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Abstract. Let R be a commutative ring with identity and M be an R-module with Spec(M) # 0. A cover of
a submodule K of M is a subset C of Spec(M) satisfying that for any x € K, z # 0, there is, N € C such that

ann(z) C (N : M). If we denote by J = () (IV : M), and assume that M is finitely generated, then JM = M,
NeC
implies that A/ = 0. We show that if R is a Noetherian ring and M is a finitely generated faithful R-module then M

has a finite cover. And we shall see that if R is a Noetherian ring, M a finitely generated R-module, C' a cover of M

andI C () (N:M),then " I"M =0.
NeC n=1

1. Introduction.

Throughout this paper R will be commutative ring with identity and all R-modules are unitary. From now on
all modules are finitely generated. A proper submodule P of M is said to be prime if »m € P implies m € P, or
rM C P, forr € Rand m € M (see for example [1], [2]). The set of all prime submodules of M is called the
Spectrum of M and is denoted by Spec(M). For any finitely generated R-module, it is known that Spec(M) # ¢.
A cover of a submodule N of M is defined to be a subset C of Spec(M) satisfying that for any 0 # x € N there
exists P € C such that ann(z) C (P : M), where (P : M) = {r € R|rM C P}. If we denote by J the
intersection of all (P : M), P € C and M # 0 we have JM # M. This generalizes the Nakayama’s Lemma. In

o0

addition if R is Noetherian, then (| J"M = 0. Also let ¢ be a maximal ideal of R and N be a submodule of M,
n=1

define M apq(%) = {x € M|¢"z C N for some n > 0}. Then we investigate some of the result between primary
submodule N of M and Map, (%), q € Maz(R) = {q|q is a maximal ideal of R}.

2. Results.

Definition. Let M be a module over a ring R. A proper submodule P of M is a prime submodule, if rm € P
for r € R and m € M implies that either m € P or rM C P. The set of all prime submodules of M is called the
spectrum of M and is denoted by Spec(M).

Definition. Let M be an R-module and K be a submodule of M. A subset C' of Spec(M) is a cover of K, if for
any z € K, x # O there is P € C such that ann(z) C (P : M). If C'is a finite set, then C is called a finite cover.

Lemma 1. Let C be a cover of M. Forany r € R— J (P : M) if rm = 0 for some 0 # m € M, then r = 0.
PeC

Proof. If rm = 0 then r € ann(m) C (P : M) for some P € C, which is a contradiction. m)

Proposition 2. Let M be a non-zero R-module and C be a cover of M. If JM = M, then M = 0, where
J= N (P: M)
PeC

Proof. Suppose M # 0, JM = M there exists r € R such that r = 1(mod.J) and rM = 0, r € ann(m) which is a
contradiction.
m]

Remark. If M is a multiplication faithful R-module then Spec(M) = Spec(R) by [1, Theorem 2], and if

C = Spec(M),then J = (| (P: M) C J(R).
PeC

Lemma 3. Let M be an R-module, C' a cover of M and I ¢ anng(M). Set J = () (P : M), then JM +
PeC
anny (1) # M, where anny (I) = {z € M|Iz = 0}.
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Proof. Since I ¢ annp(M), then M # annp (1), so ammarm 7 0. Let X =z +anny (1), where Iz # 0. We have

(annp(I) : ) C ann(Iz), as Iz # O there exists r € I, rz 3& 0. Then ann(X) C ann(rz) C (P : M) for some
P e C.Hence J -t # s and JM + annyy (1) # M.

ann ann (1)

O

+oo
Proposition 4. Let R be a Noetherian ring, M an R-module, C'acoverof M,I C () (P:M). Then (| I"M =
pPeC n=1

0.

+o0o
Proof. Let (| I"M = K. Then by Krull’s Theorem /K = K. Proposition 2 implies that K’ = 0.

n=1

Proposition 5. Let C be a finite subset of spec(M) such that (P : M) is maximal for every P € C, and

J= N (P:M).If (| J*M =0, then C is a finite cover of M.
pPecC n=1

Proof. If C is not a cover of M, then there is an element 0 # x € M such that anng(z) ¢ (P : M) for every
P e C. Hence anng(z) + (P: M)=R.Letl =r+ swiths € (P: M) and r € ann(z). Then for every n € IN,
1"=(r+s)"=7r"+5,7 €anng(zr)and s’ € (P : M)",s0x = r'z + s’z = s'xz. Hence Rz = (P : M)"x for
every P € C, and so J"z = Rz, hence (| J"M # 0, which is a contradiction.

n=1

Theorem 6. Let R be a Noetherian ring and M a faithful R-module. Then M has a finite cover C' and (| J"M =

n=1

0, where J = () (P : M). In particular if M = Rthen [ J" =0.
pPcC n=1

Proof. Since M is a Noetherian R-module, Ass(M) is a finite set, let Ass(M) = {q1,q,-..,qm} and for every ¢;
there exists a maximal ideal ¢, of R such that ¢; C ¢}. By [1, p.3746] there exist maximal submodules P, of M such
that ¢} = (P, : M). Let C = {P,..., P, }. Forany 0 # x € M, there is ¢; such that ann(z) C ¢; C ¢, = (P; : M).
Hence C'is a cover of M. Since for every P, e C, (PZ- : M) is a maximal ideal of R, by Proposition 4 we have
ﬂ J"M = 0. If M = R, obviously then ﬂ Jr =

n=1 n=1

Definition. Let M be an R-module, then we define Map(M) = {x € M| every prime ideal containing ann(z) is maximal}.
Lemma 7. Map(M) is a submodule of M.

Proof. Let x € Map(M) and r € R. Suppose that ¢ is a prime ideal of R such that ann(rz) C ¢, since ann(z) C
ann(rz) C g so ¢ is a maximal ideal of R, hence rz € Map(M). If z,y € Map(M), and ann(z + y) C ¢ so
ann(z) Nann(y) C g, this implies that ann(x) C q or ann(y) C g, hence ¢ is a maximal ideal of R, i.e., Map(M)
is a submodule of M.

m]

Definition. Let ¢ be a maximal ideal of R and N be a submodule of M. Define M apq(%) ={z € M|q"x C
N for some n > 0}.

Lemma 8. Map, (M) is a submodule of M, for every maximal ideal ¢ of R.

Proof. Letx € Map,(M) and r € R, there exists a positive integer n such that ¢" = = 0, hence ¢" (rz) = 0, therefore
q" C ann(rz) and rz € Map,(M). If z,y € Map,(M) there exist m,n € IN such that ¢"z = 0 and ¢"y = 0. Take
k = max{m,n} so ¢"(z + y) = 0, and hence ¢* C ann(z + y). Therefore x + y € Map,(M).

m

Remark. It is clear that Map(Map(M)) = Map(M), Map,(Mapy(M)) = Map,(M) for every maximal
ideal ¢ of R and if ¢’ # ¢ is a maximal ideal of R then Map, (Map,(M)) = Map,(Mapy (M)) = 0. Also
Map(Mapy(M)) = Mapy,(Map(M)) = Mapy(M).

Proposition 9. If NV is a proper submodule of an R-module M and M apq(%) = M for some maximal ideal g of
R then N is g-primary.
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Proof. Let M =< zy,,,...,x) >. Since Mapy(4F) = M, there is n; > 0 such that ¢"iz; C N fori = 1,... k.
If n = max{ni,...,ny} we have ¢"z; C N, forall i = 1,2,...,k. So ¢"M C N, hence ¢ C /(N : M) since
q is maximal, ¢ = /(N : M). Now we show that if r ¢ q and z ¢ N then ro ¢ N. Suppose rz € N. Since
r & q and ¢ is a maximal ideal of R, g+ < r >= R. Hence 1 = a + rs, a € ¢g. Also since ¢"x € N, we have
(D)™ = (a+rs)™ =a™ + s'r where s’ € q. Therefore, © = a™z + s'rz € N, which is a contradiction. Hence by [1,
Lemma 1.1] N is g-primary.

m)

Proposition 10. If ¢ is a finitely generated maximal ideal of R and N is a ¢g-primary submodule of M, then
M apq(%) =M.

Proof. Obviously Map,(4F) C M. For the converse, let ¢ =< ry,72,...,r; >,z € M. Since /(N : M) = g, there
exists n; > 0 such that 7z € N. Letn = ny + ... + ny. We have rz € N. Hence "z C N, so z € Map,(4L).
So Mapy(3£) = M.

m]

Corollary 11. If R is a Noetherian ring, M is an R-module and N is a proper submodule of M, then M apq(%) =
M if and only if N is a g-primary submodule of M, for every maximal ideal g of R.

Proof. Obvious.

Corollary 12. If R is a Noetherian ring and M is an R-module. Then Map,(M) = M if and only if 0 is ¢g-primary
submodule of M.

Proof. Let N = 0 in the above corollary.

Lemma 13. Suppose ¢ is a maximal ideal of R and Map,(M) = M. Let S = R — . Then for every m € M and
s € S, there is a unique element m’ € M such that m = sm/.

Proof. If s & ¢, then < s > +¢q = R. Hence 1 = rs + a for some r € R and a € ¢ and since Map,(M) = M there
isn > 0 such that ¢"m = 0. So 1" = (rs + a)” = r’s + o™ implies that m = r’sm + a"m = s(r'm) = sm/ for
some m' € M. Now we show that m’ is unique. If sm” = m, then sm” = sm’ and s(m’ —m’) = 0. There are
k, k' > 0 such that ¢*m’ = 0 and ¢*'m” = 0. Let t = max{k, k'}. So ¢*(m’ —m/) = 0, and since 1 = sr’ + a,
(m' —=m") =7r's(m’ —m") + a*(m’ —m”) = 0. Therefore m" = m”.

m]

Proposition 14. Let ¢ be a maximal ideal of R. If Mapy(M) = M then M = M ®p R,,.

Proof. We show that M ~ M,. Let ¢ : M — M, be the canonical homomorphism given by ¢(m) = 5. Then
ker¢ = {m € M|} = 0}. If m € ker¢, then there is s € S = R — ¢ such that sm = 0 and since sO = 0 by Lemma
13, we have m = 0. So ker¢ = {0}. Hence ¢ is one-one. Let % € My, since sM = M (by Lemma 13) we have
m = sm/ for some m’ € M, so ¢(m’) = mT/ = 52"'/ = " and hence ¢ is an epimorphism. Therefore M = M, and
since My = M ®r Ry, M = M ®r R,.

D

Theorem 15. Let R be a Noetherian ring and M be an R-module, C be a cover of M such that for every P € C,

(P : M) is a maximal ideal of R. Then Map(M) = |J annp(J™), where J = () (P: M).
I Pec

n=

Proof. From [4, Corollary 1] and the fact that Map(M) has a finite length we see that Map(M) = € Map,, (M)
i=1

where ¢; is a maximal ideal of R.
Let z € Map(M). Then x = z; + - - - + x,, where qf"a;i =0for:=1,...,n, k € N. Set k = max{ky,...,k,}.
Then ¢fz = 0,50 € (0: J*).

o0

Now letz € |J (0: J™). Then J"z = 0 for some n € N. Let ¢ be a prime ideal of R such that (0 : z) C g. Therefore

n=1
J"= () (P:M))™ C qand as q is prime there is P € C such that (P : M) C q. But this means ¢ = (P : M),
PeC
therefore ¢ is a maximal ideal, so = € Map(M).
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Theorem 16. Let R be a Noetherian ring and M be an R-module, not Artinian. Let C' be a finite cover of M and

let J= () (P:M). Then (0 :p; J™) is a direct summand of M for some n € N.
pecC

Proof. Since M is not Artinian, Map(M) is a proper submodule of M. By [4, Theorem 7], we may assume
Map(M) = (0 : J*) for some k € IN. Now by [3] if we set A = Mspec(M) then *M = Map(M) and by
[3, Theorem A] M = Map(M) @ K for a submodule K of M, and this decomposition is deep, in the sense that if H
is a submodule of M then H = H N (Map(M)) & (H N K). m]
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