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Abstract. The exact solution of Schrödinger equation for the Eckart potential plus Hulthen potential is obtained.
The energy eigenvalues and the corresponding eigenfunctions are obtained via the Nikiforov-Uvarov method. We
expressed the wave function in terms of Jacobi polynomials.

1 INTRODUCTION

The exact and analytical solutions of the radial Schrödinger equation is very important in non-relativistic quantum
mechanics in recent time [1-5] since the wave function and its associated eigenvalues contain all the necessary
information to describe a quantum system fully. Various different methods have been adopted for the solution of
the Schrödinger equation with different potentials [6-10]. One of such methods includes the variational method [11],
the functional analysis method [12], the supersymetric approach [13], the shiffed 1/N expansion [14], the asymptotic
iteraction method (AIM) [15] and the Nikiforov-Uvarov method (NU) [16]. The NU method is however more suitable
for obtaining analytical solutions to such a differential equation. In addition, the Schrödinger equation has been
solved exactly or quasi-exactly for ` 6= 0 with a given potential. Recently, the NU method has been used to solve the
Schrödinger equation for different potentials such as Woods-Saxon [17], Hulthen potential [18], Pseudo and perturbed
Coulomb potential [19], Makorov potential [20], Morse potential [21] and Eckart potential [22]. The purpose of this
article is to use the NU method to solve the Schrödinger equation for Eckart potential plus Hulthen potentials.

The paper is arranged as follows. In section two, we review the Nikiforov-Uvarov method. In section three,
solution of Schrödinger equation with Eckart potential plus Hulthen potential is presented. Finally, a brief conclusion
is given in section four.

2 THE NIKIFOROV-UVAROV (NU) METHOD

The NU method is used to obtain the exact solution of the second-order differential equations such as the Schrödinger,
Klein-Gordon and Dirac equations. Therefore, a non-relativistic Schrödinger equation can be solved exactly using
this method. In the NU method, second-order differential equation is reduced to hypergeometric type equation. This
equation is written as follows

ψ′′(s) +
τ̄ (s)

σ (s)
ψ′ (s) +

σ̄ (s)

σ2 (s)
ψ (s) = 0, (2.1)

Where σ (s) and σ̄ (s) are at most second-degree polynomials, and τ̄ (s) is a first-degree polynomial. In obtaining the
exact solution to Eq.(2.1) we set the wave function as

ψ (s) = ϕ (s)χ (s) (2.2)

Using Eq.(2.2) in Eq.(2.1), we have the transformation.

σ (s)χ′′ (s) + τ (s)χ′ (s) + λχ (s) = 0, (2.3)

where the wave function ψ (s) is defined as the logarithmic derivative [ 16 ] as

ϕ′ (s)

ϕ (s)
=
π (s)

σ (s)
(2.4)

Where π (s) is at most first degree polynomial and
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τ (s) = τ̄ (s) + 2π (s) with τ ′ (s) < 0 (2.5)

Also, the hyper-geometric type function χ (s) in Eq.(2.3) for a fixed n is given by the Rodriques relation [16] as:

χn (s) =
Bn
ρ (s)

dn

dsn
[σn (s) ρ (s)] , (2.6)

where Bn is the normalization constant and the weight function ρ (s) must satisfy the following condition [16,23]

d

ds
(σ (s) ρ (s)) = τ (s) ρ (s) (2.7)

Therefore, the function π (s) in Eq.(2.5) and the parameter λ required for the NU method are defined as follows:

π (s) =

(
σ′ (s)− τ̄ (s)

2

)
±

√(
σ′ (s)− τ̄ (s)

2

)2

− σ̄ (s) + kσ (s) , (2.8)

λ = k + π′ (s) (2.9)

The k-value in the square root of Eq.(2.8) is possible to evaluate if the expression under the square root must be square
of polynomials. This is possible if its descriminant is zero. Thus, the new eigen value equation for the Schrödinger
equation becomes

λ = λn = −nτ ′ (s)−
n (n− 1)

2
σ′′ (s) , n = 0, 1, 2... (2.10)

Finally, comparing Eq.(2.9) with Eq.(2.10), we can obtain the energy eigenvalues.

3 EIGENVALUE AND EIGEN FUNCTION OF ECKART POTENTIAL PLUS HULTHEN
POTENTIAL

The Eckart potential plus Hulthen potential is given as:

V (r) = cos ech2αr + cothαr +
V0

(1− e−2αr)
− V1

(1− e−2αr)
2 (3.1)

where VOand V1 are the depth of the potential while α is a parameter.
The hyperbolic functions are defined as

sinhαr =
eαr − e−αr

2
, coshαr =

eαr + e−αr

2
, tanhαr =

eαr − e−αr

eαr + e−αr
(3.2)

The radial Schrödinger equation is of the form

d2ψ (r)

dr2 +
2m
~2 [E − V (r)]ψ (r) = 0 (3.3)

Using Eq. (3.2) in Eq. (3.1), Eq. (3.3) becomes

d2ψ (r)

dr2 +
2m
~2

[
E − 4e2αr

(1− e−2αr)
2 −

(
1 + e−2αr

)
(1− e−2αr)

− V0

(1− e−2αr)
+

V1

(1− e−2αr)
2

]
ψ (r) = 0 (3.4)

In order to apply NU method to Eq. (3.4), we make a transformation to Eq. (3.4) by applying s = e−2αr, thus, we
have the hypergeometric equation of the form.

d2ψ

ds2 +
1− s

s (1− s)
dψ

ds
+

1

s2 (1− s)2

[
(γ − ε) s2 + (2ε+ δ − β) s+ (ξ − δ − γ − ε)

]
ψ = 0 (3.5)

where the following dimensionless quantities have been used.

ε = −2mE
~2α2 , β =

8m
~2α2 , γ =

2m
~2α2 , δ =

2mV0

~2α2 , ξ =
2mV1

~2α2 (3.6)

Comparing Eq. (3.5) with Eq. (2.1), we have

σ(s) = s(1− s), τ̄(s) = (1− s), σ̄(s) = (γ − ε) s2 + (2ε+ δ − β) s+ (ξ − δ − γ − ε) (3.7)
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In the NU method π(s)in Eq. (2.8) is defined as

π(s) =
−s
2
± 1

2

√
(1− 4a− 4k) s2 + (4k − 4b)s− 4c (3.8)

where
a = γ − ε
b = 2ε+ δ − β
c = ξ − δ − γ − ε

(3.9)

The constant parameter k can be found by the condition that the expression under the square root has a double root,
that is, its discriminant is zero. So for each k value, we have;

π(s) = − s
2
± 1

2



(
2
√
δ + γ + ε− ξ −

√
4β − 4ξ + 1

)
s− 2

√
δ + γ + ε− ξ

for k = −δ − β + 2ξ − 2γ +
√
(4β − 4ξ + 1) (−ξ + δ + γ + ε)

(
2
√
δ + γ + ε− ξ +

√
4β − 4ξ + 1

)
s− 2

√
β + γ + ε− ξ

for k = −δ − β + 2ξ − 2γ −
√
(4β − 4ξ + 1) (−ξ + δ + γ + ε)

(3.10)

In the NU method, τ ′(s) < 0 must be satisfied in order to obtain a physical eigen function. To do this, we select.

k = −δ − β + 2ξ − 2γ −
√
(4β − 4ξ + 1) (−ξ + δ + γ + ε)

and
π(s) = − s

2
− 1

2

[(
2
√
δ + γ + ε− ξ +

√
4β − 4ξ + 1

)
s− 2

√
δ + γ + ε− ξ

]
. With this selection, we can obtain τ(s) as

τ(s) = 1− 2s−
[(

2
√
δ + γ + ε− ξ +

√
4β − 4ξ + 1

)
s− 2

√
δ + γ + ε− ξ

]
(3.11)

τ ′(s) = −2−
(

2
√
δ + γ + ε− ξ +

√
4β − 4ξ + 1

)
(3.12)

Applying Eqs. (3.7) and (3.11) in Eq. (2.10), we have;

λ = λn = n
(

2 + 2
√
δ + γ + ε− ξ +

√
4β − 4ξ + 1

)
+ n(n− 1) (3.13)

Similarly, from Eq. (2.9), we have;

λ = −δ− β+ 2ξ − 2γ −
√
(4β − 4ξ + 1) (−ξ + δ + γ + ε)−

1
2
− 1

2

(
2
√
δ + γ + ε− ξ +

√
4β − 4ξ + 1

)
(3.14)

Comparing Eq. (3.13) and Eq. (3.14), we have,

n
(

2 + 2
√
δ + γ + ε− ξ +

√
4β − 4ξ + 1

)
+ n(n− 1) =

−δ − β + 2ξ − 2γ −
√
(4β − 4ξ + 1) (−ξ + δ + γ + ε)−

1
2
− 1

2

(
2
√
δ + γ + ε− ξ +

√
4β − 4ξ + 1

)
) (3.15)

Solving Eq. (3.15) explicitly for ε and substituting Eq. (3.6), we obtain the energy eigenvalues as,

En = − (V0 + V1 + 1)−
~2α2

2m
1[

1 + 2n+
√

8m
~2α2 (4− V1) + 1

]2

[
2m
~2α2 (2V1 − V0 − 6)−

1
2

√
8m
~2α2 (4− V1) + 1− 1

2
− n
√

8m
~2α2 (4− V1) + 1−

(
n+ n2)]2

(3.16)

Equation (3.16) is the energy spectrum of the Eckart plus Hulthen potentials in compact form.The corresponding
wave function ψ(s) can be found out from ϕ(s) and χ(s) given in Eq. (2.4) and Eq. (2.6), respectively. Using Eq.
(2.4), we have,

ϕ(s) = (1− s)
1
2 (1+µ) sv (3.17)

Where v =
√
δ + γ + ε− ξ and µ =

√
4β − 4ξ + 1.
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In order to determine the other wave function in the NU method, the hypergeometric function χn(s) in Eq. (2.6), we
must first determine the weight function ρ(s) from Eq. (2.7) as,

ρ(s) = s2v (1− s)µ (3.18)

Substituting Eq. (3.18) into the Rodriques relation given in Eq. (2.6), we obtain the wave function as,

χn(s) = Bns
−2v(1− s)−µ d

n

dsn
[
sn+2v(1− s)n+µ

]
(3.19)

Or we express Eq. (3.19) in terms of Jacobi Polynomials as

χn(s) = BnP
(µ+2v,µ)
n (1− s) (3.20)

where Bn is the normalization constant whose numerical value is 1
n!

Combining Eqs. (3.17) and (3.19), we have the unnormalized wave function for Eckart potential plus Hulthen poten-
tial as

ψn(s) = (1− s)
1/2

(1−µ)

S−vBn
dn

dsn
[
Sn+2v(1− s)n+µ

]
(3.21)

In terms of Jacobi polynomials Eq. (3.21) can be expressed as

ψn(s) = CnP
(µ+2v,v)
n (1− s)Sv (1− s)µ−v+

1/2 (3.22)

where Cn is the new normalization constant.
Equation (3.22) satisfies the normalization condition

∫
|ψn(s)|2 ds = 1.

4 CONCLUSION

In summary, we have used the NU method to obtain the energy and wave function for Eckart potential plus Hulthen
potential. The wave function is expressed in terms of the generalized hypergeometric functions. The obtained exact
results are very useful in many fields of physics and quantum chemistry.
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