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1 Abstract

The aim of this letter is to present a fully bounded 2-D model for a chaotic sea that surrounds an infinite set of nested
invariant tori. The relevance of this result is that there are some examples of bounded chaotic seas but there is no
rigorous proof of this property for specific cases.

2 Introduction

Precise definitions of elliptic islands and chaotic seas are difficult to give. Models for chaotic seas are rare in theory
and practice. A few results on the dynamics in the chaotic region are available [1-2-3-4-6-7-9-15-16]. Some topolog-
ical characterizations of elliptic islands in a chaotic sea are available in [5-8-11-12-17-18-19]. One of the techniques
uses rotation numbers [13-14]. There are many interpretations of the rotation number in real-world models, such
as the current in electric oscillators, the frequency of periodically forced pendula, heart rates, the asymptotic firing
frequency of pacemaker neurons, and the integrated density of states of certain Schrôdinger operators, and so on.

There are some examples of chaotic seas [5-7-8-10-11-12-17-19-20-21], but there is no rigorous proof of their
boundedness for these specific cases. Here we will give a rigorous proof that a chaotic sea presented by a particular
2-D map is fully bounded for all values of its bifurcation parameters.

3 A fully bounded 2-D model for the chaotic sea

In this letter, we propose the following 2-D map as a model for a fully bounded chaotic sea:

f :

{
xn+1 = −ax2

n + yn

yn+1 = b− |xn|
(3.1)

where a ≥ 0 and b ≥ 0 are bifurcation parameters. The importance of this map is that it contains only two nonlin-
earities with a minimum number of terms and presents a fully bounded 2-D model for a chaotic sea for all values of
its bifurcation parameters. The map (3.1) has several important properties including the following: (i) The associ-
ated function f(x, y) of map (3.1) is continuous in R2, but it is not derivable at the point (x = 0, y) for all x ∈ R.
(ii) The map (3.1) is a diffeomorphism for all its parameter values since the determinant of its Jacobian is ±1. (iii)
Due to the shape of the vector field f of map (3.1), the plane can be divided into two nonlinear regions denoted by
R1 = {(x, y) ∈

R 2/ x < 0 and R2 =
{
(x, y) ∈ R2/ x > 0

}
, where in each region the function f is continuous and has continuous

derivatives, and the border is given by B =
{
(x, y) ∈ R2/ x = 0

}
. (iv) If a > 0 and b ≥ 0, then there are two fixed

points at P1 =
(
−
√
ab
a , −

√
ab+ab
a

)
and P2 =

(√
ab+1−1

a , −
√
ab+1+ab+1

a

)
, respectively. The fixed points P1 and P2 exist

simultaneously, and they intersect the border x = 0 at the critical parameter value b = 0.
Since system (3.1) is conservative, it does not have attractors nor basins of attraction, but it does have a chaotic

sea that surrounds an infinite set of nested invariant tori. A plot of the solution of the system with a = 3.5 and b = 0.3
showing the quasiperiodic and chaotic solutions for a range of initial conditions x0 = 0.123 and 0.177 < y0 < 0.277
in steps of 0.01 is shown in Fig. 1.
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Figure 1: The chaotic sea of the map (3.1) for a = 3.5, b = 0.3 showing the quasiperiodic and chaotic solutions for a range of initial conditions
x0 = 0.123 and 0.177 < y0 < 0.277 in steps of 0.01.

The chaotic sea of the map (3.1) for a = 3.5, b = 0.3 showing the quasiperiodic and chaotic solutions for a range
of initial conditions x0 = 0.123 and 0.177 < y0 < 0.277 in steps of 0.01.. This chaotic sea is constructed numerically
just like a strange attractor except that one must use a succession of carefully chosen initial conditions. Any initial
condition in the sea eventually visits every point in the sea just as with a strange attractor. It seems that this chaotic
sea looks qualitatively different from the one displayed by the Gingerbreadman map [20-21] with similar, perhaps
even richer, behavior due to the presence of the nonlinear term x2 in the expression for the map (3.1).

Several interesting features can be seen for the map (3.1). First, it appears that the choice of initial conditions
plays a crucial role in the formation of the corresponding chaotic sea. For example, in the region 3.3 < a < 4.8
with b = 0.3, there are two shapes for the chaotic sea. This phenomenon is similar to the case of two coexisting
attractors for a dissipative system. Further investigations on the multi-stability of map (3.1) shows that at a = 3.36
and b = 0.3, there is a three-lobe chaotic sea for initial conditions (0, 0) and a drift ring (similar to a quasi-periodic
orbit) for initial conditions (0.13, 0.16). This multi-stability may persist throughout most of the ab-plane.

The most important property of map (3.1) is that the presented chaotic sea is fully bounded for all a > 0 and
b ≥ 0. Indeed, we have xn+1 ≤ yn ≤ b and − |xn−1| ≤ yn ≤ b. Furthermore, yn = b − |xn−1| ≤ b and xn =
−ax2

n−1 + yn−1 ≤ yn−1 ≤ b, also, xn+1 = −ax2
n + yn ≤ yn and yn = b − |xn−1| ≥ − |xn−1| since b ≥ 0. On the

other hand, xn+1 + ax2
n − b = − |xn−1| ≤ 0. Thus xn+1 ≤ b− ax2

n or |xn| ≤
√

b−xn+1
a because b− xn+1 ≥ 0. Also,

xn+1+ax2
n+|xn−1| = b ≥ 0. Thus we have xn+1 ≥ −ax2

n−|xn−1| ≥ −ax2
n−
√

b−xn

a because− |xn−1| ≥ −
√

b−xn

a .

Finally, we have −ax2
n −

√
b−xn

a ≤ xn+1 ≤ b − ax2
n, which means that if xn is finite, the next value xn+1 is also

finite, and all the yn are also finite for all n ∈ N since xn+1 ≤ yn ≤ b. Hence the chaotic sea of map (3.1) is fully
bounded for all a > 0 and b ≥ 0 and for all finite initial conditions (x0, y0).
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4 Conclusion

We have described a fully bounded 2-D model for the chaotic sea that surrounds an infinite set of nested invariant
tori. The relevance of this result is that there is no previous rigorous proof of the boundedness of chaotic seas for any
specific case in the current literature.
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