dimension, J. Phys. Soc. Japan, 52(3), (1983) 744–748.

[9] R. Hirota and J.Satsuma, N -soliton solutions of model equations for shallow water waves, J. Phys. Soc. Japan, 40(2)
(1976) 611–612.

[10] R. Hirota, A new form of Bäcklund transformations and its relation to the inverse scattering problem, Progress of Theoret-
ical Physics, 52(5), (1974) 1498–1512.

[11] R. Hirota, The Direct Method in Soliton Theory, Cambridge University Press, Cambridge (2004).

[12] R. Hirota, Exact solutions of the Korteweg-de Vries equation for multiple collisions of solitons, Physical Review Letters,
27(18) (1971) 1192–1194.

[13] J. Hietarinta, A search for bilinear equations passing Hirota’s three-soliton condition. I. KdV-type bilinear equations, J.
Math. Phys., 28(8)(1987) 1732–1742.

[14] J. Hietarinta, A search for bilinear equations passing Hirota’s three-soliton condition. II. mKdV-type bilinear equations, J.
Math. Phys., 28(9)(1987) 2094–2101.

[15] W. Hereman and A. Nuseir, Symbolic methods to construct exact solutions of nonlinear partial differential equations,
Mathematics and Computers in Simulation, 43 (1997), 13–27.

[16] A.M.Wazwaz, Partial Differential Equations and Solitary Waves Theorem, Springer and HEP, Berlin, (2009).

[17] A.M.Wazwaz, Multiple soliton solutions for coupled KdV and coupled KP Systems, Canadian Journal of Physics, 87( 12)
(2010) 1227–1232 .

[18] A.M.Wazwaz, Multiple soliton solutions for the (2+1)-dimensional asymmetric Nizhanik-Novikov-Veselov equation, Non-
linear Analysis Series A: Theory, Methods & Applications , 72 (2010) 1314–1318.

[19] A.M.Wazwaz, The (2+1) and (3+1)-dimensional CBS equation: multiple soliton solutions and multiple singular soliton
solutions, Multiple , Zeitschrift fur Naturforschung A (ZNA), 65a (2010) 173-181.

[20] A.M.Wazwaz, Multiple-front solutions for the Burgers equation and the coupled Burgers equations, Appl. Math. Comput.,
190 (2007) 1198-1206.



48 Abdul-Majid Wazwaz

[21] A.M.Wazwaz, New solitons and kink solutions for the Gardner equation, Communications in Nonlinear Science and
Numerical Simulation, 12(8) (2007), 1395–1404.

[22] A.M.Wazwaz, Multiple-soliton solutions for the Boussinesq equation, Appl. Math. Comput., 192 (2007) 479-486.

[23] A. M. Wazwaz, The Hirota’s direct method and the tanh-coth method for multiple-soliton solutions of the Sawada-Kotera-
Ito seventh-order equation, Appl. Math. Comput., 199(1) (2008) 133–138.

[24] A.M.Wazwaz, Multiple-front solutions for the Burgers-Kadomtsev-Petvisahvili equation, Appl. Math. Comput., 200
(2008) 437–443.

[25] A.M.Wazwaz, Multiple-soliton solutions for the Lax-Kadomtsev-Petvisahvili (Lax-KP) equation, Appl. Math. Comput.,
201(1/2)(2008) 168–174.

[26] A.M.Wazwaz, The Hirota’s direct method for multiple-soliton solutions for three model equations of shallow water waves,
Appl. Math. Comput., 201(1/2) (2008) 489–503.

[27] A.M.Wazwaz, Multiple-soliton solutions of two extended model equations for shallow water waves, Appl. Math. Comput.,
201(1/2) (2008) 790–799.

[28] A.M.Wazwaz, Single and multiple-soliton solutions for the (2+1)-dimensional KdV equation, Appl. Math. Comput.,
204(1) (2008) 20–26.

[29] A.M.Wazwaz, Solitons and singular solitons for the Gardner-KP equation, Appl. Math. Comput., 204(1) (2008) 162–169.

[30] A.M.Wazwaz, Solitary wave solutions of the generalized shallow water wave (GSWW) equation by Hirota’s method,
tanh-coth method and Exp-function method, Appl. Math. Comput., 202 (2008) 275–286.

[31] A.M.Wazwaz, Multiple kink solutions and multiple singular kink solutions for (2+1)-dimensional nonlinear models gen-
erated by the Jaulent-Miodek hierarchy, Phys. Lett. A, 373 (2009) 1844–1846.

Author information

Abdul-Majid Wazwaz, Department of Mathematics, Saint Xavier University, Chicago, IL 60655, USA.
E-mail: wazwaz@sxu.edu

Received: June 10 , 2011

Accepted: August 12, 2011


