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Abstract. The work carried out in this paper is an interdisciplinary study of Fractional Calculus and Fluid Me-
chanics i.e. work based on Mathematical Physics. The aim of this paper is to generalize the instability phenomenon
in fluid flow through porous media with mean capillary pressure by transforming the problem into Fractional partial
differential equation and solving it by using Fractional Calculus and Special functions.

1 Introduction and Preliminaries

The subject of fractional calculus deals with the investigations of integrals and derivatives of any arbitrary real or
complex order, which unify and extend the notions of integer-order derivative and n-fold integral. It has gained
importance and popularity during the last four decades or so, mainly due to its vast potential of demonstrated ap-
plications in various seemingly diversified fields of science and engineering, such as fluid flow, rheology, diffusion,
relaxation, oscillation, anomalous diffusion, reaction-diffusion, turbulence, diffusive transport akin to diffusion, elec-
tric networks, polymer physics, chemical physics, electrochemistry of corrosion, relaxation processes in complex
systems, propagation of seismic waves, dynamical processes in self-similar and porous structures and others. The
importance of this subject further lies in the fact that during the last three decades, three international conferences
dedicated exclusively to fractional calculus and its applications were held in the University of New Haven in 1974,
University of Glasgow, Scotland in 1984, and the third in Nihon University in Tokyo, Japan in 1989 in which various
workers presented their investigations dealing with the theory and applications of fractional calculus Free shear flows
are inhomogeneous flows with mean velocity gradients that develop in the absence of boundaries. Turbulence free
shear flows are commonly found in natural and engineering environments. The jet of air issuing from one’s nostrils or
mouth upon exhaling, the turbulent plume from a smoldering cigarette, and the buoyant jet issuing from an erupting
volcano - all illustrate both the omnipresence of free turbulent shear flows and the range of scales of such flows in
the natural environment. Examples of the multitude of engineering free shear flows are the wakes behind moving
bodies and the exhausts from jet engines. Most combustion processes and many mixing processes involve turbulent
free shear flows. Free shear flows in the real world are most often turbulent. The tendency of free shear flows to
become and remain turbulent can be greatly modified by the presence of density gradients in the flow, especially
if gravitational effects are also important. Free share flows deals with incompressible constant-density flows away
from walls, which include shear layers, jets and wakes behind bodies. Hydrodynamic stability is of fundamental
importance in fluid dynamics and is a well-established subject of scientific investigation that continues to attract great
interest of the fluid mechanics community. Hydrodynamic instabilities of prototypical character are, for example,
the Rayleigh-Bènard, the Taylor-Couette, the Bènard-Marangoni, the Rayleigh-Taylor, and the Kelvin-Helmholtz
instabilities. Modeling of various instability mechanisms in biological and biomedical systems is currently a very
active and rapidly developing area of research with important biotechnological and medical applications (biofilm
engineering, wound healing, etc.). The understanding of breaking symmetry in hemodynamics could have impor-
tant consequences for vascular biology and diseases and its implication for vascular interventions (grafting, stenting,
etc.). When in a porous medium filled with one fluid and another fluid is injected which is immiscible in nature in
ordinary condition, then instability occurs in the flow depending upon viscosity difference in two flowing phases.
When a fluid flow through porous medium displaced by another fluid of lesser viscosity then instead of regular dis-
placement of whole front protuberance take place which shoot through the porous medium at a relatively high speed.
This phenomenon is called fingering phenomenon (or instability phenomenon). Many researchers have studied this
phenomenon with different point of view.

Fractional calculus is now considered as a practical technique in many branches of science including
physics (Oldham and Spainier [13]). A growing number of works in science and engineering deal with dynami-
cal system described by fractional order equations that involve derivatives and integrals of non-integer order (Benson
et al. [2], Metzler and Klafter [9], Zaslavsky [23]). These new models are more adequate than the previously used
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integer order models, because fractional order derivatives and integrals describe the memory and hereditary proper-
ties of different substances (Poddulony [14]). This is the most significant advantage of the fractional order models in
comparison with integer order models, in which such effects are neglected. In the context of flow in porous media,
fractional space derivatives model large motions through highly conductive layers or fractures, while fractional time
derivatives describe particles that remain motionless for extended period of time (Meerscheart et al. [8]).

In the recent years, the fluid flow through porous media has become highly emerging area of research for
the enhanced recovery of crude oil from the pores of reservoir rock. The phenomenon of instability in polyphasic
flow is playing very important role in the study of fluid flow through porous media in two ways viz. with capillary
pressure and without capillary pressure. The statistical view point was studied by Scheidegger and Johnson [18],
Bhathawala and Shama Parveen [3] considering instability phenomenon in porous media without mean Capillary
pressure. Verma [21] has also studied the behavior of instability in a displacement process through heterogeneous
porous media and existence and uniqueness of solution of the problem was discussed by Atkinson and Peletier [1].
El-Shahed and Salem [11, 12] have used the fractional calculus approach in fluid dynamics, which has been described
by fractional partial differential equation and the exact solution of these equations have been obtained by using the
discrete Laplace transform, Fourier transform and some well-known Special functions.

Flow in a porous medium is described by Darcy’s Law (El-Shahed and Salem [11]) which relates the
movement of fluid to the pressure gradients acting on a parcel of fluid. Darcy’s Law is based on a series of experiments
by Henry Darcy in the mid-19th century showing that the flow through a porous medium is linearly proportional to
the applied pressure gradient and inversely proportional to the viscosity of the fluid. In one dimension, q represents
“mass flow rate by unit area” and is defined as,

q = −K
δ

dP

dx
,

where K is permeability, a parameter intrinsic to the porous network. The unit of permeability K is
m
s

. δ is the

kinematics viscosity has dimension L2T−1, e.g., cm2 sec−1 and
dP

dx
is the non-hydrostatic part of pressure gradient

has dimensionML−2T−2 e.g., g cm−2 ec−2. Thus the mass flow rate by unit area (q) has dimension
cm2

cm2s−1
g

cm2s2 =
g

cm2s
. Here, we considered homogeneous dimensions but in fractional calculus dimensions are inhomogeneous.

Physical Interpretation of Fractional calculus:

Heymans Nicole and Podlubny Igor [6], Podlubny Igor [14] and [15] have discussed the physical interpre-
tation of the Riemann-Liouville fractional differentiation and integration and proposed it in terms of inhomogeneous
and changing (non-static, dynamic) time scale. The contributions of Barrows and Newton to the development of
mathematics and physics in the XVII century which led to the appearance of the “mathematical time”, which is
postulated to “flow equably” and which is usually depicted as a semi-infinite straight line.

Newton himself postulated:
“Absolute, true and mathematical time of it self, and from its own nature, flows equably without relation

to anything external.”
Such a postulate was absolutely necessary for developing Newton’s differential calculus and applying it to

problems of mechanics.
The outstanding mathematical achievement associated with the geometrization of time was, of course,

the invention of the calculus of fluxions by Newton. Mathematically, Newton seems to have found support for his
belief in absolute time by the need, in principle, for an ideal rate-measurer. The invention of differential and integral
calculus and today’s use of them is the strongest reason for continuing using homogeneous equably flowing time.

Figure 1. Homogeneous time axis

Time is often depicted using the time axis, and the geometrically equal intervals of the time axis are
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considered as corresponding to equal time intervals (Figure 1).
G. Clemence wrote:
“The measurement of time is essentially a process of counting. Any recurring phenomenon whatever, the

occurrences of which can be counted, is in fact a measure of time.”
Clocks, including atomic clocks, repeat their “ticks”, and we simply count those ticks, calling them hours,

minutes, seconds, milliseconds, etc. But we are not able to verify if the absolute time which elapsed between, say,
the fifth and the sixth tick (the sixth “second”) is exactly the same as the time, which elapsed between the sixth and
the seventh tick (the seventh “second”). The possible inhomogeneity of the time scale is illustrated in Figure 2.

Figure 2. Homogeneous time axis

The following well-known facts are considered for studying the instability phenomenon in fluid flow
through Porous Media by employing Fractional Calculus approach.

The Laplace Transform (Sneddon [19])is defined as,

L{f(x)} =
∞∫

0

e−st f(t) dt (Re (s) > 0) . (1.1)

The Fourier sine transform (Debnath [5]) is defined as,

u (n, t) =
2√
π

∞∫
0

u (x, t) sinnx dx. . (1.2)

The Error Function (Rainville [16]) of x is defined as

erf(x) =
2
π

x∫
0

exp(−t2) dt (1.3)

and The complimentary error function of x is defined as

erfc(x) =
2
π

∞∫
x

exp(−t2) dt (1.4)

In 1903, the Swedish mathematician Gosta Mittag-Leffler [10] introduced the function Eα(z) defined as

Eα(z) =
∞∑
n= 0

zn

Γ (αn+ 1)
, (1.5)

where z is a complex variable and Γ(s) is a gamma function, α. The Mittag–Leffler function is direct generalization
of the exponential function to which it reduces for α = 1. For 0 < α < 1, Eα(z) interpolates between the pure

exponential and a hypergeometric function
1

1− z
. Its importance is realized during the last two decades due to

its involvement in the problems of physics, chemistry, biology, engineering and applied sciences. Mittag–Leffler
function naturally occurs as the solution of fractional order differential equation or fractional order integral equations.
The generalization of Eα(z) was studied by Wiman [22] in 1905 and defined the function as

Eα,β(z) =
∞∑
n= 0

zn

Γ (αn+ β)
, (α, β ∈ C; Re (α) > 0, Re (β) > 0) (1.6)



98 J. C. Prajapati, A. D. Patel, K. N. Pathak and A. K. Shukla

which is known as Wiman’s function or generalized Mittag–Leffler function as Eα,1(z)=Eα(z).
The Laplace transform of (1.6) takes in the form (Shukla and Prajapati [20])

∞∫
0

e−st tα j+β−1 E
(j)
α ,β(x t

α) dt =
j ! s α−β

(sα − x)j+1 (1.7)

where E
(j)
α ,β(z) =

dj

dzj
Eα,β (z).

The Fox-Wright function (Craven and Csordas [4]) is defined as,

pΨq(x) =
∞∑
k=0

p∏
j=1

Γ(ajk + bj)

q∏
j=1

Γ(cjk + dk)

xk

k !
, (1.8)

where Γ(x) denotes the Gamma function and p and q are nonnegative integers. If we set bj = 1 (j = 1, 2, 3, ..., p)
and dj = 1 (j = 1, 2, 3, ..., q) then (1.8) reduces to the familiar generalized hypergeometric function (Craven and
Csordas [4])

pFq(a1, ..., ap ; b1, ..., bq ;x) =
∞∑
k=0

(a1)k ...(ap)k
(b1)k ...(bp)k

xk

k !
. (1.9)

For the study of generalized Navier - Stokes equations, El - Shahed and Salem [12] used the very special case of
(1.1), given as

w(α, β; z) =
∞∑
j=0

zj

j ! Γ (α j + β)
. (1.10)

The Laplace Transforms of (1.10) is given by
∞∫

0

e−st w (α, β; t) dt =
1
s
Eα ,β

(
1
s

)
. (1.11)

The relationship between the Wright function and the Complementary Error function is given as,

w

(
−1

2
, 1; z

)
= erfc

(z/
2
)
. (1.12)

Riemann-Liouville fractional integrals of order µ (Khan and Abukhammash [7])
Let f(x) ∈ L(a, b), µ ∈ C (Re(µ) > 0) then

aI
µ
x f(x) = Iµa+ f(x) =

1
Γ(µ)

x∫
a

f(t)

(x− t)1−µ dt(x > a) (1.13)

is called R-L left-sided fractional integral of order µ.
Let f(x) ∈ L(a, b), µ ∈ C (Re(µ) > 0) then

xI
µ
b f(x) =

1
Γ(µ)

b∫
x

f(t)

(t− x)1−µ dt(x < b) (1.14)

is called R-L right-sided fractional integral of order µ.
The Laplace Transform of the fractional derivative is given by (El - Shahed and Salem [12])

∞∫
0

e−stDα
t f (t) dt = sα f(s) −

n−1∑
j=0

sα−j−1 Dα
t f(0)(n− 1 < α < n) (1.15)

Theorem (Asymptotic expansion of Wiman functionEα,β(z)): Let 0 < α < 1 and β be an arbitrary complex number
then

Eα,β(z) =
1

2απ i

∫ exp
(
ξ

1
α

)
ξ

1−β
α

ξ − z
dξ. (1.16)

We also use following integral (El - Shahed and Salem [12]) in terms of Wright function as,
∞∫

0

n sin nxEα, α+1 (−n2C tα) dn =
π

2C tα
W

(
−α
2
, 1 ;

−x√
C tα

)
. (1.17)
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2 Statement of the Problem

When water is injected into oil saturated porous medium, as a result perturbation (instability) occurs and develops
the finger flow (Scheidegger and Johnson [18]). In this paper, our aim is to study one dimensional flow, x-indicating
the direction of fluid flow with the origin at the surface, due to presence of large quantity of water at x = 0. We
assume that water saturation at x = 0 is almost equal to one i.e.1 and water saturation remain constant during the
displacement process. Our particular interest in this paper is to explore the possibilities of transforming the problem
in form of fractional partial differential equation with appropriate initial and boundary conditions.

3 Formation of the Problem

The seepage velocity of water (Vw) and oil (δw) are given by Darcy’s law [17] as

Vw = −Kw

δw
K

∂Pw
∂x

(3.1)

Vo = −
Ko

δo
K

∂Po
∂x

(3.2)

and equation of continuity

φ
∂Sw
∂ t

+
∂Vw
∂ x

= 0 (3.3)

φ
∂So
∂ t

+
∂Vo
∂ x

= 0 (3.4)

where K is the permeability of the homogeneous medium, Kw and Ko are the relative permeability of the water and
oil, Sw and So are saturation of water and oil respectively, Pw and Po are the pressure in water and oil, phases δw and
δo are the kinematics viscosities of water and oil respectively and φ is the porosity of medium.

For inhomogeneous dimensions, considering the Time-fractional partial differential equations of the two
phases as under:

φ
∂α Sw
∂tα

+
∂Vw
∂x

= 0, (0 < α < 1) (3.5)

φ
∂α So
∂tα

+
∂Vo
∂x

= 0, (0 < α < 1) . (3.6)

For α = 1, equations (3.5) and (3.6) reduce to equations of continuity (3.3) and (3.4) respectively, and from the
definition of phase saturation [17], we have

Sw + So = 1 (3.7)

The capillary pressure PC is defined as pressure discontinuity between the flowing phases across their common
interface and assume the function of the phase saturation is a continuous linear functional relation as

Pc = β Sw (3.8)

Pc = Po − Pw, (3.9)

where β is constant.
Relationship between phase saturation and relative permeability [18] is given by

Kw = Sw

K0 = 1− Sw
= S0

 (3.10)

4 Formation of Fractional partial differential equation

By substituting the values of Vw and V0(from (3.1) and (3.2)) in (3.5) and (3.6) respectively, we get

φ
∂α Sw
∂ tα

=
∂

∂x

{
Kw

δw
K

∂Pw
∂x

}
(0 < α < 1) (4.1)

φ
∂α So
∂ tα

=
∂

∂x

{
Ko

δo
K

∂Po
∂x

}
(0 < α < 1) . (4.2)

Eliminating
∂Pw
∂x

from (4.1) and (3.9),

φ
∂α Sw
∂ tα

=
∂

∂x

{
K

Kw

δw

(
∂Po
∂x

− ∂Pc
∂x

)}
. (4.3)
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From (4.2), (4.3) and (3.7) we obtained,

∂

∂ x

[
K

{
Kw

δw
+
Ko

δo

}
∂Po
∂x

− Kw

δw
K

∂Pc
∂x

]
= 0. (4.4)

Integrating (4.4) with respect to x, we get

K

{
Kw

δw
+
Ko

δo

}
∂Po
∂x

− Kw

δw
K

∂Pc
∂x

= −B, (4.5)

where B is the constant of integration, whose value can be determined.
Equation (4.5) can be written as

∂ Po
∂ x

=
−B

K
Kw

δw

{
1 +

Ko

Kw

δw
δo

} +

∂ Pc
∂ x

1 +
Ko

Kw

δw
δo

. (4.6)

Substituting the value of
∂Po
∂ x

from (4.6) in (4.3), we arrived at

φ
∂α Sw
∂tα

+
∂

∂x

 K
Ko

δo

∂Pc
∂x

1 +
Ko

Kw

δw
δo

+
B

1 +

{
Ko

Kw

δw
δo

}
 = 0. (4.7)

Pressure of oil (Po) can be written as,

Po =
1
2
(Po + Pw) +

1
2
(Po − Pw) = P +

1
2
Pc. (4.8)

where P̄ is the mean pressure, which is constant.
From (4.5) and (4.8) we get,

B =
K

2

{
Kw

δw
− Ko

δo

}
∂ Pc
∂ x

. (4.9)

Substituting (4.9) in (4.7), we get

φ
∂αSw
∂ tα

+
1
2

∂

∂ x

{
K

Kw

δw

∂Pc
∂ Sw

∂ Sw
∂ x

}
= 0, (0 < α < 1) (4.10)

taking K
Kw

δw

∂Pc
∂Sw

= −λ then (4.10) reduces in the form,

∂2Sw
∂x2 =

1
C

∂αSw
∂tα

, (4.11)

where C =
λ

2P
.

Equation (4.11) is the desired fractional partial differential equation of motion for water saturation, which
governed by the flow of two immiscible phases in a homogenous porous medium and appropriate initial and boundary
conditions are associated with the description as to

Sw(x, 0) = 0,
Sw(0, T ) = Sw0 < 1 ,
lim
x→∞

Sw(x, T ) = 0 ; 0 < x <∞

 (4.12)

5 Solution of Problem

From (4.11), we have
∂αSw
∂tα

= C
∂2Sw
∂x2 . (5.1)

Applying Fourier sine transform (1.2) on (5.1), yields

∂αSw(n, t)

∂ tα
= C

√
2
π

∞∫
0

∂2Sw
∂ x2 sinnx dx ,
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integrating by parts, gives

= C

√
2
π

[
sinnx

∂Sw
∂ x

]∞
0
− nC

√
2
π

∞∫
0

cosnx
∂Sw
∂ x

dx

= C

√
2
π

[
sinnx

∂Sw
∂ x

]∞
0
− nC

√
2
π

[cosnxSw]
∞
0 − n2C

√
2
π

∞∫
0

sinnx Sw dx ,

and applying boundary conditions (4.12), we can write

∂αSw(n, t)

∂ tα
= C

√
2
π

(0)− nC
√

2
π

(−Sw0)− n2C Sw (n, t)

∂αSw(n, t)

∂ tα
= nC Sw0

√
2
π
− n2C Sw (n, t), (5.2)

use of (1.15) and Laplace transform of (5.2), gives

L {DαSw(n, t)} = L

{
nC Sw0

√
2
π
− n2C Sw (n, t)

}
or

sα Sw(n, s) −
n−1∑
j=0

sα−j−1 Dα
t Sw(n, 0) = nC

√
2
π
Sw0 L{1} − n2C L{Sw(n, t)}

or

sα Sw(n, s) − 0 = nC

√
2
π

Sw0

s
− n2C Sw (n, s)

or

sα Sw(n, s) + n2C Sw (n, s) = nC

√
2
π

Sw0

s

or

Sw (n, s) =

√
2
π
nC Sw0

s−1

sα + n2C
, (5.3)

the inverse Laplace transform of (5.3), yields

Sw (n, t) =

√
2
π
nC Sw0 L

−1
{

1
s(sα + n2C)

}

=

√
2
π
nC Sw0

1
2πi

∫
L

est

s(sα + n2C)
ds,

the inverse Fourier sine transform of this equation, gives

Sw(x, t) =

√
2
π
C Sw0

1
2πi

√
2
π

∞∫
0

n


∫
L

est

s(sα + n2C)
ds

 sinnx dn. (5.4)

On substituting ξ = sαtα, z = −n2Ctα, β = 1 + α in (1.16), we get

Eα,α+1(−n2Ctα) =
1

2απi

∫
L

est(sαtα)−
α
α

sαtα + n2Ctα
tαα sα−1 ds,

or

Eα,α+1(−n2Ctα) =
1

2πi

∫
L

est s−αt−α

sα + n2C
sα−1 ds,

or
1

2πi

∫
L

est s−α

sα + n2C
sα−1 ds = tαEα,α+1(−n2Ctα) , (5.5)
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equation (5.4) can also be written as

Sw (x, t) =
2C Sw0

π
tα

∞∫
0

n sin nxEα, α+1 (−n2C tα) dn, (5.6)

this is easy to write in the form of Wright function as

Sw (x, t) = Sw0 W

(
−α
2
, 1 ;

−x√
C tα

)
. (5.7)

On setting α = 1 and using (1.12), (5.7) reduces to,

Sw (x, t) = Sw0 erfc

(
x

2
√
C t

)
. (5.8)

6 Conclusion

The fractional calculus approach in the constitutive relationship model of generalization of the instability phe-
nomenon in fluid flow through porous media with mean capillary pressure is introduced. We have obtained the
exact solution of the fractional partial differential equation in term of well-known Wright function by using Laplace
transform, Fourier transform and Special functions with appropriate initial and boundary conditions. If α = 1
then equation (5.7) reduces to (5.8), i.e. we obtained the solution in the form of complementary error function. This
method certainly useful than conventional method as the conventional method derived only for α = 1 (equations (3.3)
and (3.4)) whose solution given by equation (5.8) while this fractional calculus together with Fourier and Laplace
transforms method presented in this paper also applicable for 0 < α < 1 whose solution given by equation (5.7).
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