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1 Introduction

Let (M3, α) be a three-dimensional compact orientable manifold without boundary and let α be a contact form onM3.
We consider in this paper the Legendrian framework developed in [1], [2], [3]: we assume that there is a non-singular
vector-field v in kerα such that β = dα(v, ·) is a contact form with the same orientation than α. We introduce
the action functional J(x) =

∫ 1
0 αx(ẋ)dt on the space of Legendrian curves Cβ = {x ∈ H1(S1,M) s.t. βx(ẋ) ≡

0, α(ẋ) = positive constant}. Its critical points are the periodic orbits of the Reeb vector-field of α, which we denote
ξ.

The variational problem is non-compact and there are critical points at infinity in this problem. They have been
thoroughly described in [1], [2], [3].

Despite several positive results, starting from the work of Paul Rabinowitz [12] and continuing with results of
C.Viterbo [14], H.Hofer [8] and others, the general framework, the framework of the exotic contact forms of S3 and
the variations in the large (the existence of multiple periodic orbits) for the Reeb vector-fields of these forms are still
not fully understood.

On the other hand, the understanding of the central issue of the periodic orbits of the Reeb vector-fields for these
three dimensional contact forms and structures is not the only interesting issue of the field.

Equally interesting are the variational flows, spaces etc associated to these problems. For example, in a direction
that is sharply different from the present one, the understanding of the moduli spaces of pseudo-holomorphic curves
[7] is in itself an interesting problem.

In the present Legendrian approach, there are two main directions of research:
The first one is related to the understanding of the topology of the variational space Cβ defined above. The

topology of the space of Legendrian curves Lβ = {x = x(t) ∈ H1(S1,M); dα(ẋ, v) = 0} is fully understood, see
[6] and [13]; it is the topology of the loop space of M . The topology of Lβ when the assumption that β is a contact
form is removed is a wide open problem; and there should be a large variety of results depending on how much β is
far from a contact form and close to a foliation.

The topology of Cβ is understood in only very few cases. There is a conjecture about this topology, which states
that if kerα "turns well" along v, see [1], p I.11, then the injection of Cβ in the loop space ofM should be a homotopy
equivalence. This conjecture is currently studied by Ali Maalaoui [9].

The second interesting problem relates to the variational flow of J(x) on Cβ . It is a flow that deforms immersed
curves of a three-dimensional manifold, whereas it decreases the area defined by dα on the surfaces that these curves
bound (assuming eg that the manifold M is eg simply connected). In order to introduce this flow, we need to describe
in more detail our framework of study. This will be completed in the next section.

Throughout the remainder of this paper, numerous references are made to the monographs [1], [2], [3]. We
provide here a brief account of how the results of the present paper fit in the these monographs:

The construction of the variational flow for (J,Cβ) is completed [3], pp 25-86 and pp 184-186 ("A direct way
to reach ν or ν̃-stretched curves"). The main steps of the construction of the flow in [3] are Lemma 1 p 26, Lemma
3 p34, Lemma D p46 and Lemma 3’ p55. Existence for the (semi)-flow Zν is established pp 59-84 of [3]. The
definition of a ν-stretched curve is provided p 119 of [3]. After this construction, we use the argument developed
pp 184-186 of [3] and the deformation along this Zν semi-flow leads to the union of the unstable manifolds of
the periodic orbits and the so-called ν-stretched curves. In order to transform these curves into curves of ∪Γ2k =
{curves made of ξ-pieces of orbits alternating with ±v-pieces of orbits}, we need to change the value of ν from ν to
ν
2 , that is to use a combination of the Zν and the Z ν

2
-flows. This is a rather delicate argument that requires the control

of the curves as their "nearly ξ-pieces (pieces of curves tangent to ξ up toO(ν)) change. The idea for this convergence
process is explained pp 147-152 of [3]. The deformation makes also use of the so-called "small-normals flow" of
Appendix 4, pp 297-324 of [3]. There are several typos in [3] and the proof of Lemma 1 should be rewritten.

Pages 55-69 of [2] give a summary of this deformation process, with a slightly different use of the "small-normals
flow" of Appendix 4 of [3].

The present paper completes the technical details for this deformation. It also replaces the use of the combination
of the Zν/Z ν

2
-flows in [2], [3] with the use of the so-called H1

0 -flow, pp39-55 of [2].
The author is aware that the results of [1], [2], [3] and of the present paper should be rewritten in a single

paper/monograph. In this monograph, the whole deformation should be explained in a unified and a continuous way.
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2 Tangent spaces, Variational Flow

In our framework, α is a contact form, v is a non-zero vector-field in kerα, ξ is the Reeb vector-field of α. We are
assuming that β = dα(v, .) is a contact form with the same orientation than α. We re-scale v so that

β ∧ dβ = α ∧ dα.

Under these assumptions, the following technical results hold, see [2], [3]:

Proposition 2.1. i) dα(v, [ξ, v]) = −1,

ii) [ξ, [ξ, v]] = −τv,

iii) The Reeb vector-field of β is w = −[ξ, v] + µ̄ξ where µ̄ = α(w) = dα(v, [v, [ξ, v]]).

Let

Cβ = {x ∈ H1(S1,M) s.t. βx(ẋ) ≡ 0, αx(ẋ) = a positive constant.}

A tangent vector z to M reads
z = λξ + µv + ηw.

If x belongs to Cβ , then ẋ = aξ + bv, with a being a positive constant. A tangent vector z at x to Cβ reads
z = λξ + µv + ηw with:

d

dt
(λ+ µη) = ˙λ+ µη = bη −

∫ 1

0
bη

λ, µ, η 1− periodic

η̇ = µa− λb.

There are two ways of producing tangent vectors toCβ . One is rigorous and involves the rewriting of the equations
on λ and η as a system of ordinary differential equations of first order, with "forcing" involving the function µ. The
other one is "a priori" not rigorous: given a function η, one can compute µ using the first equation of the system above,
up to a constant of integration. Going then to the second equation, one can compute µ as η̇+λb

a . The non-rigorous
issue is then related to the regularity of the functions λ, η, µ thereby produced. λ and η can be taken to be H1, but µ
is then only L2.

This issue can be resolved using the smoothing effect that is hidden in the associated evolution equations. Let us
describe this now:

3 The variational problem and the variational flows

Let J(x) =
∫ 1

0 αx(ẋ)dt. The first variation of J(x) along a tangent vector to is
∫ 1

0 bηdt.
This strongly suggests to take the function η = b and build with it a vector field on Cβ , a decreasing pseudo-

gradient for J , Z0(x). Z0(x) then reads:

Z0(x) = λξ +
ḃ+ λb

a
v + bw

λ = −µb+
∫ t

0
b2 − t

∫ 1

0
b2

The smoothing effect does indeed exist. The evolution equation

∂x

∂s
= Z0(x), x(0) ∈ Cβ

has a solution for a short positive time s ≤ ε(x(0)), ε(x(0))  0, see [3]. The smoothing effect is read on
the evolution of the function b, which is the component over v of the tangent vector x to the curve. Indeed, given
z = λξ + µv + ηw, the first variation z.b of the v-component b of ẋ reads, see [3], Proposition P3, page 18, also
pp20-22:

z.b = µ̇+ aητ + bηdµ(ξ)

Using z = Z0(x), we find:

∂b

∂s
=
b̈+ ˙(λb)

a
+ abτ + b2dµ(ξ)
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with λ = −µb+
∫ t

0 b
2 − t

∫ 1
0 b

2 as above.
The evolution equation, read on b, is a parabolic evolution equation that has two main features [3]: the number of

zeros of b never increases along its flow-lines; the L1-norm of b is bounded on a given flow-line. It has also a third
feature: namely, the linking between the two curves under evolution never increases (or decreases, it depends on the
definition that one gives to the linking number) when the time increases.

However, this semi-flow has the stringent defect to have " bad" "explosions". These "explosions" are to be
expected since we are trying to deform immersed curves and, at the same time, decrease their linking. The v-
component b of the tangent vector ẋ to the curve under evolution develops Dirac masses, but it has a non-zero weak
limit, a fact that is not "natural" since the variations are extremized only when b is zero and the curve is tangent to ξ.
The occurrence of Dirac masses is to be expected, for various reasons, almost all of topological origins; but outside
of the times when these Dirac masses occur, b should tend to zero.

4 The modified flow of [2], [3]

We have therefore modified the above flow Z0(x) in [2], [3].
We have built, curve by curve, a suitable function η and a related (semi)-evolution equation on Cβ ([2], [3]) that

has the following properties:

Proposition 4.1. There exists a decreasing pseudo-gradient Z for J on Cβ such that

i) The number of zeros of b does not increase on the decreasing flow-lines of Z.

ii) On each flow-line,
∫ 1

0 |b|(s) ≤ C +
∫ 1

0 |b|(0).

iii) At the blow-up time, b(s, t) converges weakly to
∑m
i=1 ciδti , with |ci| ≥ c0 > 0.

The clear advantage of the semi-flow Z(x) is that it produces a stratified set "at infinity" ∪Γ2k, where an extended
functional J∞ can be defined.

Γ2k is the set of curves made of k − ξ-pieces of orbits, alternating with k − v-pieces of ±v-orbits.
J∞ is then the functional defined as the addition of all the lengths ai of the various k − ξ-pieces.
Proposition 4.1 is the first step in order to build a global deformation of the variational space Cβ onto the union

of the unstable manifolds of all critical points (periodic orbits) and critical points at infinity.
We need some tools for this global deformation.

5 Transport equations along ξ and along v, ξ-characteristic pieces of orbits,H1
0 -index and

index at infinity,H1
0 -space, unstable manifolds at infinity

In order to define a global deformation fromCβ onto the this set at infinity (with the addition of the unstable manifolds
of the periodic orbits of ξ), we need to understand well the dynamics of v, w in the transport equations along ξ and
the dynamics of ξ in the transport equation along v.

If a vector z is transported by the differential of the flow of v, then its components verify (derivatives are taken
with respect to the time along v), [1], [2], [3]:

˙λ+ µη = η

η̇ = −λ.

On the other hand, if a vector v is transported by ξ, then its components satisfy (derivatives are taken along ξ):

µ̇+ η τ = 0

η̇ = µ.

On the stratified space ∪Γ2k, J∞ has various critical points "at infinity", x∞. We need some tools to describe
these critical points and their various indexes:

A ξ-piece of a critical point at infinity x∞ can be either non-degenerate (or free) or it can be characteristic. By
definition, when it is characteristic, the v-rotation on this ξ-piece in a ξ-transported frame is a multiple of π, see [2]
and [3]. Otherwise, it is non-degenerate.

x∞ is made of s ξ-pieces, alternating with s ±v-jumps. The space of such curves has been denoted, see above,
denoted Γ2s, it is (generically on v) a manifold. x∞ is a critical point for this functional if either its ξ-pieces are
non-degenerate, then its ±v-jumps occur between "conjugate points", [1], [2], [3]; this means that α is mapped onto
itself in the v-transport between these points; or (some of) its ξ-pieces are characteristic; then the ±v-jumps have to
satisfy more complicated conditions, see [2] and [3].

We then define, given x∞, i∞ to be the Morse index of J∞ at x∞.
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On the other hand, we can define an H1
0 -index for x∞: given a ξ-piece between two large ±v-jumps, of length aj ,

we consider the quadratic form
∫ 1

0 η̇
2 − a2

jη
2τ on the space of functions η ∈ H1

0 [0, 1]. Its index is ij0, the H1
0 -index

related to the jth-ξ-piece of orbit. The total H1
0 -index is i0 = Σij0.

Each ij0 therefore corresponds to the (strict if degenerate) Morse index of the functional J when restricted to
variations which do not change the ±v-jumps of x∞, but might change the jth ξ-piece into a nearby curve. This
nearby curve starts and ends at the same±v-jumps. it has in addition a tangent vector ẋ that satisfies ẋ = aξ+bv. The
space of such curves, defined between a set of s-±v-"verticals", or pieces of ±v-orbits, typically the ones produced
by a curve x or x∞ of Γ2s is denoted the H1

0 -space in [2], [3].
When x∞ has no characteristic ξ-pieces, its index is therefore i0 + i∞.
When it has some characteristic ξ-pieces, x∞ becomes a cluster of several critical points, see [3] and Appendix 2

of [4] for more details.
Indeed, on each characteristic piece, the H1

0 - quadratic form defined above is degenerate, see [3]. Such a ξ-piece
has therefore a strict H1

0 -unstable manifold and a (half)-full unstable H1
0 -unstable manifold. Piecing together strict

or full (half)-H1
0 -unstable manifolds for the various characteristic pieces -the strict one is always included, the only

issue is whether, for a given characteristic piece, it will be extended into the full one or not, in the definition of the
cycle corresponding to x∞-, multiplying by the H1

0 -unstable manifolds of the non-degenerate ξ-pieces and by the
unstable manifold in Γ2s corresponding to i∞, we build cycles. x∞ corresponds in fact to such a cycle.

Defining then the number ` to be the maximal number of full (half)-H1
0 -unstable of characteristic ξ-pieces used

together in this cycle, we find that the index of x∞ (corresponding to the dimension of the cycle as a manifold) is
i0 + i∞ + `.

The flow of [2], [3] decreases the number of zeros of the v-component of ẋ, b. Thus, it is important to understand
what is the maximal number of zeros of b on this cycle. This has been studied in [3], p78 and p139. This number
turns out to be

i0 + γ + 2`,

where γ, see [3] p78 , is defined to be Σγj ; γj is defined as follows: the index j runs over the non degenerate
ξ-pieces of x∞. γj is 1 if ij0 is even and the orientations of the incoming ±v-jump and of the outgoing ±v-jump do
not coincide, or if ij0 is odd and these orientations coincide. Otherwise, γj is zero.

There is in addition, for each of these cycles x∞, an unstable manifold Wu(x∞), that is built as a product of
the unstable manifold at infinity (the unstable manifold in the Γ2ss) with the H1

0 -unstable manifolds of the various
ξ-pieces, taken as "full" or "strict" H1

0 -unstable manifolds if these ξ-pieces are characteristic ([2], [3], [4].

6 The Deformation Result

It is the deformation of the curves along the space H1
0 defined above that we are studying in detail here. The con-

struction of the H1
0 -pseudo-gradient has been carried out on one hand in [3], whereas the flow at infinity, that is the

flow in the Γ2s has been introduced and studied in [1], [2] and [3]. We study in the sequel in more details the H1
0 -flow

and we show how we can fit it in a global pseudo-gradient for J near infinity in Cβ .
Namely, we prove in the next two sections the following result:

Theorem 6.1. There is a globally defined pseudo-gradient Z for J on the space Cβ that does not increase the number
of zeros of the v-component of the tangent vector ẋ = aξ + bv to a curve (including at infinity) and that deforms Cβ
at infinity on A ∪ B, where A is the union of the unstable manifolds ∪Wu(x∞) of the various cycles at infinity x∞
and B is the union of the unstable manifolds of the various periodic orbits of ξ.

The proof of Theorem 6.1 was sketched in [2] and [3]. We provide here the additional details required for the
complete proof. Our object is a curve of Cβ made of nearly ξ-pieces alternating with nearly ±v-pieces of orbits. The
(large) nearly ±v-pieces of orbits are very close (in an L∞-sense) to corresponding genuine pieces of ±v-orbits. We
then apply to them a combination of the H1

0 -flow, see below, with the (Zν/Z ν
2
)-flow of [3] in order to reach the Γ2s

and their H1
0 -unstable manifolds (which we may view as attached to each curve). Once this combination is enacted,

the use of a flow at infinity, that is a flow on the ∪Γ2ss which we assume to exist-this flow is a pseudo-gradient for
the functional J∞ extending J to ∪Γ2ss-is the final piece, see eg [5], that brings our variations in a neighborhood of
the critical points at infinity and their H1

0 -unstable manifolds.

7 TheH1
0 -semi-flow

We consider now the H1
0 -flow of [2], [4]; it is a key piece in all the arguments used to deform the curves of Cβ onto

the set formed by the union of the unstable manifolds of the periodic orbits with the unstable manifolds of the critical
points at infinity in ∪Γ2k, see [2], [4]. We describe in what follows its definition and properties in great detail.
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This flow requires the choice of a differentiable family of points that are the starting and ending points of the
nearly ξ-pieces, equivalently they are the ending and starting points of the nearly ±v-pieces.

Let us first consider a nearly ξ-piece, defined between two points x−i , x
+
i . We imagine the two v-orbits through

these two points. Assume that the piece of curve between these two points has ẋ = aξ + bv , with the running time
t in [0, 1] for the sake of simplicity. Assume that b ∈ H1

0 (0, 1) on this interval and consider the differential evolution
equation:

∂b

∂s
=
b̈+ a2bτ

a
+

˙
(
∫ t

0 b
2 − t

∫ 1
0 b

2)b− µ̄ḃ2

a
− b2d̄µ(ξ), b ∈ H1

0 (0, 1)

If we denote b|[0,1], bi, then we can introduce the "tangent vector":

Z(x) = (

∫ t

0
b2
i − t

∫ 1

0
b2
i )ξ+

+
ḃi + (

∫ t
0 b

2
i − t

∫ 1
0 b

2
i − µ̄bi)bi

a
v + biw

This "tangent" vector is defined only on the portion of curve between x−i and x+i . At time 0 and at time 1, Z(x) is
parallel to v, so that x±i move along the v-orbits that they (respectively) define.

We have established in [2], pp39-49 and [3], pp123-134 existence, continuity etc for this flow. We refine here the
results of [2] and [4]. We consider the operator:

A = −(η̈ + a2ητ)

under H1
0 (0, 1) boundary conditions. The nearly piece of ξ-orbit between x−i and x+i is close to a ξ-orbit. Assum-

ing for simplicity (we will discuss the more general case later) that it is "far" from being characteristic, this ξ-piece
can be identified as the unique piece of ξ-orbit κ connecting the two v-orbits through x−i and x+i . It has a Morse
index, which we denote ii0. Accordingly the operator A defined above, under its boundary conditions, has the same
index.

Let A0 be this operator for the piece of ξ-orbit and let E+ ⊕ E− be the related decomposition on positive and
negative eigenspaces for the L2-scalar product. bi can then be decomposed into b+i + b−i . The following differential
inequalities satisfied by b+i , b

−
i are not difficult to establish (one uses in particular the equivalence of norms in E−

which is finite dimensional):

∂
∫
b+2
i

∂s
≤ −c0

∫
ḃi

+2
+ o(

∫
b−2
i )

c2

∫
b−2
i + o(

∫
b+2
i ) ≤

∂
∫
b−2
i

∂s
≤

≤ c1

∫
b−2
i + o(

∫
b+2
i )

A more difficult estimate reads as follows: We write the evolution equation, under Z(x) defined above, of the
v-component of ẋ, bi, on the ith ξ-piece of orbit; λ+ µ̄η is (

∫ t
0 b

2
i − t

∫ 1
0 b

2
i )bi. We have:

∂bi
∂s

=
b̈i + a2biτ

a
+

˙
(
∫ t

0 b
2
i − t

∫ 1
0 b

2
i )bi − µ̄ḃ2

i

a
− b2

i µ̄ξ

We project onto the space E+ of A0. We find:

∂b+i
∂s

=
b̈+i + a2

0b
+
i τ

a0
+ (o(bi)− o(bi)−) + (

˙
(
∫ t

0 b
2
i − t

∫ 1
0 b

2
i )bi − µ̄ḃ2

i

a
− b2

i µ̄ξ)− (

˙
(
∫ t

0 b
2
i − t

∫ 1
0 b

2
i )bi − µ̄ḃ2

i

a
− b2

i µ̄ξ)
−

We multiply the above equation by −b̈+i = −b̈i + b̈−i and we integrate between 0 and 1.
The most difficult term is ∫ 1

0
(µ̄ḃ2

i )b̈i

This gives rise to terms that are O(
∫ 1

0 [(b
2
i + |b3

i |)|b̈i|]) and O(
∫ 1

0 [|bi||ḃi||b̈i|]). Estimating
∫ 1

0 (
˙(

∫ t
0 b

2
i−t

∫ 1
0 b

2
i)bi

a )b̈i

requires the addition to these terms of O(
∫ 1

0 b
2
i ×

∫ 1
0 [(|bi|+ |ḃi|)|b̈i|]).

Observe that:
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∫ 1

0
b2
i |b̈i| ≤ (

∫ 1

0
b̈2
i )

1
2 × (

∫ 1

0
ḃ2
i )

1
2 × (

∫ 1

0
b2
i )

1
2 = o(

∫ 1

0
(b̈2
i + ḃ2

i ))

Also: ∫ 1

0
[|bi||ḃi||b̈i|] +

∫ 1

0
b2
i ×

∫ 1

0
[(|bi|+ |ḃi|)|b̈i|] = o(

∫ 1

0
(b̈2
i + ḃ2

i ))

We are left with
∫ 1

0 |b
3
i ||b̈i|. For this we use the Nash inequality [6], L.Nirenberg [7], in dimension 1:∫ 1

0
b6
i ≤ C(

∫ 1

0
b2
i )

2
∫ 1

0
ḃ2
i

This yields: ∫ 1

0
|bi|3|b̈i| ≤ C1(

∫ 1

0
b̈2
i )

1
2 ×

∫ 1

0
b2
i × (

∫ 1

0
ḃ2
i )

1
2 = o(

∫ 1

0
(b̈2
i + ḃ2

i ))

All terms containing a projection u− onto E− are in fact combination of a finite set of functions that span E−

with suitable coefficients. With an L2-orthonormal basis f1, ..., fs, the coefficients are
∫ 1

0 ufj . The time-derivatives
in all these terms can be switched, after integration by parts, to be taken on u−; therefore, they are in fact taken on
the fj and u−, u̇−, ü− are all L∞ bounded by Sup(

∫ 1
0 ufj). One can also consider (u̇)−, (ü)−, (...u)−. The component

of these terms on fj are equal to as −
∫ 1

0 uḟj ,
∫ 1

0 f̈j ,
∫ 1

0 u
...
f j . There are therefore bounded by |u|L1 .

In addition, ∫
u−b̈+i =

∫
u−A0(b

+
i )−

∫
u−a2

0b
+
i τ = −

∫
u−a2

0b
+
i τ

This implies that:

∫ 1

0
[(

˙
(
∫ t

0 b
2
i − t

∫ 1
0 b

2
i )bi − µ̄ḃ2

i

a
− b2

i µ̄ξ)
− + o(bi)

−]b̈+i = o(

∫ 1

0
b2
i )

On the other hand, using our observations above and the fact that all norms are equivalent on E−,

∫ 1

0
(

˙
(
∫ t

0 b
2
i − t

∫ 1
0 b

2
i )bi − µ̄ḃ2

i

a
− b2

i µ̄ξ)b̈
−
i = o(

∫ 1

0
b2
i )

Using the fact that bi is in H1
0 and the equivalence of norms in E−, we also have:∫ 1

0
(a0τb

+
i + o(bi))(b̈i − b̈−i ) = o(

∫ 1

0
b̈2
i ) +O(

∫ 1

0
ḃ+i

2
) + o(

∫ 1

0
b−i

2
)

We thus find, using the equivalence of norms on E−:

∂
∫ 1

0 ḃ
+
i

2

∂s
≤ −C2

∫ 1

0
b̈+i

2
+O(

∫ 1

0
ḃ+i

2
) + o(

∫ 1

0
b−i

2
) (1)

We recall that we also have:
∂
∫
b+2
i

∂s
≤ −c0

∫
ḃi

+2
+ o(

∫
b−2
i )(2)

Combining (1) and (2), with the use of a suitable constant C ≥ 2
c0

(we will use this inequality later), we find:

∂(
∫
(ḃ+i

2
+ Cb+2

i ))

∂s
≤ −C3(

∫
b̈+i

2
+

∫
ḃi

+2
) + o(

∫
b−2
i )(3)

whereas:

c2

∫
b−2
i + o(

∫
b+2
i ) ≤

∂
∫
b−2
i

∂s
≤ (4)

≤ c1

∫
b−2
i + o(

∫
b+2
i )(5)

We use in the sequel the three differential inequalities (3), 4 and 5. δ1 � δ0 are two positive constants. |bi(0)|2L2

is assumed to be ≤ δ1. We first claim:
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Lemma 7.1. There exists a positive constant C1, independent of δ0, δ1, such that,
(i) if

∫ 1
0 b

+2
i (0) ≤ C1

∫ 1
0 b
−2
i (0), then for any later time s and as long as both quantities are small (measured with

a fixed positive constant ε0),
∫ 1

0 b
+2
i (s) ≤ 2C1

∫ 1
0 b
−2
i (s).

∫ 1
0 b
−2
i (s) increases then exponentially whereas there exists

a constant C2, independent of δ0, δ1, such that
∫ 1

0 ḃ
+2
i (s) ≤ o(

∫ 1
0 b
−2
i (s)) + C2

∫ 1
0 b

+2
i (s − 1) for s ≥ 1 as long as∫ 1

0 b
+2
i (s) and

∫ 1
0 b
−2
i (s) are small (measured as above). Finally, on each [s−1, s], there exists then some time s′ such

that
∫
b̈+i

2
(s′) ≤ o(

∫ 1
0 b
−2
i (s)) + C2

∫ 1
0 b

+2
i (s− 2) for s ≥ 2.

(ii)If
∫ 1

0 b
2
i (0) ≤ δ1 and if

∫ 1
0 b

+2
i (0) ≥ C1

2

∫ 1
0 b
−2
i (0), then (

∫
ḃ+i

2
+ C

∫
bi

+2)(s) decreases exponentially or
faster as long as

∫ 1
0 b

+2
i (s) ≥ C1

∫ 1
0 b
−2
i (s) and, with a suitable positive constant c, the following estimate holds:∫ 1

0 b
2
i (s) ≤ δ1e

−cs(1+ 2
C1
). In particular, either for some time s0 (which we assume then to be the first time for which

this inequality holds),
∫ 1

0 b
+2
i (s0) ≤ C1

∫ 1
0 b
−2
i (s0), with

∫ 1
0 b

2
i (s0) ≤ δ1e

−cs0(1 + 2
C1
): (i) then applies; or

∫ 1
0 b

2
i (s)

tends to zero and the flow-line never exits a neighborhood of the rest points through the boundary defined by the
inequality

∫ 1
0 b

2
i ≤ δ0.

Proof. (ii) follows readily from (3) and (4).
We thus prove (i). Assuming

∫ 1
0 b

+2
i (0) ≥ C1

2

∫ 1
0 b
−2
i (0), then we derive from (5) that

∫ 1
0 b
−2
i (s) increases for

s small. As long as
∫ 1

0 ḃ
+
i

2
(s) is not o(

∫ 1
0 b
−2
i )(s), (1) implies that

∫ 1
0 b

+2
i (s) decreases and therefore

∫ 1
0 b

+2
i (s) ≤

2C1
∫ 1

0 b
−2
i (s) holds. However, if

∫ 1
0 ḃ

+
i

2
(s) is o(

∫ 1
0 b
−2
i )(s), then bi being in H1

0 , this inequality holds without further
argument;

∫ 1
0 b
−2
i (s) goes on as an increasing function of s and the assumptions of (i) at time zero are satisfied at all

further time s as long as
∫ 1

0 b
2
i (s) is small.

(5) implies then that
∫ 1

0 b
−2
i increases exponentially. Starting from δ1, with δ1 � δ0, it takes a long time to reach

the level 2δ0
3 . Let us consider the time interval [s, s+ 1], s ≥ 0.

Either for some s1 ∈ [s, s+ 1],
∫ 1

0 ḃ
+
i

2
(s1) is o(

∫ 1
0 b
−2
i )(s1) = o(

∫ 1
0 b
−2
i )(s+ 1) or (3) implies that:

∂
∫
b+2
i

∂s
≤ −c0

2

∫
ḃi

+2
, x ∈ [s, s+ 1]

Integrating between s and s+ 1, we find:∫
b+2
i (s+ 1) +

c0

2

∫ s+1

s

∫ 1

0
ḃi

+2
(s, t)dtdx ≤

∫
b+2
i (s)

It follows that, for some time s1 ∈ [s, s+ 1]:∫ 1

0
ḃi

+2
(s1, t)dt ≤

2
c0

∫
b+2
i (s)

Over both cases, we can claim the existence of s1 ∈ [s, s+ 1] such that:∫ 1

0
ḃi

+2
(s1, t)dt ≤

2
c0

∫
b+2
i (s) + o(

∫ 1

0
b−2
i )(s+ 1)

Integrating then (4) between s1 and s+ 1 and using the increasing property of
∫ 1

0 b
−2
i (s), we find:∫

(ḃ+i
2
+ Cb+2

i )(s+ 1) ≤ o(
∫ 1

0
b−2
i )(s+ 1) +

∫
(ḃ+i

2
+ Cb+2

i )(s1)

Using then the above inequality, we derive that:∫ 1

0
ḃ+2
i (s+ 1) ≤ o(

∫ 1

0
b−2
i (s+ 1)) + C2

∫ 1

0
b+2
i (s)

for s ≥ 0, or the inequality of (i) at time s for s ≥ 1 as stated. Having established this inequality, we integrate the
second inequality over the interval [s− 1, s], with s ≥ 2. (ii) follows.

We also have:

Lemma 7.2. Under the conditions of (i) of Lemma 7.1, the following estimate holds for a suitable fixed positive
constant c: ∫ 1

0
b+2
i (s) ≤

∫ 1

0
b−2
i (s)(o(1) + ce−cs)
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Proof. We consider (3). At any time s, either
∫ 1

0 b
+2
i (s) = o(

∫ 1
0 b
−2
i (s)) or

∫ 1
0 b

+2
i (s) is exponentially decreasing.

Since
∫ 1

0 b
−2
i increases, the claim follows then from the assumption in (i) at the initial time.

Combining the conclusions of Lemma 7.1 and Lemma 7.2, we see that we can assume, on a flow-line that exits
a neighborhood of the rest points at infinity, that from the time s, which we set for convenience to be 0, at which∫
b2
i =
√
δ1 � δ0, to the exit time s̄ at which

∫
b2
i = δ0, we do have:∫ 1

0
b+2
i = o(

∫ 1

0
b−2
i (s))

We then claim:

Lemma 7.3. At the exit time, the function bi has at most (ii0 − 1) interior zeros.

Proof. Once bi has (ii0− 1) or less at some time s, the non-increasing property of the number of zeros of bi, a feature
of the differential equation that it verifies, implies the result for later times.

On the other hand, (i) of Lemma 7.1 combined with Lemma 7.2 implies that on each [s − 1, s], s large enough,
there is a time s′ such that:

|b+i |C1 = o(|b−i |L2)

Consider a non-zero function c−i of E−. Assume now that there exists a fixed positive constant c3 and another
small fixed positive constant ρ such that, near each value t0 such that c−i (t0) = o(|c−i |L2), the following estimate
holds: (***)

|c−
′

i (t)| ≥ c3|c−i |L2 , t ∈ [t0 − ρ, t0 + ρ]

It then follows that if we add to c−i a function c+i satisfying:

|c+i |C1 = o(|c−i |L2)

then the addition ci of both functions has not more zeros than c−i , that is (ii0− 1)-zeros at most. This follows from
a simple application of the mean value theorem to the function ci: its zeros must be very close to values t0 of the
parameter t for which c−i (t0) = o(|ci−|L2). The assumption on c−

′

i (t) in a uniform neighborhood of t0 allows then to
reach the stated conclusion.

o(|c−i |L2), o(|b−i |L2) are here ≤ δ′|c−i |L2 , δ′|b−i |L2 , where δ′ is as small as we please, whereas c3, ρ are fixed
constants, albeit small.

Lemma 7.3 then follows from the claim that b−i (s) will satisfy the condition on c−i for some s ∈ [0, s̄].
To see why this claim holds, we come back to the evolution equation satisfied by bi. f1, ..., fp is an orthonormal

basis of E−. E− is the negative eigenspace of the operator −(η̈ + a2
0ητ0) under Dirichlet boundary conditions. We

may assume that f1, ..., fp are its normalized eigenfunctions. Let w1(s), ...., wp(s) be the components of b−i (s) along
f1, ..., fp. Multiplying the evolution equation by fj , integrating between 0 and 1, integrating by parts (all fj are C∞),
using the fact that

∫ 1
0 b

+2
i = 0(

∫ 1
0 b
−2
i (s)) = o(Σ|wi|2), we find that:

∂wj
∂s

= −µjwj + o(Σ|wi|)

The −µjs are the negative eigenvalues of the operator η̈+a
2
0ητ0
a0

. If we remove o(Σ|wi|), this rereads:

∂b−i
∂s

= −A0

a0
b−i

ui =
b−i
|b−i |L2

then satisfies:
(1)

∂ui
∂s

= −A0

a0
ui − λui

where λ is a constant in time, that varies with s, derived from the fact that |ui|L2 = 1. The actual evolution
differential equation on ui =

b−i
|b−i |L2

reads in fact:
(1)’

∂ui
∂s

= −A0

a0
ui − λ1ui + o(1)

λ1 behaves as λ does.
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Considering (1), we recognize that its rest points are the fjs. We therefore claim that either ui(0) is in a small
neighborhood of one of the fj , j = 1, ...., p, so small that (∗ ∗ ∗) is satisfied at ui(0). Or ui(0) is in none of these
neighborhoods. Then, ui(s) has to enter such a neighborhood before some a priori bounded (perhaps large, but a
priori bounded) time s0. The same property holds then for (1)′ if o(1) is small enough. We then take δ1 so small with
respect to δ0 that s̄ ≥ s0. The conclusion then follows.qed

We next establish the following Lemma, Lemma 7.4, that holds also under periodic boundary conditions, com-
pletely unchanged:

Lemma 7.4. Let x(s) = x(s, t) be the solution of the differential equation corresponding to the H1
0 -flow ∂x

∂s = Z(x)

and let b(s, t) be the v-component of ∂x∂t between two of the v-verticals of x(s). b(s, t) is the solution of the evolution
partial differential equation:

∂b

∂s
=
b̈+ a2bτ

a
+

˙
(
∫ t

0 b
2 − t

∫ 1
0 b

2)b− µ̄ḃ2

a
− b2µ̄ξ, b ∈ H1

0 (0, 1)

Let T be the blow-up time for this equation. There exists a positive constant c5 such that if lim
∫ 1

0 |b(s, t)|dt ≤ c5 as s
tends to T from below, then T =∞, b(s, t) ∈ H1(0, 1) exists for all time s. In addition,

∫ 1
0 (b(s, t)

2 + ḃ(s, t)2)dt tends
to zero as s tends to∞,

∫∞
0

∫ 1
0 |b̈|

2dtds �∞ and the end-points x(s, 0) and x(s, 1) of the piece of curve between the
two v-verticals of the curve x converge as s tends to∞.

Corollary 7.5. Consider the same evolution equation as in Lemma 7.4. Assume that
∫ 1

0 αx(ẋ) ≤ a0 and assume that∫ 1
0 |b(0, t)|dt ≤

c5
2 . There exists a positive constant c6, depending only on c5 and a0, such that, if the blow-up time T

is finite, then
∫ 1

0 αx(ẋ)dt(T
−) ≤

∫ 1
0 α(ẋ)dt(0)− c6.

Proof. (Proof of Lemma 7.4) We are changing under Z(x) portions of a given curve of C+
β , which has a set of

v-verticals under the H1
0 -flow. This flow does not change the v-verticals, but tries to evolve the portions of curves

connecting them to pieces of ξ-orbits. b(s, t) designates therefore the v-component of the time-derivative of x between
two of these verticals. We take the evolution equation satisfied by b, multiply it by b and integrate between 0 and 1.
We find with suitable constants c and C:

∂
∫ 1

0 b
2

∂s
+ c

∫ 1

0
ḃ2 ≤ C(

∫ 1

0
b4 +

∫ 1

0
b2)

Using the Nash inequality for n = 1 [10], [11], we bound
∫ 1

0 b
4 by C(

∫ 1
0 |b|)

2 ×
∫ 1

0 ḃ
2. Taking c5 small enough,

we can absorb this term in c
∫ 1

0 ḃ
2. Keeping the same notations for the sake of simplicity, we find:

∂
∫ 1

0 b
2

∂s
+ c

∫ 1

0
ḃ2 ≤ C

∫ 1

0
b2

The basic equation is ∂x
∂s = Z(x) and it implies that ∂

∫ 1
0 αx(ẋ)

∂s ≤ −
∫ 1

0 b
2 (we do not have equality because we

might have several distinct nearly ξ-pieces and we might be using the H1
0 -flow on each of them. We thus know that,

whatever the blow-up time T might be,
∫ T

0

∫ 1
0 b

2 ≤ ∞. Integrating, this implies that:∫ 1

0
b2dt(T−) +

∫ T

0

∫ 1

0
ḃ2dtds ≤

∫ 1

0
b2dt(0) + C

∫ T

0

∫ 1

0
b2dtds

In fact,
∫ 1

0 b
2(s) is bounded independently of s ∈ [0, T ].

We now multiply the evolution equation on b by −b̈. We observe that, with C1 a large constant,∫ 1

0
|b|3|b̈|dt ≤ C1

∫ 1

0
b6 +

1
C1

∫ 1

0
b̈2 ≤ C ′1(

∫ 1

0
b2)2 ×

∫
ḃ2 +

1
C1

∫ 1

0
b̈2

Since
∫ 1

0 b
2 is bounded, we derive that∫ 1

0
|b|3|b̈|dt ≤ C2 ×

∫
ḃ2 +

1
C1

∫ 1

0
b̈2

We also observe that ∫ 1

0

˙¯ b2µb̈dt ≤ O(
∫ 1

0
(b2 + |b3|)|b̈|dt) + 2

∫ 1

0
bµ̄ḃb̈dt
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∫ 1
0 |b

3||b̈|dt has been estimated above. On the other hand, using again [3],∫ 2

0
b2|b̈|dt ≤ (

∫ 1

0
b4)

1
2 × (

∫ 1

0
|b̈|2) 1

2 ≤ C2

∫ 1

0
ḃ2 +

1
C1

∫ 1

0
|b̈|2

We are left with
∫ 1

0 bµ̄ḃb̈dt. This is upper-bounded by C1
∫ 1

0 b
2ḃ2 + 1

C1
b̈2. Integrating by parts in

∫ 1
0 b

2ḃ2, we find

that this rereads 1
3

∫ 1
0 b

3b̈. This has been already estimated. Finally,

∫ 1

0
b̈
d(b[

∫ 1
0 b

2 − t
∫ 1

0 b
2])

dt
= O(

∫ 1

0
|b|3|b̈|) +

∫ 1

0
b̈ḃ(

∫ 1

0
b2 − t

∫ 1

0
b2)dt = O(

∫ 1

0
|b|3|b̈|) +O(

∫ 1

0
ḃ2b2)

All these terms have been estimated above. Taking C1 large enough, we derive, with suitable constants c and C:

∂
∫ 1

0 ḃ
2

∂s
+ c

∫ 1

0
b̈2 ≤ C

∫ 1

0
ḃ2

Combining this with the estimate on ∂
∫ 1

0 b
2

∂s + c
∫ 1

0 ḃ
2 above, we derive with the use of another large constant C ′:

∂(
∫ 1

0 ḃ
2 + C ′

∫ 1
0 b

2)

∂s
+ c

∫ 1

0
b̈2 ≤ C3

∫ 2

0
b2

We derive from this inequality that T = ∞. Since
∫∞

0

∫ 1
0 b

2dtds is then finite, we derive also that
∫∞

0

∫ 1
0 (ḃ

2 +

b̈2)dsdt ≤ ∞. It follows that
∫ 1

0 b
2 +

∫ 1
0 ḃ

2 must tend to zero. The piece of curve, which carries a finite amount of
"energy" (

∫ 1
0 αx(ẋ)dt is decreasing, positive), must converge to a piece of ξ-orbit connecting the two preassigned

verticals. Because these form an isolated set and because
∫ 1

0 b
2 tends to zero x(s, 0 and x(s, 1) must converge as s

tends to∞. Lemma 7.4 is thereby established.

Proof. (Proof of Corollary 7.5)
We can prove for this evolution equation that, for almost every ν  0, the following estimate holds, see [3], p33:

∂
∫ 1

0 (|b| − ν)
+

∂s
≤ C

ν

∫ 1

0
b2 ≤ −C

ν

∂(
∫ 1

0 αx(ẋ)dt)

∂s

Taking ν ≤ c5
6 and using the above inequality, we derive after integration Corollary 1.qed

8 Deforming a "nearly" ±v-jump to "infinity" keeping bη ≥ 0

The condition bη ≥ 0, which we have used at each step of the H1
0 -flow and which we have to give up with the flow at

infinity has the important consequence that, under the H1
0 -flow, the linking number of the curves under deformation

with the periodic orbits of the Reeb vector-field ξ never increases. We want to build a decreasing pseudo-gradient on
the ∪Γ2ss and their unstable manifolds without destroying this property. This property can (and will) be destroyed
only by the flow at infinity.

We now consider a nearly ±v-jump. It might contain some back and forth nearly runs along v if b has zeros. Let
us assume, in a first step, that b has no zero along this nearly ±v-jump and let us assume that it is eg a +v-jump.

We are given a constant C0. This constant will depend on the geometry of the contact form α along v. We divide
the nearly v-jump into sub-pieces of length (counted along v) ` between C0

2 and C0.
We consider one of these sub-pieces, between its two extremal points y−i and y+i . b on this sub-piece, see [3], is

very close in the L1-topology to a very large constant |b|∞. The time t spanned between these two extremal points is
therefore very small.

Let us consider the two v-orbits, through y−i and through y+i . The sub-piece of curve that we are considering is
"small" (depending on the value of C0) and runs from one v-orbit to the other one. On each v-orbit, a point is "above"
another one if the piece of v-orbit between them is along +v. It is "below" if the piece of v-orbit between them is
along −v. We claim:

Lemma 8.1. (i) There is a unique "small" piece of orbit of ξ running from a point z−i on the first v-orbit "above" y−i
to a point z+i on the second v-orbit "below" y+i .

(ii) Under a J∞-decreasing, satisfying bη ≥ 0, this sub-piece of curve will converge to the curve made of the
v-orbit from y−i to z−i combined with the piece of ξ-orbit from z−i to z+i , followed by the piece of v-orbit from z+i to
y+i .
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Proof. We first prove (i). We consider a small section σ to v at y−i . The v-orbit through y+i intersects σ at a point
ui. We may assume that ξ is tangent to σ and we may consider coordinates of σ where ξ is constant. Let w0 be a
vector-field in σ independent of ξ. We may assume that w0 and ξ commute; therefore, we may assume that they are
both constant.

We pull back to σ, using the one-parameter group γs of v the sub-piece of curve. We find a curve in σ running
from y−i to ui. Let s(t) be the time required along −v for the pull-back. x(t), t ∈ [0, 1] denotes the sub-piece of
curve. Let us denote xs the v-orbit through y−i . s will be running from 0 to s0 = s(1). The tangent vector to the
curve after pull-back is dγ−s(t)(ξ(x(t)). Because the sub-piece of curve is a nearly v-piece, we can write:

dγ−s(t)(ξ(x(t)) = dγ−s(t)(ξ(xs(t))) + o(1) = a1(t)(ξ + c1(t)w0)

ai(t) is close to 1 because C0 is small. We can re-parametrize the curve so that the component of the tangent
vector on ξ is now 1:

ξ + c2(t)w0, t ∈ [0, ε]

On the other hand, ξ can be seen kerβ transversally to v and β is a contact form with v in its kernel. Therefore, if
C0 is small enough and if the frame (ξ, v, w0) has the proper orientation (otherwise, change w0 into −w0):

dγ−s(ξ(xs)) = a(s)(ξ + c(s)w0)

with a(s) positive, close to a constant, and c(s) an increasing function of s, for s small in [0, s0]. This follows
from the monotone rotation of kerβ, that is of ξ, in a v-transported frame. Replacing ξ by the re-scaled ξ(xs)

a(s) , we

find that the pull-back vector is directed by ξ + c(s)w0. If instead of the vector ξ(xs)
a(s) at xs, we consider a small

piece of curve tangent to λξ, starting at xs, during the time ε, we find after pull-back a piece of curve on σ tangent to
ξ + c(s, t)w0, t ∈ [0, ε] (the choice λ is embedded in the way the tangent vector reads after pull-back: the component
of this vector on ξ is identically 1). The function of t defined by c(s, t) − c(s) is O(ε), uniformly for s ∈ [0, s0], in
the C1-sense to the least. We claim that, under our assumptions, there is a positive constant δ which depends only on

C0 such that, if ε is small enough:

δc(s0) ≤
∫ ε

0 c2(t)dt

ε
≤ (1− δ)c(s0)

Indeed, as ε tends to zero, this estimate reduces to a "limiting" estimate along a piece of v-orbit through y−i of
length s0. s0 is of the same order than C0. The function c(s) defined above is strictly monotone increasing, with a
derivative bounded away from zero.The estimate follows.

Observe that we also have, after the same arguments:

δ1C0 ≤ c(s0) ≤ δ2C0

δ1, δ2 are again here positive constants that depend only on C0.
The function θ(s, ε) =

∫ ε
0 c(s,t)dt

ε is a monotone increasing function of s (following the strict monotonicity of
c(s), that is the positivity of its derivative). It is equal, uniformly for ε small, to O(ε) for s = 0 and it is equal to
c(s0)+O(ε) for s = s0, with s0 of the same order than the fixed constant C0, whereas ε is as small as we please. The
equation:

θ(s, ε) =

∫ ε
0 c2(t)dt

ε

has therefore a unique solution s̄ and, using the above estimates on
∫ ε

0 c2(t)dt

ε , we can assert the existence of a small
positive constant δ3 that depends only on C0 such that:

δ3C0 ≤ s̄ ≤ (1− δ3)C0

(i) then follows.

Let us solve, under Dirichlet boundary conditions for η on the sub-piece, the following linear differential equation
in η on the interval [0, ε]:

η̈ + a2ητ − ˙( ¯ bη)µ
a

+

˙
((
∫ t

0 bη − t
∫ 1

0 bη)b)

a
− bηµ̄ξ = −b

We claim that:
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Lemma 8.2. Assume that b is positive and that C0
2 ≤ ε|b|∞ ≤ C0. Then, the solution η satisfies bη ≥ 0.qed

Proof. Assume that η is negative somewhere on [0, ε]. Up to a change of notations, we might as well assume that η
is negative all over this interval. Multiplying the equation by η and integrating on this interval, we find:

−
∫ ε

0
η̇2 +

∫ ε

0
bη + o(|b|2∞)

∫ ε

0
η2 +O(|b|∞

∫ ε

0
|ηη̇|) = 0

Since η is in H1
0 (0, ε), this implies:

−1
2

∫ ε

0
η̇2 +

∫ ε

0
bη + o(|b|2∞)

∫ ε

0
η2 ≥ 0

We know that C0
2 ≤ ε|b|∞ ≤ C0. The conclusion follows.

9 Convex-combination of the semi-flows

We indicate in what follows how to build a global deformation out of the various pieces that we have defined for it.
The construction of our deformation has two essential pieces. One is the Zν-semi-flow of [3], the other one is the

H1
0 -semi-flow of [2] and [3]. A natural question is to understand how they can be convex-combined into the same

global semi-flow.
After having read pp 1-91 of [3], the reader is advised to jump to the pp 184-186 "a direct way to reach the ν or

ν̃-stretched curves. pp 91-183 can be skipped without serious damage to the understanding. This takes care of the
Zν-semi-flow. [2] and the present paper give all the necessary estimates (they can be improved) for theH1

0 -semi-flow.
The convex-combination of these semi-flows is not obvious because they (a priori) require different spaces for

their definition. For the Zν-flow, the v-component of ẋ, ẋ being the tangent vector to the curve x of Cβ , which we
usually denote b needs to be H1. Using for a short time the regularizing semi-flow that has η = b, see [3], we can
assume that b verifies this assumption. For the H1

0 -semi-flow, we need to have defined nearly large ±v-jumps, and
between them nearly ξ-pieces. The H1

0 -semi-flow "slides" then the ends of the nearly ξ-pieces along the nearly ±v-
jumps (suitably extended) and seeks to transform the nearly ξ-piece in a genuine ξ-piece. It is called anH1

0 -semi-flow
because the w-component of the generalized (H−1) tangent vector that defines it, η isH1

0 , η being zero at both ends of
each nearly ξ-piece. Just as for the Zν-flow of [3], this H1

0 -semi-flow admits a "compactification", an approximation
by a finite dimensional, compact, locally Lipschitz vector-field, see for Zν pp 59-70 of [3], the flow Zε defined using
η = Φε(b) in particular. This compactification can be completed for the H1

0 -semi-flow as well, so that one could
think that the convex-combination of Zν with the finite-dimensional Lipschitz vector-field becomes possible. Only
that this approximation lives once these nearly large ±v-pieces are well-defined and extended.

We would hope that the Zν-semi-flow would bring us to such curves that would have definite almost large ±v-
jumps. It almost does this job, only that b is driven by this semi-flow, see [3], at the blow-up time, to be in the
L1-sense close to a profile where almost Dirac masses in b build (these are "plateaux" where b is almost constant,
equal to a very large number ±|b|∞) followed by very fast (on sets of support equal in measure to O( 1

|b|N∞
), N as

large as we please) decreases to "plateaux" where b = ±ν, only to fall, again very fast, as fast as above, to 0 or to
−ν and then rise again very fast for the next positive or negative Dirac mass. The difference between b and such a
profile is as small as we please in the L1-sense; certainly we may assume that it is O( 1

|b|N∞
), N as large as we please.

It follows that the use of the regularizing semi-flow that has η = b, of which we spoke above, would, in a very short
time, transform the estimate of difference between b and its limit profile from an L1-estimate into a C2-estimate. The
convex-combination with the H1

0 -flow could then be completed.
However, the semi-flow having η = b, if we were to use it without further restriction, blows up too often, too fast.

Even tamed into b
1+|b|1000

∞
, there aren’t enough estimates on the curves subject to its associated evolution equation.

For some curves, carrying "enough energy" in their nearly ξ-pieces (derived after the use of the Zν-semi-flow)
another "flow" can be used, cautiously, and it will provide this regularizing effect whereas it will not move the nearly
large ±v-pieces much.

This semi-flow is the same than the Zν-flow. It is used on the curves to which the semi-flow Zν leads at the
blow-up time, that is the curves having b in the L1-sense close (close as above) to one of the profiles defined above.
With respect to the Zν-semi-flow, there are two modifications: first ν is replaced by ν

2 and, second, the support of the
main part of this semi-flow lies within the nearly ξ-pieces defined by this profile.

It is not difficult to see then that if b, on these nearly ξ-pieces, is close to a profile containing a ±ν-"plateau"
having a measure that could be O( 1

|b|N0
∞
), N0 large, but would not be O( 1

|b|N∞
), N much larger, as prescribed for an

upper-bound between b and its limit profile in the L1-sense, then the use of the Z ν
2
-semi-flow within this "plateau"

would provide a rate of decrease in
∫ 1

0 αx(ẋ) that would maybe be O( 1
|b|N0
∞
), N0 large, but would not be O( 1

|b|N∞
).

This would allow for a use of a sizable fraction cb of the regularizing flow, that is c would also be maybe O( 1
|b|N0+1
∞

),

N0 large, but would not be O( 1
|b|N∞

). In addition, this semi-flow would mainly act within the nearly ξ-pieces of the
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curve. Its action therefore on the nearly v-pieces would be essentially reduced to the action of the generalized tangent
vector defined by η = cb (there is an additional time translation, required to keep the ξ-component of ẋ time (of
the curve-independent), that is to the regularizing semi-flow. Skipping details (that require complete proofs), this
semi-flow would transform the L1-estimate on b with respect to its profile on the nearly ±v-pieces into a C2-estimate
and the convex-combination with the H1

0 -semi-flow could be completed.
We are left then with curves that do not have enough "energy" in their nearly ξ-pieces in order to induce a

regularizing effect on the large nearly ±v-pieces. Using the same line of thought, we can use the Zν-flow on these
nearly ±v-pieces exclusively (with the additional, as tiny as we please and need, cb see [3] acting also on the nearly
ξ-pieces) so that the curves will enter the set where there is enough "energy" inside the nearly ξ-pieces in order to
regularize the large nearly ±v-pieces.

We can also proceed differently: we use the Zν-semi-flow with a prescribed large value M for |b|∞, see [3] this
semi-flow controls |b|∞. The curves reach the set Vε where b is L1-close to one of the profile, |b|∞ ≤ 2M . How
close is measured by a small constant ε = O( 1

|b|N∞
), N large. In V ε

2
(|b|∞ ≤ 4M ), we use the tamed regularizing

semi-flow that has η = b
1+|b|1000

∞
. We convex-combine Zν and this semi-flow in between Vε and V ε

2
. Defining a yet

smaller V ε
4
, J(x) =

∫ 1
0 αx(ẋ) decreases at a rate bounded away from zero over the curves that stay outside of this

set,. The (semi)-flow-lines, starting from Vε, will then not enter V ε
4

unless the v-component, b, of their tangent vector
ẋ, has now been regularized. The convex-combination can be completed now.

There are three additional observations that we wish to make in order to conclude this sub-section:
First, with just the use of the Zν-flow of [3], b has "plateaux" where it is essentially equal to±|b|∞. It can "depart"

over a "plateau" from this top value and oscillate fast downwards. However, if there are two such oscillations and if
in between, the "mass" of b, that is the integral of |b| from the "ascending side"

of the first oscillation to the descending side of the second one (assuming b is here locally essentially equal to
= +|b|∞) is less than a fixed positive constant c10, see [3] p25, but larger than some O( 1

|b|N0
∞
), then the flow Zν can

still be used, with a sizable decrease for J . Therefore, along the "large" nearly ±v-pieces at the blow-up time, these
"sharp downwards" oscillations are "scarce". They are separated by sizable (of length ≥ c10)nearly ±v-pieces. We
cannot state that b is close C1 on these ±v-pieces to ±|b|∞, but it is certainly C0-close. We can then pick up a "mesh"
of points over the curves that are sitting over these (relatively)large nearly ±v-pieces and use these points in order
to define (we might need to extend suitably these nearly ±v-pieces beyond the parts defined by the curve itself so
that the end-points can move freely, this is not needed inside the (large) nearly ±v-pieces, but it is needed near their
edge), without further regularization, theH1

0 -semi-flow in a way that can be convex-combined with the Zν-semi-flow.
Second, we can use Lemma 7.5, Lemma 7.6 on these large ±v-pieces (maybe interrupted with these "scarce"

downwards oscillations), once the "mesh" of points is given. If we take enough of these points so that they are
separated by nearly ±v-pieces of length ` ≤ c0 and if b does not change sign in between, then Lemma 7.6 gives us
an algorithm, with bη ≥ 0 by which the curve is replaced by two ±v-pieces (of the same orientation then the initial
one) separated by a tiny ξ-piece. We thus build a family of tiny ξ-pieces and other large, but not so large ±v-pieces.
The only restriction is the restriction over b not to change sign over these intervals. b might have zeros, but they are
in finite number and the "mesh" of points can be refined, the length of the nearly ±v-pieces can be decreased as we
"approach" a zero of b so that the process will be carried everywhere on the large nearly ±v-pieces except in tiny
neighborhoods, as small as we please, of the zeros of b.

Third, the displacement of the nearly ±v-pieces transversally to v is "small" through the Z ν
2
-semi-flow when its

use is concentrated, as above, "inside" the nearly ξ-pieces. Indeed, then the displacement of these nearly ±v-pieces
is due to λξ + ηw, with η = cb and λ + µ̄η =

∫ t
0 bη − t

∫ 1
0 bη = O(∂a∂s ). c is so small that cb is also O(∂a∂s ). It
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is in fact, for c small enough, o(∂a∂s ). λ is not necessarily o(∂a∂s ), but this is due to the term t
∫ 1

0 bη. This term is in
fact, see [3] p121 and p124, due to a time re-parametrization required to keep a constant. If we remove this time
re-parametrization along the curve, we find the displacement transverse to v to be o(∂a∂s ). With some further work,
this can probably be transformed into an estimate on the transversal displacement of these large nearly ±v-pieces of
curves: the ξ-component of ẋ along them is O( 1

|b|∞ ), so that the additional (with respect to the estimates introduced

above, transversally to v)displacement transversally to ẋ is O( cḃ+λba|b|∞ ). ḃ, after regularization, should be O(|b|N0
∞ ) and

the argument should proceed, yielding a very precise convergence of all pieces of the curves under deformation.
This concludes our observations about the convex-combination of the Zν and the H1

0 -semi-flows.
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