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Abstract. Let R be a commutative ring with identity and M be an R-module with Spec(M) 6= ∅. A cover of
a submodule K of M is a subset C of Spec(M) satisfying that for any x ∈ K, x 6= 0, there is, N ∈ C such that
ann(x) ⊂ (N : M). If we denote by J =

⋂
N∈C

(N : M), and assume that M is finitely generated, then JM = M ,

implies that M = 0. We show that if R is a Noetherian ring and M is a finitely generated faithful R-module then M
has a finite cover. And we shall see that if R is a Noetherian ring, M a finitely generated R-module, C a cover of M

and I ⊂
⋂

N∈C

(N : M), then
∞⋂
n=1

InM = 0.

1. Introduction.

Throughout this paper R will be commutative ring with identity and all R-modules are unitary. From now on
all modules are finitely generated. A proper submodule P of M is said to be prime if rm ∈ P implies m ∈ P , or
rM ⊂ P , for r ∈ R and m ∈ M (see for example [1], [2]). The set of all prime submodules of M is called the
Spectrum of M and is denoted by Spec(M). For any finitely generated R-module, it is known that Spec(M) 6= φ.
A cover of a submodule N of M is defined to be a subset C of Spec(M) satisfying that for any 0 6= x ∈ N there
exists P ∈ C such that ann(x) ⊂ (P : M), where (P : M) = {r ∈ R|rM ⊂ P}. If we denote by J the
intersection of all (P : M), P ∈ C and M 6= 0 we have JM 6= M . This generalizes the Nakayama’s Lemma. In

addition if R is Noetherian, then
∞⋂
n=1

JnM = 0. Also let q be a maximal ideal of R and N be a submodule of M ,

define Mapq(
M
N ) = {x ∈ M |qnx ⊂ N for some n > 0}. Then we investigate some of the result between primary

submodule N of M and Mapq(
M
N ), q ∈Max(R) = {q|q is a maximal ideal of R}.

2. Results.

Definition. Let M be a module over a ring R. A proper submodule P of M is a prime submodule, if rm ∈ P
for r ∈ R and m ∈ M implies that either m ∈ P or rM ⊂ P . The set of all prime submodules of M is called the
spectrum of M and is denoted by Spec(M).

Definition. Let M be an R-module and K be a submodule of M . A subset C of Spec(M) is a cover of K, if for
any x ∈ K, x 6= 0 there is P ∈ C such that ann(x) ⊂ (P : M). If C is a finite set, then C is called a finite cover.

Lemma 1. Let C be a cover of M . For any r ∈ R−
⋃

P∈C

(P : M) if rm = 0 for some 0 6= m ∈M , then r = 0.

Proof. If rm = 0 then r ∈ ann(m) ⊆ (P : M) for some P ∈ C, which is a contradiction.

Proposition 2. Let M be a non-zero R-module and C be a cover of M . If JM = M , then M = 0, where
J =

⋂
P∈C

(P : M).

Proof. Suppose M 6= 0, JM = M there exists r ∈ R such that r ≡ 1(modJ) and rM = 0, r ∈ ann(m) which is a
contradiction.

Remark. If M is a multiplication faithful R-module then Spec(M) ∼= Spec(R) by [1, Theorem 2], and if
C = Spec(M), then J =

⋂
P∈C

(P : M) ⊂ J(R).

Lemma 3. Let M be an R-module, C a cover of M and I 6⊂ annR(M). Set J =
⋂

P∈C

(P : M), then JM +

annM (I) 6=M , where annM (I) = {x ∈M |Ix = 0}.
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Proof. Since I 6⊂ annR(M), then M 6= annM (I), so M
annM (I) 6= 0. Let X̄ = x+ annM (I), where Ix 6= 0. We have

(annM (I) : x) ⊂ ann(Ix), as Ix 6= 0 there exists r ∈ I , rx 6= 0. Then ann(X̄) ⊂ ann(rx) ⊂ (P : M) for some
P ∈ C. Hence J M

annM (I) 6=
M

annM (I) and JM + annM (I) 6=M .

Proposition 4. LetR be a Noetherian ring, M anR-module, C a cover ofM , I ⊂
⋂

P∈C

(P : M). Then
+∞⋂
n=1

InM =

0.

Proof. Let
+∞⋂
n=1

InM = K. Then by Krull’s Theorem IK = K. Proposition 2 implies that K = 0.

Proposition 5. Let C be a finite subset of spec(M) such that (P : M) is maximal for every P ∈ C, and

J =
⋂

P∈C

(P : M). If
∞⋂
n=1

JnM = 0, then C is a finite cover of M .

Proof. If C is not a cover of M , then there is an element 0 6= x ∈ M such that annR(x) 6⊂ (P : M) for every
P ∈ C. Hence annR(x) + (P : M) = R. Let 1 = r + s with s ∈ (P : M) and r ∈ ann(x). Then for every n ∈ N,
1n = (r + s)n = r′ + s′, r′ ∈ annR(x) and s′ ∈ (P : M)n, so x = r′x + s′x = s′x. Hence Rx = (P : M)nx for

every P ∈ C, and so Jnx = Rx, hence
∞⋂
n=1

JnM 6= 0, which is a contradiction.

Theorem 6. LetR be a Noetherian ring andM a faithfulR-module. ThenM has a finite cover C and
∞⋂
n=1

JnM =

0, where J =
⋂

P∈C

(P : M). In particular if M = R then
∞⋂
n=1

Jn = 0.

Proof. Since M is a Noetherian R-module, Ass(M) is a finite set, let Ass(M) = {q1, q2, . . . , qm} and for every qi
there exists a maximal ideal q′i of R such that qi ⊂ q′i. By [1, p.3746] there exist maximal submodules Pi of M such
that q′i = (Pi : M). Let C = {P1, . . . , Pm}. For any 0 6= x ∈ M , there is qi such that ann(x) ⊂ qi ⊂ q′i = (Pi : M).
Hence C is a cover of M . Since for every Pi ∈ C, (Pi : M) is a maximal ideal of R, by Proposition 4 we have
∞⋂
n=1

JnM = 0. If M = R, obviously then
∞⋂
n=1

Jn = 0.

Definition. LetM be anR-module, then we defineMap(M) = {x ∈M | every prime ideal containing ann(x) is maximal}.

Lemma 7. Map(M) is a submodule of M .

Proof. Let x ∈ Map(M) and r ∈ R. Suppose that q is a prime ideal of R such that ann(rx) ⊂ q, since ann(x) ⊂
ann(rx) ⊂ q so q is a maximal ideal of R, hence rx ∈ Map(M). If x, y ∈ Map(M), and ann(x + y) ⊂ q so
ann(x) ∩ ann(y) ⊂ q, this implies that ann(x) ⊂ q or ann(y) ⊂ q, hence q is a maximal ideal of R, i.e., Map(M)
is a submodule of M .

Definition. Let q be a maximal ideal of R and N be a submodule of M . Define Mapq(
M
N ) = {x ∈ M |qnx ⊂

N for some n > 0}.

Lemma 8. Mapq(M) is a submodule of M , for every maximal ideal q of R.

Proof. Let x ∈Mapq(M) and r ∈ R, there exists a positive integer n such that qnx = 0, hence qn(rx) = 0, therefore
qn ⊂ ann(rx) and rx ∈Mapq(M). If x, y ∈Mapq(M) there exist m,n ∈ N such that qmx = 0 and qny = 0. Take
k = max{m,n} so qk(x+ y) = 0, and hence qk ⊂ ann(x+ y). Therefore x+ y ∈Mapq(M).

Remark. It is clear that Map(Map(M)) = Map(M), Mapq(Mapq(M)) = Mapq(M) for every maximal
ideal q of R and if q′ 6= q is a maximal ideal of R then Mapq′(Mapq(M)) = Mapq(Mapq′(M)) = 0. Also
Map(Mapq(M)) =Mapq(Map(M)) =Mapq(M).

Proposition 9. If N is a proper submodule of an R-module M and Mapq(
M
N ) =M for some maximal ideal q of

R then N is q-primary.
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Proof. Let M =< x1, x2, . . . , xk >. Since Mapq(
M
N ) = M , there is ni > 0 such that qnixi ⊂ N for i = 1, . . . , k.

If n = max{n1, . . . , nk} we have qnxi ⊂ N , for all i = 1, 2, . . . , k. So qnM ⊂ N , hence q ⊂
√
(N : M) since

q is maximal, q =
√
(N : M). Now we show that if r 6∈ q and x 6∈ N then rx 6∈ N . Suppose rx ∈ N . Since

r 6∈ q and q is a maximal ideal of R, q+ < r >= R. Hence 1 = a + rs, a ∈ q. Also since qnx ∈ N , we have
(1)n = (a+ rs)n = an + s′r where s′ ∈ q. Therefore, x = anx+ s′rx ∈ N , which is a contradiction. Hence by [1,
Lemma 1.1] N is q-primary.

Proposition 10. If q is a finitely generated maximal ideal of R and N is a q-primary submodule of M , then
Mapq(

M
N ) =M .

Proof. Obviously Mapq(
M
N ) ⊂M . For the converse, let q =< r1, r2, . . . , rk >, x ∈M . Since

√
(N : M) = q, there

exists ni > 0 such that rni
i x ∈ N . Let n = n1 + . . .+ nk. We have rni x ∈ N . Hence qnx ⊂ N , so x ∈ Mapq(

M
N ).

So Mapq(
M
N ) =M .

Corollary 11. IfR is a Noetherian ring, M is anR-module andN is a proper submodule ofM , thenMapq(
M
N ) =

M if and only if N is a q-primary submodule of M , for every maximal ideal q of R.

Proof. Obvious.

Corollary 12. IfR is a Noetherian ring andM is anR-module. ThenMapq(M) =M if and only if 0 is q-primary
submodule of M .

Proof. Let N = 0 in the above corollary.

Lemma 13. Suppose q is a maximal ideal of R and Mapq(M) =M . Let S = R− q. Then for every m ∈M and
s ∈ S, there is a unique element m′ ∈M such that m = sm′.

Proof. If s 6∈ q, then < s > +q = R. Hence 1 = rs+ a for some r ∈ R and a ∈ q and since Mapq(M) = M there
is n > 0 such that qnm = 0. So 1n = (rs + a)n = r′s + an implies that m = r′sm + anm = s(r′m) = sm′ for
some m′ ∈ M . Now we show that m′ is unique. If sm′′ = m, then sm′′ = sm′ and s(m′ −m′′) = 0. There are
k, k′ > 0 such that qkm′ = 0 and qk

′
m′′ = 0. Let t = max{k, k′}. So qt(m′ −m′′) = 0, and since 1 = sr′ + at,

(m′ −m′′) = r′s(m′ −m′′) + at(m′ −m′′) = 0. Therefore m′ = m′′.

Proposition 14. Let q be a maximal ideal of R. If Mapq(M) =M then M ∼=M ⊗R Rq.

Proof. We show that M ' Mq. Let φ : M −→ Mq be the canonical homomorphism given by φ(m) = m
1 . Then

kerφ = {m ∈M |m1 = 0}. If m ∈ kerφ, then there is s ∈ S = R − q such that sm = 0 and since s0 = 0 by Lemma
13, we have m = 0. So kerφ = {0}. Hence φ is one-one. Let m

s ∈ Mq, since sM = M (by Lemma 13) we have
m = sm′ for some m′ ∈ M , so φ(m′) = m′

1 = sm′

s = m
s and hence φ is an epimorphism. Therefore M ∼= Mq and

since Mq
∼=M ⊗R Rq, M ∼=M ⊗R Rq.

Theorem 15. Let R be a Noetherian ring and M be an R-module, C be a cover of M such that for every P ∈ C,

(P : M) is a maximal ideal of R. Then Map(M) =
∞⋃
n=1

annM (Jn), where J =
⋂

P∈C

(P : M).

Proof. From [4, Corollary 1] and the fact that Map(M) has a finite length we see that Map(M) =
n⊕

i=1
Mapqi(M)

where qi is a maximal ideal of R.
Let x ∈ Map(M). Then x = x1 + · · · + xn where qki

i xi = 0 for i = 1, . . . , n, ki ∈ N . Set k = max{k1, . . . , kn}.
Then qki x = 0, so x ∈ (0 : Jk).

Now let x ∈
∞⋃
n=1

(0 : Jn). Then Jnx = 0 for some n ∈ N . Let q be a prime ideal ofR such that (0 : x) ⊆ q. Therefore

Jn = (
⋂

P∈C

(P : M))n ⊂ q and as q is prime there is P ∈ C such that (P : M) ⊂ q. But this means q = (P : M),

therefore q is a maximal ideal, so x ∈Map(M).
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Theorem 16. Let R be a Noetherian ring and M be an R-module, not Artinian. Let C be a finite cover of M and
let J =

⋂
P∈C

(P : M). Then (0 :M Jn) is a direct summand of M for some n ∈ N .

Proof. Since M is not Artinian, Map(M) is a proper submodule of M . By [4, Theorem 7], we may assume
Map(M) = (0 : Jk) for some k ∈ N. Now by [3] if we set A = Mspec(M) then AM = Map(M) and by
[3, Theorem A] M =Map(M)⊕K for a submodule K of M , and this decomposition is deep, in the sense that if H
is a submodule of M then H = H ∩ (Map(M))⊕ (H ∩K).
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