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1 Abstract

Three different spline-based approaches for solving Bratu and Bratu-type equations are presented. The classical
cubic spline collocation method, an adaptive spline collocation on nonuniform partitions, and an optimal collocation
method are derived for solving Bratu-type equations. Numerical examples are presented to verify the efficiency and
accuracy of these methods when compared to other numerical schemes. The fourth order of convergence for the
optimal method is verified.

2 Introduction

A nonlinear elliptic eigenvalue problem has the form

∆u(x) + λf(u(x)) = 0, x ∈ Ω

u(x) = 0, x ∈ ∂Ω
(2.1)

Equation (2.1) arises in many fields of science and engineering such as radiative heat transfer, combustion theory,
and nanotechnology [4, 12, 13, 9].

Bratu equation, which is a special case of equation (2.1), is a boundary value problem in one-dimensional planar
coordinates that has the form

u′′ + λeu = 0, x ∈ [0, 1]
u(0) = u(1) = 0

. (2.2)

For λ > 0, the exact solution of equation (2.2) is given by [3]

u(x) = −2 ln

[
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) ]
(2.3)

where θ satisfies

θ =
√

2λ cosh
(
θ

4

)
. (2.4)

Bratu equation posses two solutions, one solution, or no solution provided that λ < λc, λ = λc, or λ > λc,
respectively, where λc, called the critical value, satisfies

1 =
1
4

√
2λc sinh

(
θ

4

)
. (2.5)

The numerical value of λc, which can be confirmed by any computer algebra software is given by λc = 3.513830719
[4].

In addition to Bratu equation (2.2), we will examine the Bratu-type boundary value problem

u′′ − π2eu = 0, 0 < x < 1
u(0) = u(1) = 0

, (2.6)

and the Bratu-type initial value problem

u′′ − 2eu = 0, 0 < x < 1
u(0) = u′(0) = 0

. (2.7)
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Approximate solutions of Bratu and Bratu-type equations have been investigated by several authors (see for ex-
ample [1, 3, 4, 10, 11, 12, 13]). In a recent study, Aksoy et al [2] developed a perturbation solution to Bratu-type
equations. In the current study, cubic B-spline collocations are employed over uniform and nonuniform meshes to
solve Bratu and Bratu-type equations. Using uniform meshes produce a system of nonlinear equations, which is
usually difficult to solve, even with a limited number of mesh points. The level of difficulty increases substantially
if the number of mesh points is increased as to improve accuracy. In this paper, an appropriate graded mesh will be
defined on nonuniform meshes in order to produce sufficiently accurate results in an efficient way. Notice that this
technique was mainly used to solve boundary value problems with regions of large variations by placing more points
of partitions in these regions, and hence permit a wider choice for the points of interpolation [8], and hence leads to
acceptable approximate solutions near layer points.

The adaptive spline collocation on nonuniform meshes is restricted to linear boundary value problems. Thus, the
implementation of this approach on the nonlinear Bratu-type equations requires a preliminary step, which is to begin
by applying an iteration scheme that arise from the implementation of Newton’s method.

In section 4, the guidelines presented in [6] were closely followed to derive an optimal spline collocation method
to find approximate solution for equations of the form (2.6)–(2.7). The convergence and stability analysis of these
methods can be found in some references, see for example [6, 7, 8].

3 Cubic B-spline collocation method

Let π be a uniform partition of the interval [0, 1] given by

π : 0 = x0 < x1 < ... < xn < xn+1 = 1.

That is, xi = ih, i = 0, 1, 2, ..., n+ 1, and h = 1
n+1 . By including an additional point at each side of the partition π,

the cubic B-spline basis functions {B̂i(x)}n+2
i=−1 are defined as follows

B̂i(x) =
1
h3



(x− xi−2)3, [xi−2, xi−1]

h3 + 3h2(x− xi−1) + 3h(x− xi−1)2

−3(x− xi−1)3,
[xi−1, xi]

h3 + 3h2(xi+1 − x) + 3h(xi+1 − x)2

−3(xi+1 − x)3,
[xi, xi+1]

(xi+2 − x)3, [xi+1, xi+2]

0, otherwise

(3.1)

where i = −1, 0, · · · , n + 2. Each basis function B̂i(x) ∈ C2[a, b] and the values of of B̂i(x), B̂′i(x) and B̂′′i (x) at
the nodal points xi = ih are given in Table 1.

Table 1
Cubic B-spline basis values

B̂i B̂′i B̂′′i
xi−2 0 0 0
xi−1 1 3/h 6/h2

xi 4 0 −12/h2

xi+1 1 −3/h 6/h2

xi+2 0 0 0

To accommodate the boundary conditions in (2.2), we modify the splines as follows

B0(x) = B̂0(x)− 4B̂−1(x)

B1(x) = B̂1(x)− B̂−1(x)

Bi(x) = B̂i(x), i = 2, · · · , n− 1 (3.2)

Bn(x) = B̂n(x)− B̂n+2(x)

Bn+1(x) = B̂n+1(x)− 4B̂n+2(x)

Similarly, the initial conditions in (2.7) can be attained.
The approximate spline solution is expressed by

u(x) =n+1
i=0 aiBi(x) (3.3)
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Substituting the approximate solution (3.3) into equation (2.2) yields

n+1
i=0 aiB

′′
i (xj) + λ exp

(
n+1
i=0 aiBi(xj)

)
= 0, j = 0, 1, · · · , n+ 1 (3.4)

Using (3.2), the n+ 2 by n+ 2 nonlinear system given by (3.4) is expressed in the matrix form

AB+ λ F = O (3.5)

where B is an n+ 2 by n+ 2 matrix, A is the n+ 2 vector with constant components ai, F is the n+ 2 vector with
components exp(u(xi)), and G is the n+ 2 zero vector, that is

B =
6
h2



−2 1 0 0 0 ... 0

1 −2 1 0 0 ... 0

0 1 −2 1 0 ... 0

. . . . . . .

. . . . . . .

. . . . . . .

0 0 0 ... 1 −2 1

0 0 0 ... 0 1 −2



F =



exp(4a0 + a1)

exp(a0 + 4a1 + a2)

exp(a1 + 4a2 + a3)
...

exp(an−1 + 4an + an+1)

exp(an + 4n+1)


, A =


a0

a1
...

an+1

 , and O =


0
0
...
0



Notice that for large n, it is a difficult task to obtain an approximate solution to the nonlinear system (3.5).

4 Adaptive spline collocation

The method of adaptive spline collocation on nonuniform partitions has been developed by C. Christara et al in 2005
[6, 7] and was mainly applied to linear boundary value problems. The method is based on a function w that maps
uniform partition points xi to nonuniform ones wi. It was proved that when the mapping function is such that more
points are placed in regions of large variation of the solution to BVPs and fewer in other regions, the observed errors
are much smaller than their counterparts when the same total number of equidistant points are used. It remains
difficult, however, to identify an appropriate mapping function under realistic situations. Convergence and stability
of these methods have been also established in [6, 7, 8].

The adaptive spline approach begins by choosing a strictly increasing bijective function, called grading function,
w(x) : [0, 1]→ [0, 1] that maps the uniform nodes xi ∈ [0, 1] into nonuniform nodes wi ∈ [0, 1]. In an ideal situation,
one would like these nonuniform nodes to be redistributed so as to obtain same error magnitude at each step (see [5]).
For Bratu-type equations, define the grading function w(x) : [0, 1]→ [0, 1] by

w(x) =
k − (1 + k)1−x + 1

k
. (4.1)

The grading function w(x) redistributes the nodes with more points near x = 1, as k increases. To solve the
boundary-value problem:
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r(w)u′′ + p(w)u′ + q(w)u = g(w)

α0u(0) + β0u
′(0) = γ0

α1u(1) + β1u
′(1) = γ1

(4.2)

by the adaptive technique, we approximate u(x) by

S(w) =n−1
i=−3 aiψi(w) (4.3)

where ψi(w) is the nonuniform spline function defined by

ψi(w) =



(x−wi)
3

(wi+3−wi)(wi+2−wi)(wi+1−wi)
, wi ≤ x ≤ wi+1

x−wi

wi+3−wi

(
(x−wi)(wi+2−x)

(wi+2−wi)(wi+2−wi+1)
+ (x−wi+1)(wi+3−x)

(wi+3−wi+1)(wi+2−wi+1)

)
+

(x−wi+1)
2(wi+4−x)

(wi+4−wi+1)(wi+3−wi+1)(wi+2−wi+1)
, wi+1 ≤ x ≤ wi+2

wi+4−x
wi+4−wi+1

(
(x−wi+1)(wi+3−x)

(wi+3−wi+1)(wi+3−wi+2)
+ (x−wi+2)(wi+4−x)

(wi+4−wi+2)(wi+3−wi+2)

)
+

(x−wi)(wi+3−x)2

(wi+3−wi)(wi+3−wi+1)(wi+3−wi+2)
, wi+2 ≤ x ≤ wi+3

(wi+4−x)3

(wi+4−wi+1)(wi+4−wi+2)(wi+4−wi+3)
, wi+3 ≤ x ≤ wi+4

0, otherwise

(4.4)

The following values of the spline functions together with their first and second derivatives at the nodeswi+1, wi+2, ..., wi+3
are to be determined

S
(r)
i =

[
S
(r)
i (wi+1) , S

(r)
i (wi+2) , w

(r)
i (wi+3)

]
, (4.5)

also, the coefficients ai in (4.3) are obtained by solving the linear system

r (wj)
{
S′′j−3,3 cj−3 + S′′j−2,2 cj−2 + S′′j−1,1 cj−1

}
+

p (wj)
{
S′j−3,3 cj−3 + S′j−2,2 cj−2 + S′j−1,1 cj−1

}
+

q(wj) {Sj−3,3 cj−3 + Sj−2,2 cj−2 + Sj−1,1 cj−1} = g(wj),

(4.6)

for j = 0, 1, 2, ..., n.
For Bratu-type equations, the subsequent iteration scheme arising from Newton’s method is firstly used, and then

the resulting linear equation is solved by the adaptive technique

u′′m − λ2 cosh (λum−1)um = λ sinh (λum−1)− λ2 cosh (λum−1)um−1

u(0) = 0, u(1) = 1
(4.7)

In other words, we start with u0 = u(0) and solve (4.6) where r(w) = 1, p(w) = 0, and

q(w) = −λ2 cosh (λum−1) ,

g(w) = λ sinh (λum−1)− λ2 cosh (λum−1)um−1,
(4.8)

for m = 1, 2, 3, 4, ...,M .

5 Optimal spline collocation method

Consider the BVP

Lu = ru′′ + pu′ + qu = g in Ω = (0, 1) (5.1)

Bu =

{
α0u(0) + β0u

′(0) = γ0

α1u(1) + β1u
′(1) = γ1

on δΩ (5.2)

where r, p, q, and g are functions of x, and αi, βi, and γi (i = 1, 2) are scalars.
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Let ∆ be a partition of Ω and determine a spline u∆ that satisfies (5.1)-(5.2). The one step method described in
[6] is employed as follows:

Lu∆ + PLu∆ = g in TL
Bu∆ + PBu∆ = γ on TB

(5.3)

where T are collocation points prescribed in Ω = Ω ∪ δΩ, TB = T ∩ δΩ, and TL = T − TB .
Let h = 1

n , xi = ih, i = 0, 1, ..., n. Let w : [0, 1]→ [0, 1] be a grading function defined by w(xi) = wi and define
hi = wi+1 − wi, i = 0, 1, ..., n. Define

LS(wi) = g(wi)− PLS(wi), i = 0, 1, ..., n (5.4)

where

PLS(w0) =
r(w0)

24
h0(5h0 − 4h1 + h2)

(h0 + h1) u S′′(w1)− h0 u S′′(w2)

h1
,

PLS(wi) =
r(wi)

12
hihi−1 u S′′(wi), i = 1, . . . , n− 1, (5.5)

PLS(wn) =
r(wn)

24
hn−1(5hn−1 − 4hn−2 + hn−3)Z,

in which

Z =
(hn−1 + hn−2) u S′′(wn−1)− hn−1 u S′′(wn−2)

hn−2

and

uS′′(wj) =
2hjS′′(wj−1)− 2(hj−1 + hj)S′′(wj) + 2hj−1S

′′(wj+1)

hj−1(hj−1 + hj)hj
.

In the case of uniform partitioning (hi = h), equation (5.5) becomes

PLS(w0) =
r(w0)h2

12
[2 u S′′(w1)− uS′′(w2)]

PLS(wi) =
r(wi)h2

12
u S′′(wi), i = 1, . . . , n− 1 (5.6)

PLS(wn) =
r(wn)h2

12
[2 u S′′(wn−1)− uS′′(wn−2)]

and

uS′′(wj) =
1
h2 [S′′(wj−1)− 2S′′(wj) + S′′(wj+1)]

The order of convergence of the optimal spline collocation method was shown to be of order four (see [7]).

6 Numerical Examples

To examine the accuracy and the local order of convergence of the proposed methods and to run comparison with
other existing numerical methods, we chose four Bratu and Bratu-type equations whose exact solutions are known.

Example 6.1. Consider the Bratu boundary value problem

u′′ + 2eu = 0, 0 < x < 1
u(0) = u(1) = 0

(6.1)

whose exact solution is obtained from (2.3)-(2.4) by letting λ = 2.

The optimal spline and cubic B-spline (B-spline) collocation methods were applied to this equation using uniform
nodes. The absolute maximum errors and the local order of convergence for different uniform meshes, n, for the
both methods are recorded in Table 2. The graphs of the approximate optimal spline solution and the exact solution
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for n = 10 are given in Figure 1.

Table 2
Numerical results for equation (6.1).

B-spline Optimal spline
n Max error Order Max error Order
10 8.83(−4) 2.64(−6)
20 2.22(−4) 2.0 1.64(−7) 4.0
40 5.56(−5) 2.0 1.01(−8) 4.0
80 1.39(−5) 2.0 6.31(−10) 4.0
160 3.48(−6) 2.0 3.94(−11) 4.0

Figure 1. Exact and approximate optimal spline solutions with n = 10.

Example 6.2. Consider the Bratu-type boundary value problem

u′′ − π2e−u = 0, 0 < x < 1
u(0) = u(1) = 0

(6.2)

for which the exact solution is u(x) = ln(1 + sin(1 + πx)) (see [13]).

Equation (6.2) was solved by the cubic B-spline, the optimal spline, and the adaptive spline . In Table 3, the
maximum error and the local order of convergence for different mesh size, n were recorded.

Table 3
Numerical results for equation (6.2).

B-spline Optimal spline Adaptive spline
n Max error Order Max error Order Max error Order
10 2.60(−3) 1.14(−5) 1.14(−5)
20 6.40(−4) 2.0 1.36(−6) 3.1 1.10(−6) 3.4
40 1.59(−4) 2.0 1.03(−7) 3.7 7.56(−8) 3.9
80 3.98(−5) 2.0 6.82(−9) 3.9 5.35(−9) 3.8
160 9.96(−6) 2.0 4.34(−10) 4.0 3.34(−10) 4.0

Example 6.3. Consider the Bratu-type initial value problem

u′′ − 2eu = 0, 0 < x < 1
u(0) = u′(0) = 0

(6.3)

whose exact solution is u(x) = −2 ln(cosx).
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The proposed optimal spline collocation method was compared to the perturbation-iteration algorithm with pa-
rameters n = 1 and m = 3, denoted PIA(1,3) (see [2] for details). Using only ten uniform mesh points (n = 10),
Table 4 shows that the absolute error obtained by the optimal spline method is significantly smaller than that obtained
the PIA(1,3). The graphs of the absolute errors obtained by the optimal spline method and the PIA(1,3) algorithm
with n = 1 and m = 3 are given in Figure 2.

Table 4
Absolute errors using optimal spline and PIA algorithm [2] for equation (6.3).
x Optimal spline PIA(1, 3)
0.1 7.25(−7) 6.71(−6)
0.2 1.61(−6) 9.55(−6)
0.3 2.38(−6) 3.31(−6)
0.4 3.02(−6) 8.04(−6)
0.5 3.45(−6) 8.48(−6)
0.6 3.51(−6) 2.03(−5)
0.7 2.78(−6) 7.15(−5)
0.8 7.06(−7) 2.91(−4)
0.9 6.86(−6) 1.05(−3)
1.0 3.28(−6) 3.53(−3)

Figure 2. Absolute errors for the optimal spline and the PIA(1,2) with n = 10.

Example 6.4. Consider the Bratu boundary value problem

u′′ + eu = 0, 0 < x < 1
u(0) = u(1) = 0

(6.4)

whose exact solution is obtained by substituting λ = 1 in (2.3).

The proposed optimal spline method and the perturbation iteration algorithm with n = 1, and m = 2 (PIA(1,2))
were carried out to find an approximate solution for equation (6.4). Using n = 10, the absolute error obtained the
optimal spline method is shown in Table 5 to be significantly smaller than that of PIA(1,2) method for various x
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values.
Table 5
Numerical results for equation (6.4).
x Abs error for optimal spline Abs error for

PIA(1,2)
0.1 4.63(−8) 1.68(−5)
0.2 1.02(−7) 3.99(−5)
0.3 1.44(−7) 4.91(−5)
0.4 1.71(−7) 6.03(−5)
0.5 1.81(−7) 5.92(−5)
0.6 1.71(−7) 6.03(−5)
0.7 1.44(−7) 4.91(−5)
0.8 1.02(−7) 3.99(−5)
0.9 4.63(−8) 1.68(−5)

7 Conclusion

In addition to the cubic B-spline collocation method, an adaptive spline collocation, and an optimal collocation meth-
ods were derived to solve Bratu and Bratu-type equations. In order to be able to apply the adaptive spline collocation
on nonuniform meshes, we began by the preliminary step, which is applying the iteration scheme resulting from
implementing Newton’s method and then choosing the appropriate grading function. The optimal spline collocation
described by [6] was modified to suite the nonlinear Bratu-type boundary or initial value problems. Numerical ex-
amples were presented to show the applicability and efficiency of the proposed methods and their accuracies when
compared to other existing numerical methods.
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