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Abstract. Based on Lucas functions, an improved version of Diffie-hellman key distribution, El Gamal public
key crypto-system scheme and El Gamal signature scheme are proposed, together with an implementation and com-
putational cost. The security relies on the difficulty of factoring an RSA integer and on the difficulty of computing
the discrete logarithm.

Introduction

In [1], Diffie and Hellman introduced a practical solution to the key distribution problem, allowing two parties,
Alice and Bob never met, to share a secret key by exchanging information over an open channel. In [2], El Gamal
used Diffie-Hellman ideas to design a crypto-system whose security is based on the difficulty of solving the discrete
logarithm problem. In [3], It was suggested that linear sequences could be used instead of the standard RSA.

In this paper, based on Lucas sequences, an improved of Diffie-hellman key distribution,El Gamal public key
crypto-system and El Gamal digital signature were proposed. This considerably reduces the computation cost of
these methods. The security relies on the difficulty of factoring an RSA integer. In section 1, an investigation
of cryptographic properties of Lucas sequences, and a computational method to evaluate the kth term of a Lucas
sequence are given. In section 2, two cryptographic applications are given, their security and computational cost
were analyzed.

1 Lucas sequences

In this section, the main cryptographic properties of Lucas sequences are studied. A computational method to evalu-
ate the kth term are given, together with an analysis of its computational cost.

Throughout this section, p is a prime integer, a ∈ ZZ, f(X) = X2−aX+1 [p] a polynomial in IF p[X], α a root of
f(X) in a splitting field of f(X) and s(a) the characteristic sequence generated by a modulo p, where IF p := ZZ/pZZ
is the finite field of p element. Denote ¯ the reduction modulo p, A = IF p[X]/(f(X)) and α = X̄ the class of X
modulo the principal ideal of IF p[X] generated by f(X). For every x ∈ A, let lx be the linear map of A defined by
lx(y) = xy, T (x) = Tr(lx) and N(x) = det(lx) the trace and norm of x, where det(lx) is the determinant of the
linear map lx, and Tr(lx) is its trace. Define a sequence s(a) as follows : sk(a) = T (αk). Since f(α) = 0 and the
map trace is linear, it follows that sk+2(a) = ask+1(a)− sk(a) modulo p. So, s(a) is a second order linear sequence
(Lucas sequence), called the characteristic sequence generated by a.
Remark. Let lk be the endomorphism of A defined by lk(x) = αkx, and Mk its matrix with respect to the basis

(1, α). Then M0 =

(
1 0
0 1

)
, M1 =

(
0 −1
1 ā

)
, and then s0(a) = 2 and s1(a) = ā.

1.1 Cryptographic properties

The cryptographic applications of Lucas sequences are listed in [3]. For the commodity of the reader, we present
some of these results in a more accessible form and with simplified proofs.

Lemma 1. 1. For every integer k, sk(a) = αk + α−k and sk(a) = s−k(a).

Proof. Let K be a splitting field of f(X). Since f(X), the characteristic polynomial of M1, splits in K, there

exists an invertible matrix P in M2(K) and x ∈ K such that M1 = PTP−1, where T =

(
α x

0 α−1

)
. Let k

be an integer. As Mk = Mk
1 , we have Mk = PT kP−1, where T k =

(
αk xk

0 α−k

)
and xk ∈ K. Therefore,
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sk(a) = Tr(Mk) = αk + α−k. 2

Corollary 1. 2. For every integer k, let fk(X) = X2 − sk(a)X + 1. Then fk(X) = (X − αk)(X − α−k).

Indeed, sk(a) = αk + α−k and αkα−k = 1.

Lemma 1. 3. For every integers k and e, se(sk(a)) = ske(a).

Proof. From Corollary 1.2, the roots of the polynomial fk(X) are αk and α−k. So, se(sk(a)) = (αk)e + (α−k)e =
T (αke) = ske(a). 2

Lemma 1. 4. π = p2 − 1 is a period of s(a). Especially, if p does not divide a2 − 4, then p− εp is the period, where
εp = (a

2−4
p ) is the Legendre symbol.

Proof. Since α is an element of A of norm 1, α is an invertible element of A. Let 4 = a2 − 4 be the disciminant of
f(X).

(i) p divides (a2 − 4). Then a = ∓2 modulo p. If a = 2 modulo p, then sk(a) = 2. If a = −2 modulo p, then
s2k(a) = 2 and s2k+1(a) = −2.

(ii) If (a
2−4
p ) = 1, then f(X) splits in IF p, and A ' IF p × IF p. Hence the exponent of the multiplicative group A∗ is

p− 1. Thus, αp−1 = 1.

(iii) If (a
2−4
p ) = −1, then A ' IF p2 and N(α) = αp+1 = 1. Let x ∈ IN be the period of s(a). Then αx = 1.

Since(a
2−4
p ) = −1, α 6∈ IF ∗

p , and then x ≥ p+ 1.

Corollary 1. 5. For every integer e such that gcd(e, π) = 1, the map
Luce : IF p −→ IF p

a −→ se(a)
is a one-one correspondence.

Indeed, since gcd(e, p2 − 1) = 1, let d be the inverse of e modulo π. Then there exists an integer k such that
de = 1 + kπ. Hence sd(se(a)) = sde(a) = s1+kπ(a) = s1(a) = a [p]. 2

Lemma 1. 6. Let a ∈ ZZ such that p does not divide a2 − 4. Let ε = (a
2−4
p ), e ∈ IN such that Gcd(e, π) = 1 and

b = se(a), where π = p− ε. Then p does not divide b2 − 4 (a
2−4
p ) = ( b

2−4
p )

Proof. Since a = sd(b) [p], where d is the inverse of e modulo p2 − 1, it suffices to show that if (a
2−4
p ) = 1, then

( b
2−4
p ) = 1 too. Assume that (a

2−4
p ) = 1, then α ∈ IFp, and then αe ∈ IFp. Thus, fb(X) = X2 − bX + 1 splits in IFp

(αe + α−e = b [p]), i.e., ( b
2−4
p ) = 1. 2

1.2 Computational Method and Cost

Lemma 1. 7.

{
i) s2n(a) = sn(a)2 − 2,
ii) s2n+1(a) = sn(a)sn+1(a)− a

Proof. Let n and m be two integers. sn(a)sm(a) = (αn + α−n)(αm + α−m)
= (αn+m + α−n−m) + (αn−m + α−n+m

2 ) = sn+m(a) + sn−m(a). Therefore, sn+m(a) = sn(a)sm(a)− sn−m(a)
In particular, we have i) and ii). 2

Let k = 2rm, wherem is an odd integer. To compute sk(a), first we compute sm(a), then s2m(a) = (sm(a))2−2,
then s4m(a) = (s2m(a))2 − 2,...,sk(a) = s2r−1m(a)

2 − 2. Then to compute sk(a), we need r multiplications modulo
p and we need sm(a). Let m =

∑l−1
i=0 ki2

l−1−i. For every 0 ≤ i < l − 1, let fi+1 = 2fi + ki+1 and f0 = k0. Then
fl−1 = k. For 0 ≤ i < l − 1 and assume that, sfi−1(a) and sfi−1+1(a) are computed. Then

if ki = 0, then

{
sfi(a) = s2fi−1(a) = (sfi−1(a))

2 − 2
sfi+1(a) = s2fi−1+1(a) = sfi−1(a)sfi−1+1(a)− a

if ki = 1, then

{
sfi(a) = s2fi−1+1(a) = sfi−1(a)sfi−1+1(a)− a
sfi+1(a) = s2(fi−1+1)(a) = (sfi−1+1(a))2 − 2

Computational Algorithm.

In put k = 2r
∑l−1
i=0 ki2

i and a, where k0 6= 0 and kl−1 6= 0.
Out put sk.
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Algorithm
s0 = 2, s1 = a,
for i from 0 to l − 1 do

if ki = 0 then s1 = s1s0 − a, s0 = s2
0 − 2

else then s0 = s1s0 − a, s1 = s2
1 − 2

End
return (s0).
s = s0, for i from 1 to r do s = s2 − 2.
End
return (s).

This method ensures that sk can be computed in about the same length of time as the kth power is computed
in the RSA method. But in the computation of sm(a), having to compute two numbers at each stage does slow
the computation down a little, but there are optimizations in the calculation which mean that the total amount of
computation is only about half less than the amount needed for the RSA system. Therefore, to compute sk(a), the
total number of multiplications modulo p is log2(k).

2 Main results

In this section we describe some applications of Lucas sequences, in more details : Lucas Diffie-Hellman, Lucas El
Gamal encryption scheme and Lucas El Gamal signature scheme.

Let n = pq be an RSA integer, a ∈ IN such that (ap ) = (aq ) = −1 and s(a) the Lucas sequence generated by a
defined by : s0(a) = 2 [n], s1(a) = a [n] and sk+2(a) = ask+1(a)− sk(a) [n]. Let and f(X) = X2− aX + 1 modulo
n, A = ZZn[X]/(f(X)) and α = X̄ the class of X modulo the principal ideal (f(X)) (we have sk(a) = αk +α−k =
T (αk)).

2.1 Lucas Diffie-Hellman

Let a be an integer. Suppose that Alice and Bob, who both have access to the Lucas sequences public key data (n, a),
want to agree on a shared secret key KAB .

(i) User Alice selects 0 < xA < n as her private key. She then computes yA = sxA
(a) as her public key from the

system public parameters (n, a).

(ii) User Bob selects 0 < xB < n as his private key. He then computes yB = sxB
(a) as his public key from the

system public parameters (n, a).

(iii) Key-Distribution Phase : KAB = sxA
(yB) = sxB

(yA) is their common secret key.

Remarks

(i) In [3], it was given a Diffie-Hellman scheme based on lucas functions defined in IF q. Here, it is the same version
but with Lucas sequences modulo an RSA integer.

(ii) KAB = sxAxB
(a).

(iii) In each exchange session, the computational cost of each user is 2log2(n).

(iv) From [5], the security of Lucas sequences is polynomial-time equivalent to the generalized discrete logarithm
problem over IF p. Thus, the security level of this scheme is at least the security level of the standard Diffie-
Hellman scheme.

2.2 Lucas El Gamal

Now, we explain our version of the public key system. It is based on El Gamal system, which is defined by Lucas
sequences.

Suppose that Bob is the owner of the Lucas public key data (p, q, a).
Bob selects a small integer e such that Gcd(d, (p2 − 1)(q2 − 1)) = 1 and a secret integer 0 < x ≤ n. He computes d
the inverse of e modulo (p2 − 1)(q2 − 1), y = sx(a) and makes public (e, y).
Given Bob’s public data (n, a, e, y), Alice can encrypt a message m, where 0 ≤ m < n, intended for Bob using the
following Lucas version of the El Gamal encryption scheme :
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Algorithm

(i) Public key : (n, a, y, e)

(ii) Private key : (p, q, d, x).

(iii) Encryption : For a message 0 ≤ m < n, Alice chooses a (secret) random number 0 < k < n, and sends Bob the
cipher c = (c1, c2), where c1 = sk(a), c2 = K + se(m) and K = sk(y).

(iv) Decryption : For a cipher c = (c1, c2), Bob computes K = sx(c1), and then m = sd(c2 −K), where (p, q, d, x)
is its private key.

Note that

(1) All computations are performed in ZZn.
(2) Let εp = (m

2−4
p ), εq = (m

2−4
q ) and π = Lcm(p− εp, q − εq). Then sx(c1) = sx(sk(a)) = sxk(a) = sk(sx(a)) =

sk(y) = K, and then c2 −K = se(m).
Since ed = 1 modulo π, there exists an integer l such that ed = 1 + lπ.Thus, sd(c2 −K) = sd(se(m)) = sed(m) =
s1+l(p2−1)(q2−1)(m) = s1(m) = m modulo p.

Security analysis

Definition 2. 8. Given a cipher C = K + se(m) (m ∈ {m0,m1}), where K is randomly chosen modulo n, the
problem of deciding whether m equals m0 or m1 is called decision problem based on Lucas sequences.
If any analyzer can not decide which one of m0 or m1 is corresponding to the cipher c in polynomial time, then the
encryption scheme is semantical secure.

First, since k is randomly chosen, K is considered random too. On the other hand, since n = pq is an RSA integer,
it is very hard to factorise the period T = (p − εp)(q − εq). It follows that, the decision problem based on Lucas
sequences is intractable: Given c = se(m) it is very hard to calculate neither e nor m (this problem is equivalent to
the discrete logarithm problem (see [5])). Consequently, the proposed Lucas El Gamal scheme is semantical secure.

Computational cost

As in the standard RSA public key system, Bob chooses a small integer e and Alice chooses a relatively small
integer k such that the computational cost for evaluating sk(a) and se(m) are low. For example e = 5, we need 3
multiplications modulo n for computing s3(m), log2(k) multiplications modulo n for computing sk(a), i.e., totally,
we need 3 + log2(k) multiplications modulo n for enciphering.
For deciphering, once d and y are computed, we need log2(x) multiplications modulo n for computing K = sx(c1),
and log2(d) multiplications modulo n for computing sd(c2−K). As d < n2, we need log2(n) multiplications modulo
n for deciphering. Totally, we need 4log2(n) on average.

2.3 Lucas El Gamal signature

We now explain our version of El Gamal signature scheme, defined by Lucas sequences.
First,we need the following lemma :

Lemma 2. 9. Let s(a) be a Lucas sequence generated by a, m, n and k three integers such that m + n = k. Then
s2
k(a) + s2m(a) + s2n(a) = sm(a)sn(a)sk(a).

Proof. In the proof of Lemma 1.6, we have shown that sm+n(a) = sm(a)sn(a) − sm−n(a). Thus, sk(a) =
sm(a)sn(a) − sm−n(a), and then s2

k(a) = sm(a)sn(a)sk(a) − sm+n(a)sm−n(a) = sm(a)sn(a)sk(a) − (s2n(a) +
s2m(a)). Therefore, s2

k(a) + (s2n(a) + s2m(a)) = sm(a)sn(a)sk(a). 2

Suppose Alice is the owner of the Lucas public key data (p, q, a). She computes the secrets εp = (a
2−4
p ) and

εq = (a
2−4
q ). She selects an integer x, 1 ≤ x < (p− 1)(q − 1), computes y = sx(a) and makes public (n, a, y).

Given Alice’s public data (n, a, y), Alice can sign a message m, where 0 ≤ m < n, intended for Bob using the
following Lucas version of El Gamal signature scheme :

(i) Alice selects at random an integer k such that gcd(k, (p− εp)(q − εq)) = 1 and she computes r = sk(a).
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(ii) She computes s = k−1(m−xr) modulo (p− εp)(q− εq), where k−1 is the inverse of k modulo (p− εp)(q− εq).

(iii) (r, S) is the signature for the message m, where S = ss(r).

To verify the authenticity of the signature, any verifier can check if

(E) : s2
m(a) + s2

r(y) + S2 − 4 = Ssr(y)sm(a)

.
Indeed, since m = xr + ks, it follows that s2

m(a) + s2rx(a) + s2sk(a) = srx(a)ssk(a)sm(a) = sr(y)ss(r)sm(a).

Security analysis.

This scheme hides the linear equation ks+xr = mmodulo T . Thus even if the owner uses twice the same random
k, the analyzer can not calculate the secret x. On the other hand, the security of Lucas sequences is polynomial-time
equivalent to the generalized discrete logarithm problem over IF p. It follows that the security level of this scheme is
at least the security level of El Gamal digital signature.

Computational Cost.

To sign the message m, we will compute : sk(a), k−1 modulo (p− εp)(q − εq) and k−1(m− xr). Thus we need,
ln2(n) + 3, 5 multiplications to sign the message m such that 0 ≤ m < n.
To verify, we will compute : sr(y), ss(r), sm(a), s2r(y), s2s(r) and s2

m(a). As s2r(y) = s2
r(y) − 2 and s2s(r) =

s2
s(r)− 2, to verify the authenticity of the signature, we need 2ln2(n) + 3 multiplications.
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