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Abstract The Frattini subsemigroup of a finite semigroup S is introduced as the intersection of the maximal

subsemigroups of S and is characterized, in case S is finite with more than one element, as the set of all the semigroup-

theoretic nongenerators of S. As an application, the Frattini subsemigroup of the multiplicative monoid of a finite

special principal ideal ring (SPIR) (R,M) which is not a field is computed as the disjoint union ofM2 and the Frattini

subgroup of the group of units of R.

1 Introduction

All rings considered below are commutative with identity. All semigroups considered are written multiplicatively,

in view of the intended application to the multiplicative monoid of a (commutative) ring. Our starting point is

the classical concept of the Frattini subgroup Φg(G) of a group G, defined as the intersection of all the maximal

subgroups of G (and taken to be G if G has no maximal subgroups): cf. [6, page 156], [11, page 159]. By analogy,

we define the Frattini subsemigroup Φs(S) of a semigroup S to be the intersection of all the maximal subsemigroups

of S (and taken to be S if S has no maximal subsemigroups). If G is a finite group, then Φs(G) = Φg(G), since the

maximal subsemigroups of G are the same as the maximal subgroups of G. To see this, one need only recall that a

finite cancellative semigroup is the same thing as a finite group.

However, if one pursues a semigroup-theoretic analogue of the characterization of the Frattini subgroup of a group

as the set of (group-theoretic) nongenerators of G (cf. [11, item 7.3.2, page 159]), matters do not go as smoothly. In

fact, the comments just prior to and immediately following Proposition 2.2 explain why the set of semigroup-theoretic

non-generators of a finite groupG need not constitute the Frattini subgroup ofG. The underlying reason is, of course,

that the definition of “nongenerator" is not the same in the two contexts. As is well known (cf. [6, page 156], [11,

page 159]), a nongenerator (in the group-theoretic sense) of a group G is any element x ∈ G such that T \ {x} is

a (group-theoretic) generating set of G whenever T is a (group-theoretic) generating set of G. By analogy, we say

that a nongenerator (in the semigroup-theoretic sense) of a semigroup S is any element x ∈ S such that T \ {x} is a

(semigroup-theoretic) generating set of S whenever T is a nonempty (semigroup-theoretic) generating set of S.

The fact that attention was restricted to nonempty sets T in the last definition is both crucial and unavoidable.

We say “crucial" because this restriction has the effect that the identity element 1 is (resp., is not) a nongenerator of

a trivial group in the group-theoretic (resp., semigroup-theoretic) sense. We say “unavoidable" because, while it is
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customary to declare that the empty subset of a group G group-theoretically generates the trivial subgroup of G, there

is no corresponding way to define the subsemigroup generated by the empty subset of a semigroup S, as S need not

have a unique smallest subsemigroup. For this reason, if B is a nonempty subset of a semigroup S, we let < B >

denote the subsemigroup of S generated by B, but we give no semigroup-theoretic meaning to the notation < ∅ >.

Despite the above-mentioned differences between the corresponding semigroup- and group-theoretic concepts,

we obtain a semigroup-theoretic analogue of [11, item 7.3.2, page 159] in Corollary 2.3, which is the main result

of Section 2. This result establishes that if S is a finite semigroup with more than one element, then Φs(S) is the

set of all the nongenerators of S (in the semigroup-theoretic sense). For finite semigroups, this result is the best

possible analogue, for the above comments yield that if E is a trivial group, then Φs(E) is not the set of all the

nongenerators of S (in the semigroup-theoretic sense). A noteworthy result is Lemma 2.1: a finite semigroup with

no proper subsemigroups must be a trivial group.

Perhaps the most useful semigroup associated to a ring R is the multiplicative monoid of R, that is, the structure

consisting of the underlying set of R together with its binary operation of multiplication. One sees this topic in

the current renaissance in factorization theory, but it was already apparent more than 50 years ago, as in Jacobson’s

approach to unique factorization domains via Gaussian monoids [7, pp. 115–127]. In dealing with the semigroup-ring

interface, one must exercise caution, as the semigroup-theoretic ideal theory of S may differ from the ring-theoretic

ideal theory of R. Indeed, according to a result of Aubert [1], each (semigroup-theoretic) ideal of S is an (ring-

theoretic) ideal of R if and only if any pair of elements of R have the property that at least one of them divides the

other in R. One class of rings satisfying this property consists of the special principal ideal rings, or SPIRs; this

may be seen as a consequence of a well known factorization result [12, Example, p. 245]. (Recall also from [12,

p. 245] that a ring R is called an SPIR in case R is a quasilocal principal ideal ring whose unique maximal ideal is

nilpotent.) As Bullington [2] has recently determined the minimal generating sets of submodules of any free module

over a finite SPIR, we are motivated to determine Φs(S) in case S is the multiplicative monoid of a finite SPIR. This

goal is essentially achieved in Corollary 3.6, the main result of Section 3. When supplemented with Remark 3.7 (a),

Corollary 3.6 accomplishes the computation promised by the title of this note. Also noteworthy in Section 3 is the

study of power-joined partitions: see especially the connection with prime ideals in Proposition 3.2 (d).

We have just seen that the “nongenerator" content of Corollary 2.3 combines with the “minimal generating set"

content of [2] to motivate the context of Corollary 3.6. We next mention another related ring-theoretic reason to be

interested in determining the objects described in the title of this note. If G is a group admitting a set of operators

P , the intersection of the maximal P -subgroups of G is denoted by FrP (G), the so-called P -Frattini subgroup of

G. If P is empty, then FrP (G) = Φg(G); and if P is a ring acting on its own additive group G by multiplication,

then FrP (G) is just the Jacobson radical of P [5, Example 3, p. 97]. Moreover, [5, Proposition 1, page 98] gives

a FrP (G)-theoretic generalization of both Nakayama’s Lemma and the result on group-theoretic nongenerators [11,

item 7.3.2, page 159] that motivated Corollary 2.3. See also Remark 3.7 (d).

As usual, ⊂ denotes proper inclusion. As to our other notational conventions, N denotes the set of positive

integers; and, as in [4, page 10], C(r,m) denotes a finite cyclic semigroup of index r and period m. If S is a

semigroup, then Max(S) denotes the set of maximal subsemigroups of S. If A is a ring,
√
I denotes the radical of an

ideal I of A; Spec(A) the set of prime ideals of A; Nil(A) the intersection of the prime ideals of A, that is, the set of

nilpotent elements of A; and U(A) the group of units of A. Any unexplained material is standard, as in [4], [8], [10],

[12].
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2 The Frattini Subsemigroup of a Finite Semigroup

We begin an important piece of strategy. Observe that any overring-theoretic study of integral domains must deal

with the fact that the valuation domains of Krull dimension at most 1 are the integral domains having only themselves

and their quotient fields as overrings (cf. [8, Exercise 29, page 43]). Similarly, any semigroup-theoretic study in

terms of subsemigroups must characterize the semigroups having no proper subsemigroups. (Recall that if S is a

semigroup, then a proper subsemigroup of S is a subsemigroup T of S such that T ⊂ S.) Lemma 2.1 provides this

characterization.

Lemma 2.1. The following conditions are equivalent:

(1) S is a finite semigroup with no proper subsemigroups;

(2) S is a trivial group (that is, a group with only one element).

Proof. (2) ⇒ (1) trivially. Conversely, suppose (1). Choose x ∈ S. By (1), S must coincide with < {x} >, which

is a finite cyclic semigroup, necessarily (semigroup-isomorphic to) C(r,m), for some r,m ∈ N. According to [4,

Theorem 2.1], this means that m = k − r, where 1 ≤ r < k, xr = xk, S = {xi | 1 ≤ i ≤ k − 1} has cardi-

nality k − 1, and G := {xi | r ≤ i ≤ k − 1} is a cyclic group of order m. However, by (1), we also have that

S =< {xr} >= {xrj | j ≥ 1} ⊆ G. It follows that r = 1 and S is a group (necessarily equal to G). In particular, S

is a group without any proper sub(semi)groups and, hence, a trivial group. This completes the proof. 2

As mentioned in the Introduction, Corollary 2.3 is the semigroup-theoretic analogue of a characterization of the

Frattini subgroup of a group. The well known proof of that group-theoretic result ([6, Theorem 10.4.1], [11, item

7.3.2, page 159]) depends on both Zorn’s Lemma and the fact that the identity element 1 of any group G must be a

nongenerator of G in the group-theoretic sense; that is, 1 ∈ Φg(G). In preparing the way for Corollary 2.3, we can

avoid the issues associated with Zorn’s Lemma by concentrating on finite subsemigroups. However, we must come to

grips with the fact that the identity element 1 of a trivial groupE is not a nongenerator ofE in the semigroup-theoretic

sense; that is, 1 /∈ Φs(E). (The crucial point is that the subsemigroup < B > is defined only in case the set B is

nonempty.) Thus, while its statement may be ostensibly similar to a familiar characterization of Φg(G), Proposition

2.2 differs fundamentally from that group-theoretic motivation by needing to rely on the semigroup-theoretic notion

of “nongenerator". To avoid confusion, the statement of Proposition 2.2 emphasizes the semigroup-theoretic nature

of the terms involved; subsequent uses of the term “nongenerator" are tacitly made in only the semigroup-theoretic

sense.

Proposition 2.2. (a) Let S be a semigroup, and let x ∈ S be a nongenerator of S (in the semigroup-theoretic sense).

Then x ∈ Φs(S); that is, x is an element of each maximal subsemigroup of S.

(b) Let S be a finite semigroup that does not consist of only one element. Let x ∈ S such that x ∈ Φs(S); that

is, x is an element of each maximal subsemigroup of S. Then x is a nongenerator of S (in the semigroup-theoretic

sense).

Proof. (a) Deny. Then there exists M ∈ Max(S) such that x 6∈ M . As M ⊂ < M ∪ {x} >, it follows from the

maximality of M that < M ∪ {x} >= S. Since x is a nongenerator, S =< (M ∪ {x}) \ {x} >=< M >. However,

< M >=M 6= S, the desired contradiction.

(b) Deny. Then there exists a subset T of S such that < T ∪ {x} >= S but T is not a (semigroup-theoretic)

generating set of S.
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We claim that T is nonempty. If, on the contrary, T = ∅, then S =< {x} >⊆ Φs(S). It follows from the

definition of Φs(S) that Max(S) = ∅, a contradiction to Lemma 2.1, since we assumed that S does not consist of

only one element. This establishes the above claim. (Note that the claim permits the definition of I and the finding

of M in the next paragraph.)

Put I :=< T >. Recall that I 6= S. Since S is finite, we can find M ∈Max(S) such that I ⊆ M . By hypothesis,

x ∈M . Therefore,

S =< T ∪ {x} > ⊆ < I ∪ {x} > ⊆ < M >=M ⊂ S,

the desired contradiction. The proof is complete. 2

We pause to underscore the need for the above formulation that distinguished between some semigroup-theoretic

notions and their group-theoretic counterparts. Note that the conclusion of Proposition 2.2 (b) fails in case the

semigroup S consists of only one element. Indeed, in that case, S is just a trivial group E, and we have seen that the

set of nongenerators of E is empty (even though Φs(E) = E 6= ∅).

We now give the main result of this section.

Corollary 2.3. Let S be a finite semigroup that does not consist of only one element. Then the Frattini subsemi-

group Φs(S) of S (namely, the intersection of the maximal subsemigroups of S) coincides with the set of all the

nongenerators of S.

Proof. Just as in the proof of the analogous characterization of the Frattini subgroup of a group, the idea of the proof

is to combine parts (a) and (b) of Proposition 2.2. (This works once one notices that the proof of Proposition 2.2

(b) dispatches the case that Φs(S) is defined as an empty intersection, that is, the case in which S has no maximal

subsemigroups. Alternately, one can get past this point by invoking Proposition 2.1. Each of these approaches makes

clear that our proof requires S to consist of more than one element; and, as we have already noted, the conclusion

fails in case S does consist of only one element.) The proof is complete. 2

Remark 2.4. To close the section, we answer a question that may arise because of the relationship between the

Jacobson radical and the P -Frattini subgroup that was mentioned in the Introduction. To wit: why was Φs(S) not

defined as the intersection of the maximal ideals of S? Our explanation is twofold. First, the semigroups that we

are interested in usually have only one maximal ideal. More precisely, let S be a monoid with zero such that S has

more than one element. (For instance, let S be the multiplicative monoid of a nonzero ring.) Then the set of all the

noninvertible elements of S is the unique maximal ideal of S. Second, this set need not be Φs(S). For example,

if S = {0, 1} is the multiplicative monoid of the ring Z/2Z, then the unique maximal ideal of S is {0}, while

Φs(S) = {0} ∩ {1} = ∅.

3 The Power-joined Partition of the Multiplicative Monoid of a Ring

In computing the Frattini subsemigroup of the multiplicative monoid of an SPIR, R, we will find that Nil(R) and

U(R) play important roles in the analysis. Although Nil(R) and U(R) partition any SPIR R, it seems interesting

to study the analogous partitions that arise for more general kinds of rings R. Before doing so in Lemma 3.1 and

Proposition 3.2, we need to recall the following definition.

If S is a semigroup and x, y ∈ S, we say that x is power-joined to y (in S), and write x ∼ y, if there exist positive

integers m,n such that xm = yn. It is easy to verify that ∼ is an equivalence relation on S. The decomposition
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of a semigroup S into its associated ∼-equivalence classes is called the power-joined partition of S and is a useful

technique in the literature on semigroups (cf. [10, item 3.11, page 110; items 4.4 and 4.5, page 114]). Lemma 3.1

contains two interesting facts from that literature; proofs are included for the sake of completeness.

Lemma 3.1. Let S be a finite semigroup. Then:

(a) Each power-joined equivalence class in S contains a unique idempotent element of S.

(b) If S is commutative, then each power-joined equivalence class in S is a subsemigroup of S.

Proof. (a) The “uniqueness" part of the assertion is easy to establish, for if z1 and z2 are idempotent elements of

S such that z1 ∼ z2, then there exist p, q ∈ N such that z1 = zp1 = zq2 = z2. As for the “existence" assertion, fix

x ∈ S, and let C denote the ∼-equivalence class in S containing x. Then T :=< {x} >= {xi | i ∈ N} ⊆ C, and so

it is enough to prove that T contains an idempotent element. As T is (semigroup-isomorphic to) C(r,m) for some

positive integers r and m, it follows from [4, Theorem 2.1] (or see the facts recalled in the proof of Lemma 2.1) that

C(r,m) contains a canonical group, namely, G := {xj | r ≤ j ≤ r +m − 1}. Then the identity element of G is an

idempotent element having the asserted property.

(b) Let x, y be power-joined in S. By (a), there is an (unique) idempotent element z in the power-joined equiva-

lence class C that contains x and y. Since zk = z for each k ∈ N, the definition of “power-joined" leads to i, j ∈ N

such that xi = z = yj . Then, since S is commutative, we have that (xy)ij = xijyij = zjzi = zj+i = z. Therefore,

xy ∼ z, whence z ∈ C. Thus, C is closed under multiplication; that is, C is a subsemigroup of S, to complete the

proof. 2

We next focus on the multiplicative monoids of finite rings.

Proposition 3.2. Let R be a finite nonzero ring and let S denote the multiplicative monoid of R. Then:

(a) Nil(R) and U(R) are distinct power-joined equivalence classes in S.

(b) If R is a local ring (for instance, a finite SPIR), then S has exactly two power-joined equivalence classes,

namely, Nil(R) and U(R).

(c) Let u, v ∈ R. Then u ∼ v if and only if
√
Ru =

√
Rv.

(d) If R has exactly k prime ideals, then S has exactly 2k power-joined equivalence classes.

Proof. (a) If u, v ∈ Nil(R), then there exist p, q ∈ N such that up = 0 = vq, whence u (∼ 0) ∼ v. Conversely, if

u ∼ 0, then u is nilpotent. Therefore, Nil(R) is the power-joined equivalence class in S that contains 0. Moreover,

Nil(R)∩U(R) = ∅ since R is a nonzero ring. It remains only to show that U(R) is a power-joined equivalence class

in S.

Fix x ∈ U(R). As R is finite, the elements x, x2, x3, . . . cannot be pairwise-distinct, and so there exist positive

integers r < k such that xr = xk. Multiplying by (x−1)r, we find that xm = 1, where m := k − r ∈ N. In particular,

x ∼ 1. (Alternately, one could argue as in the proof of Lemma 3.1 (a), by using the theory of finite cyclic semigroups,

to show that {xi | i ∈ N} contains an idempotent element, say e. Then e2 = e ∈ U(R) ⊆ R \ {0}, whence e = 1.)

Conversely, if y ∈ S such that y ∼ 1, then yn = 1 for some n ∈ N, whence y ∈ U(R). Therefore, U(R) is a

power-joined equivalence class in S.

(b) As R is a finite ring, it has Krull dimension 0 (cf. [12, Theorem 2, page 203]); that is, P 6⊂ Q if P and Q are

distinct prime ideals of R. Since R is assumed local, R therefore has a unique prime ideal, say M . Consequently,

M = Nil(R) (cf. [12, Note II, page 151], [8, Theorem 25]). It follows that every nonunit of R is nilpotent. Hence, R

is the (disjoint) union of Nil(R) and U(R). The assertion now follows from (a).
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(c) If w ∈ R, then w ∈ U(R) if and only if
√
Rw = R. Therefore, as it was shown in (a) that U(R) is a power-

joined equivalence class, the assertion follows in case either u or v is a unit of R. Suppose henceforth that u and v are

each nonunits of R. If u ∼ v, then there exist p, q ∈ N such that up = vq, whence
√
Ru =

√
Rup =

√
Rvq =

√
Rv.

It remains only to prove that if u and v are nonunits of R such that
√
Ru =

√
Rv, then u ∼ v.

Let P1, . . . , Pk denote the (pairwise distinct) prime ideals of R. Relabel these ideals so that P1, . . . , Pi are the

prime ideals of R that contain u (resp., v); that is, so that
√
Ru = P1 ∩ . . . ∩ Pi =

√
Rv. If i = k, then u and v are

nilpotent (cf. [12, Note II, page 151], [8, Theorem 25]), whence (a) ensures that u ∼ v, as desired. Thus, without

loss of generality, i < k.

Consider any index j such that 1 ≤ j ≤ i. As Aj := RPj
is an Artinian local ring, its unique prime ideal is

nilpotent, say of nilpotency index ej [12, Lemma 4, page 207]. Put e := e1 · · · · · ei. Since u and v are in each Pj ,

the canonical images of ue and ve in
∏i

j=1 Aj agree (each of these images being 0). The same is then true for the

canonical images of ufe and vfe, for any f ∈ N.

Next, consider any index j such that i+ 1 ≤ j ≤ k. Put Aj := RPj
. As the labeling of the primes ensures that the

canonical images of u and v are in U(Aj), it follows from (a) that these images are power-joined in the multiplicative

monoid of Aj . In fact, it follows from Lagrange’s Theorem that if fj is the order of the finite group U(Aj), then the

canonical images of ufj and vfj in Aj agree (each of these images being 1). Put f := fi+1 · · · · · fk. It follows that

the canonical images of uf and vf in
∏k

j=i+1 Aj agree. The same is then true for the canonical images of ufe and vfe

in
∏k

j=i+1 Aj . In conjunction with the result of the preceding paragraph, this shows that the canonical images of ufe

and vfe in
∏k

j=1 Aj agree. By globalization, the kernel of the canonical map R →
∏k

j=1 Aj is 0, whence ufe = vfe

and u ∼ v, as desired.

(d) Once again, let P1, . . . , Pk denote the prime ideals of R. As noted above, Pi 6⊂ Pj if i and j are distinct

indexes. It follows that if I1 and I2 are distinct nonempty subsets of {P1, . . . , Pk}, then
⋂
{Pi | i ∈ I1} and⋂

{Pi | i ∈ I2} are distinct. If u is any nonunit of R, then
√
Ru is such an intersection (cf. [8, Theorem 26]).

Moreover, given such an intersection
⋂
{Pi | i ∈ I1}, we claim that it is of the form

√
Ru, where u may be chosen

to be any element of (
⋂
{Pi | Pi ∈ I1}) \ (

⋃
{Pi | Pi 6∈ I1}). Indeed, if I1 consists of all the prime ideals of R, this

set-theoretic difference is nonempty since it is Nil(R); in the remaining case, this set-theoretic difference is nonempty

as a consequence of the Prime Avoidance Lemma [8, Theorem 81]. This proves the above claim. Therefore, by (c),

the number of equivalence classes induced by ∼ on R \ U(R) is the number of nonempty subsets of {P1, . . . , Pk},

namely, 2k − 1. As we saw in (a) that U(R) is a power-joined equivalence class, the total number of power-joined

equivalence classes on S is (2k − 1) + 1 = 2k, as asserted.

We next offer an alternate proof of (d). By Artinian structure theory [12, Theorem 3, page 205], R can be expresed

as an internal direct product of finitely many, say d, finite local (nonzero) rings (Rj , Jj). It is well known that the

prime ideals of R are the sets of the form R1 × · · · × Rj−1 × Jj × Rj+1 × · · · × Rd, where 1 ≤ j ≤ d. Therefore,

d = k. As each local ring has exactly 2 idempotent elements, R has exactly 2k idempotent elements. Since Lemma

3.1 (a) yields a bijection between the set of power-joined equivalence classes in S and the set of idempotent elements

of S, the second proof of (d) is complete. 2

Remark 3.3. (a) The above methods give a sharper understanding of the power-joined relation on a finite semigroup

S: if u, v ∈ S, then u ∼ v (if and) only if there exists n ∈ N such that un = vn. (If S is the multiplicative monoid

S of a nonzero finite ring R, this was shown in the proof of Proposition 3.2 (c) in case u and v are nonunits of R.

That proof also reduces us to the case u, v ∈ U(R). Then, by Lagrange’s Theorem, it suffices to take n to be the



82 David E. Dobbs and Brian C. Irick

order of the finite group U(R).) This can be seen in general by using Lemma 3.1 (a). Indeed, if z is the (unique)

idempotent element in the ∼-equivalence class containing u and v, then up = z = vq for some p, q ∈ N, whence

upq = zq = z = zp = vpq.

(b) The use of Artinian structure theory in the proof of the “if" assertion in Lemma 3.2 (c) was unavoidable.

Indeed, that assertion fails if R is infinite, as is shown by the example R := Z, u := 12, v := 18.

We further sharpen the focus to the main context of this section. First, recall from [12, page 245] that if (R,M) is

an SPIR where M has index of nilpotency e ≥ 1 and M = Rπ, then each nonzero element r ∈ R can be expressed in

the form r = uπi, where u ∈ U(R) and i is a uniquely determined integer, 0 ≤ i ≤ e− 1. A consequence that we use

in the proofs of Lemma 3.4 and Theorem 3.5 is that ifR,M, π are as above and x ∈M \M2, then U(R)x := {y ∈ R |

there exists u ∈ U(R) such that y = ux} =M \M2.

Lemma 3.4. Let (R,M) be a local ring and let S denote the multiplicative monoid of R. Then:

(a) If H ∈Max(U(R)), then M ∪H ∈Max(S).

(b) If R is also finite and H is a maximal subgroup of U(R), then M ∪H ∈Max(S).

(c) If R is an SPIR that is not a field, then M2 ∪ U(R) ∈Max(S).

Proof. (a) It is easy to see that K :=M ∪H is a subsemigroup of S. Also, if s ∈ U(R) \H , then s 6∈ K. Therefore,

K is a proper subsemigroup of S. To show that K is maximal, consider any element x ∈ S \K. Then x ∈ U(R) \H .

As H ∈Max(U(R)), it follows that < H ∪ {x} >= U(R). Hence,

S ⊇ < K ∪ {x} > ⊇ < H ∪ {x} > ∪ M = U(R) ∪M = R = S.

Therefore, K is a maximal subsemigroup of S.

(b) Since U(R) is a finite group, a maximal subgroup of U(R) is the same as a maximal subsemigroup of U(R).

Accordingly, the assertion follows from (a).

(c) Note that L := M2 ∪ U(R) is a subsemigroup of S (since M2 is an ideal of R). Also, M2 6= M (since

there exists e ∈ N such that Me = 0 6= M ). As any element of M \M2 is in S \ L, it follows that L is a proper

subsemigroup of S. To show that L is maximal, consider any element x ∈ S \ L. Then x ∈ M \M2. By the above

remarks, U(R)x =M \M2. Hence,

S ⊇ < L ∪ {x} > ⊇ U(R) ∪ U(R)x ∪M2 = U(R) ∪ (M \M2) ∪M2 = U(R) ∪M = R = S.

Therefore, L is a maximal subsemigroup of S, to complete the proof. 2

Note that the conclusion of Lemma 3.4 (c) fails in case R is a field, for then M2 ∪ U(R) = S (which is not a

maximal – or even a proper – subsemigroup of S).

Theorem 3.5. Let (R,M) be an SPIR which is not a field, and let S denote the multiplicative monoid of R. Let K ∈

Max(S). Then:

(a) If U(R) ⊆ K, then K =M2 ∪ U(R).

(b) If R is also finite and U(R) 6⊆ K, then there exists H ∈Max(U(R)) such that K =M ∪H .

Proof. (a) By Lemma 3.4 (c), M2 ∪ U(R) ∈Max(S). Therefore, by the maximality of K, we may assume, without

loss of generality, that there exists x ∈ K \ (M2 ∪ U(R)) ⊆ K ∩ (M \M2). As noted above, the hypothesis ensures
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that U(R)x = M \M2. Moreover, since M is nilpotent, the factorization fact about SPIRs that was recalled above

from [12] ensures that < M \M2 >=M . Hence, since U(R) ⊆ K, we have

S ⊃ K ⊇ < U(R)x ∪ U(R) >⊇ M ∪ U(R) = R = S.

This contradiction completes the proof of (a).

(b) Since R is a nonzero ring, we see from the coset decomposition of the additive group of R via cosets of M

that U(R) = R \M is the union of a nonempty family of pairwise disjoint sets each of which is in bijection with

M . It follows that |U(R)| ≥ |M | ≥ 2 (where, as usual, |T | denotes the cardinality of a set T ; and |M | ≥ 2 since R

is not a field). Thus, U(R) ⊃ {1}. As U(R) is a finite group, it follows that U(R) does have at least one maximal

sub(semi)group.

Next, put L := K ∩U(R). We claim that L is nonempty. If the claim fails, then choose a maximal subgroup G of

U(R) and observe that K ⊆ M ⊂ M ∪G ⊂ S, the last step holding by virtue of Lemma 3.4 (b). As this contradicts

the maximality of K, the claim has been established.

By the hypothesis of (b), L ⊂ U(R). Also, L is evidently a subsemigroup of U(R) (in view of the above claim

and the fact that K is a subsemigroup of S). Next, since U(R) is finite, we can find H ∈ Max(U(R)) such that

L ⊆ H . As K ⊆M ∪ L ⊆M ∪H , Lemma 3.4 (a) and the maximality of K yield that K =M ∪H , to complete the

proof. 2

We next take the main step in computing the object described in the title of this note.

Corollary 3.6. Let (R,M) be a finite SPIR which is not a field, and let S denote the multiplicative monoid of R.

Then the Frattini subsemigroup Φs(S) of S coincides with the disjoint union M2 ∪Φg(U(R)).

Proof. By Lemma 3.4 and Theorem 3.5, Max(S) is the union of {M ∪H | H ∈Max(U(R))} and {M2∪U(R)}. No-

tice that the first of these “unionands" is nonempty, as it was shown in the proof of Theorem 3.5 (b) that Max(U(R))

is nonempty. Therefore, by the definition of the Frattini subsemigroup,

Φs(S) =M2 ∪
⋂
{H | H ∈Max(U(R))} =M2 ∪Φs(U(R)) =M2 ∪Φg(U(R)),

the last step holding since, as noted in the first paragraph of the Introduction, Φs(G) = Φg(G) for any finite group

G. The proof is complete. 2

Remark 3.7. (a) We now take the final step in computing the titular object. If R is a finite field and S is the

multiplicative monoid of R, then

Φs(S) =

∅ if |R| = 2

Φg(R \ {0}) = Φg(U(R)) if |R| ≥ 3.

Notice that, as might be expected from the comment preceding the statement of Theorem 3.5, neither case in the

above display coincides with the formula in Corollary 3.6 (which dealt with finite SPIRs that are not fields). Indeed,

since R is a finite field, M2 ∪Φg(U(R)) = {0}∪Φg(U(R)), a set that properly contains the above-stated value(s) of

Φs(S).

For a proof, note that the final comment in Section 2 takes care of the case |R| = 2. Assume henceforth that

|R| ≥ 3. It is straightforward to verify that if H ⊆ U(R), then H ∈ Max(U(R)) if and only if the disjoint union
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H ∪{0} ∈Max(S). Moreover, U(R) ∈Max(S). Therefore, by the definition of the Frattini subsemigroup, Φs(S) =

U(R) ∩
⋂
{H ∪ {0} | H ∈ Max(U(R))} =

⋂
{H | H ∈ Max(U(R))} = Φs(U(R)) = Φg(U(R)), to complete the

proof.

(b) Despite the disparity between (a) and Corollary 3.6, all finite SPIRs (R,M) do behave in a uniform way that

captures the M2 part of the formula in Corollary 3.6, if one considers the Frattini subsemigroup of the multiplicative

semigroup M . Indeed, Φs(M) =M2 in all cases (regardless of whether R is a field).

The assertion is evident if R is a field, for then M = 0, Max(M) = ∅, and by definition, Φs(M) = M =

{0} = M2. Assume next that the finite SPIR (R,M) is not a field. Recall from the proof of Theorem 3.5 (a) that

< M \M2 >= M . Therefore, it is straightforward to check that Max(M) = {M2 ∪ H | H is a maximal proper

subset of M \M2}. In the spirit of the proof of Theorem 3.5 (b), consider the decomposition of the additive group

of M via cosets of M2. The upshot is that |M \M2| ≥ |M2|. Thus, if |M \M2| ≥ 2, it easily follows from the

definition of the Frattini subsemigroup that Φs(M) =M2. In the remaining case, |M \M2| = 1. Then M2 = 0 and

M = {0, π} with π 6= 0 = π2, whence {0} is the only maximal subsemigroup of M and Φs(M) = 0 = M2. The

proof is complete.

(c) In the spirit of Remark 2.4, we next reinterpret the arguments given in (b). If (R,M) is any finite SPIR, then

M2 is the intersection of the set of all the maximal ideals of the multiplicative semigroup M . Indeed, as in (b), the

assertion is trivial ifR is a field. Assume then thatR is not a field. Observe that ifH is a proper subset ofM \M2, then

M2∪H is a proper (semigroup-theoretic) ideal of M . Moreover, since M is finite, each proper (semigroup-theoretic)

ideal of M is a subset of some maximal subsemigroup of M . Hence, by the proof in (b), Max(M) coincides with the

set of all the maximal ideals ofM . As it was shown in (b) that the intersection of this set isM2, the proof is complete.

(d) The motivation alluded to in the penultimate paragraph of the Introduction helps to cast yet another point of

view on the calculations in (b) and (c). Here only, let us consider (commutative, for the sake of simplicity)“rings

possibly without identity". Consider such an object A. In [3], Fuchs introduced the (right) Frattini subring of A,

showing essentially that it could be viewed as the intersection of the maximal ideals of A and also as the set of

(right) “nongenerators" of A. There is an extensive literature on the Frattini subring and such “nongenerators": cf.

[9, Theorem 4.1.1]. However, the notion of “nongenerator" used in that “ring possibly without identity"-theoretic

literature is essentially group-theoretic, not semigroup-theoretic, in the sense of the second and third paragraphs of

the Introduction. In particular, the literature in question countenances the possibility of empty generating sets by

viewing the symbol < ∅ > as {0}, while our semigroup-theoretic approach to nongenerators accords no meaning to

the symbol < ∅ >.

Nevertheless, if one follows the approach of the literature in question by defining the “Frattini subalgebra" of an

(not necessarily unital) “algebra" B to be the intersection of the maximal right ideals of B, as in [9, page 53], we

reach a point of contact with the above parts (b) and (c). Indeed, if (R,M) is a finite SPIR, then the multiplicative

semigroup M is certainly a nilpotent (nonunital) “algebra" in the sense of [9]. If one applies the observation by

Kruse-Price [9, page 53] that the Frattini subalgebra of a nilpotent (Z-) algebra B is B2 to the case B := M , one

obtains the result that the intersection of the maximal “ring without identity"-theoretic ideals of (the “ring without

identity)" M is M2. This assertion should be compared to the fact established in (c) that M2 is the intersection of the

maximal semigroup-theoretic ideals of M .

Despite this coincidence, one cannot conclude that the maximal semigroup-theoretic ideals of M are the same

as the maximal “ring without identity"-theoretic ideals of M . For example, consider the finite SPIR (R,M) :=

F3[X]/(X3) = F3 + F3x+ F3x
2, where F3 = {0, 1, 2} is a field of order 3 and x := X + (X3). It is easy to verify
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that M consists of 9 elements and that M \M2 = {x, 2x, x + x2, 2x + x2, x + 2x2, 2x + 2x2}. By (b), M \ {x} is

a maximal subsemigroup of M ; and by (c), M \ {x} is also a maximal semigroup-theoretic ideal of M . However,

M \ {x} is not a (maximal) “ring without identity"-theoretic ideal of M . Indeed, it is not even closed under addition,

for 2x + 2x = x. This example contrasts with the fact, noted in the Introduction as a consequence of a result of

Aubert [1], that each semigroup-theoretic ideal of an SPIR, A, is a ring-theoretic ideal of A. In distinguishing the

behavior of M from that of R, our discussion thus serves to highlight an important role of the units of a ring.

In closing, we indicate two possible directions for future work. It would be of interest to replace the restriction

on finite semigroups in Section 2 by considering semigroups that satisfy suitable chain conditions. Also, it would be

interesting to enlarge the class of rings considered in Corollary 3.6 beyond the realm of finite SPIRs.
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