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Abstract. This paper is devoted to obtain fixed point results for generalizations of well known contractive type
mappings. To attain our goal we are going to use a control function called altering distance function.

1 Introduction and preliminary facts

The Banach’s Contraction Principle (BCP) is one of the most important result in the metric fixed point theory, its
significance lies in its vast applicability in many branches of mathematics and other sciences. Since its appearance
several generalizations have been appeared.

Theorem 1.1 (BCP). Let (M,d) be a complete metric space and T : M −→ M a mapping satisfying the following
condition

d(Tx, Ty) ≤ ad(x, y) (1.1)

for all x, y ∈M , where 0 ≤ a < 1. Then T has a unique fixed point z0 ∈M and for each x ∈M , lim
n→∞

Tnx = z0.

The purpose of this paper is to extend the BCP by using the generalization introduced in 1962 by E. Rakotch [7]
who showed that the BCP holds when the constant a in (1.1) is replaced by a contraction monotonically decreasing
function α : R+ −→ [0, 1). Also, we will use the generalization introduced in 1977 by D.S. Jaggi [3] in which T is
assumed to be continuous and satisfying the contractive condition

d(Tx, Ty) ≤ αd(x, y) + βm(x, y)

for all x, y ∈ M , x 6= y for some α, β ∈ [0, 1) with α + β < 1 and m(x, y) = d(x,Tx)d(y,Ty)
d(x,y) . As well as, the

generalization introduced in 1984 by M.S. Khan, M. Swalech and S. Sessa [4], where they use a control function
which they called an altering distance function.

Definition 1.1. A function ψ : R+ −→ R+ is called an altering distance function if the following properties are
satisfied:

(ψ1) ψ(0) = 0.

(ψ2) ψ is a monotonically non-decreasing function.

(ψ3) ψ is a continuous function.

By Ψ we denote the set of all altering distance functions.

Definition 1.2. Let ϕ : R+ −→ R+ be a function satisfying the following conditions:

(ϕ1) ϕ is a Lebesgue integrable function on each compact subset of R+.

(ϕ2) ϕ is nonnegative.

(ϕ3)
∫ ε

0 ϕ(t)dt > 0 for each ε > 0.

By Φ we denote the set of all functions satisfying the conditions of Definition 1.2. The following lemma shows
that using a mapping ϕ ∈ Φ we obtain a function ψ ∈ Ψ. This fact will be used in the sequel.

Lemma 1.2 ([1] and [6]). Let ϕ ∈ Φ. Define ψ0 : R+ −→ R+ by

ψ0(s) :=
∫ s

0
ϕ(t)dt for all t ∈ R+.

Then ψ0 ∈ Ψ.



Some fixed point theorems by altering distance functions 111

On the other hand, in 2002, A. Branciari [2] obtained a fixed point theorem for a mapping satisfying an analogue of
BCP for an integral type inequality. In 2011, M. Kang et al [5] extend and improve such theorem. As a consequence
of the results on this paper, we will generalize some of the results given in [5]. (see, Remarks 1, 2 and 3.)

In order to attain our goals, the following lemma is a very important tool.

Lemma 1.3. Let (M,d) be a metric space. Let (xn)n be a sequence in M such that limn→∞ d(xn, xn+1) = 0. If
(xn)n is not a Cauchy sequence in M , then there exists an ε > 0 for which we can find subsequences (xm(k))k and
(xn(k))k of (xn)n with m(k) > n(k) > k such that d(xm(k), xn(k)) ≥ ε, d(xm(k)−1, xn(k)) < ε and

(i) lim
k→∞

d(xm(k), xn(k)) = ε.

(ii) lim
k→∞

d(xm(k)−1, xn(k)) = ε.

(iii) lim
k→∞

d(xm(k)−1, xn(k)−1) = ε.

(iv) lim
k→∞

d(xm(k), xn(k)+1) = ε.

(v) lim
k→∞

d(xm(k)+1, xn(k)+1) = ε.

(vi) lim
k→∞

d(xm(k)+1, xn(k)+2) = ε.

2 Main results

In this section, we show the existence, uniqueness and iterative approximations of fixed points for mappings with
contractive conditions depending on monotonically deceasing functions and also by using altering distance functions.
As consequence of these results, we can extend the fixed point theorems of E. Rakotch [7] and D.S. Jaggi [3], as well
as the contractive conditions of integral type given by A. Branciari [2] and M. Kang et al [5].

Theorem 2.1. Let (M,d) be a complete metric space and let T : M −→ M be a mapping satisfying the following
condition:

ψ(d(Tx, Ty)) ≤ α(d(x, y))ψ(d(x, y)) (2.1)

where ψ ∈ Ψ and α : R+ −→ [0, 1) with

lim sup
s→t

α(s) < 1, for all t > 0. (2.2)

Then T has a unique fixed point z0 ∈M such that for each x ∈M , lim
n→∞

Tnx = z0.

Proof. Let x0 be an arbitrary point. We define the iterate sequence xn+1 = Txn = Tnx0. It follows from (2.1) and
(2.2) that

ψ(d(xn, xn+1)) ≤ α(d(xn−1, xn))ψ(d(xn−1, xn)) < ψ(d(xn−1, xn)). (2.3)

Since ψ is a non-decreasing function, then (d(xn, xn+1))n is a decreasing sequence, which implies that there exits a
constant γ such that lim

n→∞
d(xn, xn+1) = γ ≥ 0. Now, we are going to prove that γ = 0. Suppose that γ > 0, then

taking limits n→∞ in (2.3) and using inequality (2.2) we conclude that

0 < ψ(γ) ≤ lim sup
n→∞

ψ(d(xn, xn+1)) ≤ lim sup
n→∞

[α(d(xn−1, xn))ψ(d(xn−1, xn)]

≤ lim sup
n→∞

α(d(xn−1, xn)) lim sup
n→∞

ψ(d(xn−1, xn))

≤ lim sup
s→γ

α(s)ψ(γ) < ψ(γ)

which is a contradiction. Thus γ = 0, that is

lim
n→∞

d(xn, xn+1) = 0.

Now, we claim that (xn)n is a Cauchy sequence in M . Suppose that (xn)n is not a Cauchy sequence, which means
that there exists an ε0 > 0 such that for each positive integer k, there are positive integers m(k) and n(k) with
m(k) > n(k) > k such that d(xm(k), xn(k)) ≥ ε0 and d(xm(k)−1, xn(k)) < ε0. From Lemma 1.3 we have

ε0 = lim
k→∞

d(xm(k), xn(k)+1) = lim
k→∞

d(xm(k)+1, xn(k)+2). (2.4)

In view of (2.1) and (2.2) we deduce that

ψ(d(xm(k)+1, xn(k)+2)) ≤α(d(xm(k), xn(k)+1))ψ(d(xm(k), xn(k)+1))

<ψ(d(xm(k), xn(k)+1)). (2.5)
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Taking limit as n→∞ in (2.5), and from inequality (2.2) and equation (2.4) we have that

0 ≤ ψ(ε0) = lim sup
k→∞

ψ(d(xm(k)+1, xn(k)+2))

≤ lim sup
k→∞

α(d(xm(k), xn(k)+1)) lim sup
k→∞

ψ(d(xm(k), xn(k)+1)) < ψ(ε0)

which is a contradiction. Thus (xn)n is a Cauchy sequence in the complete metric space (M,d), hence there exists
z0 ∈M such that lim

n→∞
Tnx = z0.

Now, we are going to prove that Tz0 = z0. By using inequalities (2.1) and (2.2) we get

0 ≤ ψ(d(xn+1, T z0)) ≤α(d(xn, z0))ψ(d(xn, z0))

<ψ(d(xn, z0))

where ψ(d(xn, z0))→ 0 as n→∞. I.e., lim
n→∞

ψ(d(xn+1, T z0)) = 0. Since ψ ∈ Ψ we have that lim
n→∞

d(xn+1, T z0) =

0. Consequently,
d(z0, T z0) ≤ d(z0, xn+1) + d(xn+1, T z0)→ 0, as n→∞,

which means that z0 = Tz0. Finally, we will prove that T has a unique fixed point. Suppose that T has another fixed
point y0 ∈M . Then

0 < ψ(d(y0, z0)) = ψ(d(Ty0, T z0)) ≤ α(d(y0, z0))ψ(d(y0, z0)) < ψ(d(y0, z0)),

which is a contradiction, completing in this form the proof.

Corollary 2.2. Let (M,d) be a complete metric space and let T : M −→M a mapping satisfying the inequality,∫ ψ(d(Tx,Ty))

0
ϕ(t)dt ≤ α(d(x, y))

∫ ψ(d(x,y))

0
ϕ(t)dt, (2.6)

where ψ ∈ Ψ, ϕ ∈ Φ and α : R+ −→ [0, 1) with sup
s→t

α(s) < 1, for all t > 0. Then T has a unique fixed point z0 ∈M

such that lim
n→∞

Tnx = z0.

Proof. We define ψ0 : R+ −→ R+ by ψ0(x) =
∫ x

0 ϕ(t)dt for ϕ ∈ Φ, then ψ0 ∈ Ψ and so inequality (2.6) becomes

ψ0(ψ(d(Tx, Ty))) ≤ α(d(x, y))ψ0(ψ(d(x, y)))

which further can be written as
ψ1(d(Tx, Ty)) ≤ α(d(x, y))ψ1(d(x, y))

where ψ1 = ψ0 ◦ ψ ∈ Ψ. Hence, from Theorem 2.1 we conclude that T has a unique fixed point.

Remark 1. Notice that if we consider ψ = Id the identity mapping in Corollary 2.2, we obtain the Theorem 3.1 of
[5].

Theorem 2.3. Let T a mapping from a complete metric space (M,d) into itself satisfying the following inequality

ψ(d(Tx, Ty)) ≤ α(d(x, y))ψ(d(x, Tx)) + β(d(x, y))ψ(d(y, Ty)) (2.7)

where ψ ∈ Ψ and α, β : R+ −→ [0, 1) with

α(t) + β(t) < 1 ∀t ∈ R+, lim sup
s→0+

β(s) < 1

lim sup
s→t+

α(s)

1− β(s)
< 1, ∀t > 0

 . (2.8)

Then T has a unique fixed point z0 ∈M such that for each x ∈M , lim
n→∞

Tnx = z0.

Proof. Let x ∈ M be an arbitrary point, and let the sequence (xn)n defined as xn+1 = Txn, n = 1, . . . . It follows
from (2.7) that

ψ(d(xn, xn+1)) ≤α(d(xn−1, xn))ψ(d(xn−1, xn)) + β(d(xn−1, xn))ψ(d(xn, xn+1))

or equivalently

ψ(d(xn, xn+1)) ≤
α(d(xn−1, xn))

1− β(d(xn−1,xn
))
ψ(d(xn−1, xn)).
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Now, from (2.8) we obtain
ψ(d(xn, xn+1)) ≤ ψ(d(xn−1, xn)) ∀n ∈ Z+.

As in the proof of Theorem 2.1, we conclude that the sequence (d(xn, xn+1))n is non-increasing and converges to 0,
that is,

lim
n→∞

d(xn, xn+1) = 0. (2.9)

We will prove now that (xn)n is a Cauchy sequence in M . Suppose that (xn)n is not a Cauchy sequence. Then, there
exists an ε0 > 0 and sequences of positive integers (m(k))k and (n(k))k such that m(k) > n(k) > k satisfying

d(xm(k), xn(k)) ≥ ε0

d(xm(k)−1, xn(k)) < ε0

}
.

From Lemma 1.3 we have
ε0 = lim

k→∞
d(xm(k)+1, xn(k)+2)

and from (2.7) we get that

ψ(ε0) = lim sup
k→∞

ψ(d(xm(k)+1, xn(k)+2))

≤ lim sup
k→∞

[
α(d(xm(k), xn(k)+1))ψ(d(xm(k), xm(k)+1))

+ β(d(xm(k), xn(k)+1))ψ(d(xn(k)+1, xn(k)+2))
]

≤ lim sup
k→∞

α(d(xm(k), xn(k)+1)) lim sup
k→∞

ψ(d(xm(k), xm(k)+1))

+ lim sup
k→∞

β(d(xm(k), xn(k)+1)) lim sup
k→∞

ψ(d(xn(k)+1, xn(k)+2))

< lim sup
k→∞

ψ(d(xm(k), xm(k)+1)) + lim sup
k→∞

ψ(d(xn(k)+1, xn(k)+2)) = 0

which is a contradiction. Hence (xn)n is a Cauchy sequence in the complete metric space (M,d), so there exists
a z0 ∈ M such that lim

n→∞
Tnx = z0. Now, we are going to prove that z0 is a fixed point of T . This means that

d(z0, T z0) = 0. If we suppose that d(z0, T z0) 6= 0, from (2.7) and (2.9) we obtain

0 <ψ(d(z0, T z0)) = lim sup
n→∞

ψ(d(Tnx, Tz0))

≤ lim sup
n→∞

[
α(d(Tn−1x, z0))ψ(d(T

n−1x, Tnx))
]

+ lim sup
n→∞

[
β(d(Tn−1x, z0))ψ(d(z0, T z0))

]
= lim sup

s→0+
[β(s)ψ(d(z0, T z0))] < ψ(d(z0, T z0))

which is not possible. Thus d(z0, T z0) = 0. I.e., z0 = Tz0. Finally, we prove that T has a unique fixed point. Suppose
that T has another fixed point z1 6= z0. It follows from (2.7) that

0 <ψ(d(z0, z1)) = ψ(d(Tz0, T z1))

≤α(d(z0, z1))ψ(d(z0, T z0)) + β(d(z0, z1))ψ(d(z1, T z1)) = 0

having in this way a contradiction, completing therefore the proof.

Corollary 2.4. Let (M,d) be a complete metric space and let T : M −→ M a mapping satisfying the following
condition ∫ ψ(d(Tx,Ty))

0
ϕ(t)dt ≤ α(d(x, y))

∫ ψ(d(x,Tx))

0
ϕ(t)dt+ β(d(x, y))

∫ ψ(d(y,Ty))

0
ϕ(t)dt (2.10)

where ψ ∈ Ψ, ϕ ∈ Φ and α, β : R+ −→ [0, 1) with

α(t) + β(t) < 1 ∀t ∈ R+, lim sup
s→0+

β(s) < 1

lim sup
s→t+

α(s)

1− β(s)
< 1, ∀t > 0

 .

Then T has a unique fixed point z0 ∈M such that for each x ∈M , lim
n→∞

Tnx = z0.



114 José R. Morales and Edixon Rojas

Proof. We define ψ0 : R+ −→ R+ by ψ0(x) =
∫ x

0 ϕ(t)dt for ϕ ∈ Φ, then ψ0 ∈ Ψ and (2.10) becomes,

ψ0(ψ(d(Tx, Ty))) ≤ α(d(x, y))ψ0(ψ(d(x, Tx))) + β(d(x, y))ψ0(ψ(d(y, Ty))).

Setting ψ1 = ψ0 ◦ ψ ∈ Ψ, from Theorem 2.3 we conclude that T has a unique fixed point.

Remark 2. Notice that if we consider ψ = Id in Corollary 2.4, we obtain the Theorem 3.2 of [5].

Theorem 2.5. Let (M,d) be a complete metric space and let T : M −→ M be a mapping satisfying the following
condition:

ψ(d(Tx, Ty)) ≤ β(d(x, y)) (ψ(d(x, Tx)) + ψ(d(y, Ty)))

where ψ ∈ Ψ and β : R+ −→ [0, 1
2) is a function such that

lim
s→t+

sup
β(s)

1− β(s)
< 1, ∀t > 0.

Then T has a unique fixed point z0 ∈M . Moreover, for each x ∈M , lim
n→∞

Tnx = z0.

Proof. The proof is essentially the same as the proof of Theorem 2.3, hence it is omitted.

Corollary 2.6. Let (M,d) be a complete metric space and let T : M −→ M be a mapping satisfying the following
inequality ∫ ψ(d(Tx,Ty))

0
ϕ(t)dt ≤ β(d(x, y))

(∫ ψ(d(x,Tx))

0
ϕ(t)dt+

∫ ψ(d(y,Ty))

0
ϕ(t)dt

)
where ψ ∈ Ψ, ϕ ∈ Φ and β : R+ −→ [0, 1

2) is a function with

lim sup
s→t+

β(s)

1− β(s)
< 1, ∀t > 0.

Then T has a unique fixed point z0 ∈M .

Proof. Straightforward as the proof of Corollary 2.4.

Remark 3. Notice that if we consider ψ = Id in Corollary 2.6, we obtain the Theorem 3.3 of [5].

Example 1. Let M = R+ endowed with the euclidean metric d = | · |. We define T : M −→M by

Tx =
x

1 + x
.

Consider α : R+ −→ [0, 1) given by

α(t) =

{
1
2 , if t = 0

1
(1+t)2 , if t ∈ (0,∞).

Finally, let ψ(t) = t2 and ϕ(t) = 2t for all t ∈ R+. Then is clear that T is not a Banach contraction, thus the BCP
cannot be apply. Also, in [5] was proved that the contractive condition of Theorem 3.1 in [5] does not hold, therefore
that theorem cannot be applied. Now, notice that

ψ(d(Tx, Ty)) =ψ(|Tx− Ty|) = (Tx− Ty)2 =

(
x

1 + x
− y

1 + y

)
=

(x− y)2

(1 + x)2(1 + y)2 ≤
(x− y)2

(1 + |x− y|)2 = α(d(x, y))ψ(d(x, y)).

Thus, we have proved that condition (2.1) is satisfied and the conditions of Theorem 2.1 are fulfilled. Therefore, from
Theorem 2.1 we guarantee that T has a unique fixed point z0 = 0.

Theorem 2.7. Let (M,d) be a complete metric space and let T : M −→M be a continuous mapping. We denote

m(x, y) = max
{
d(x, Tx)d(y, Ty)

d(x, y)
, d(x, y)

}
(2.11)

for all x, y ∈M , x 6= y. Suppose that T satisfies the following condition:

ψ(d(Tx, Ty)) ≤ α(d(x, y))ψ(m(x, y)) (2.12)

for all x, y ∈M , ψ ∈ Ψ and α : R −→ [0, 1) is a function with

lim sup
s→t

α(s) < 1, for all t > 0. (2.13)

Then T has a unique fixed point z0 ∈M such that lim
n→∞

Tnx = z0 for all x ∈M .
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Proof. Let x0 ∈ M be an arbitrary point and we define the sequence xn+1 = Txn = Tnx0, n = 0, 1, . . . .It follows
from (2.12) that

ψ(d(xn, xn+1)) =ψ(d(Txn−1, Txn)) ≤ α(d(xn−1, xn))ψ(m(xn−1, xn)).

By using (2.11) we get

m(xn−1, xn) =max
{
d(xn−1, Txn−1)d(xn, Txn)

d(xn−1, xn)
, d(xn−1, xn)

}
=max

{
d(xn−1, xn)d(xn, xn+1)

d(xn−1, xn)
, d(xn−1, xn)

}
=max {d(xn, xn+1), d(xn−1, xn)} ,

which implies,
ψ(d(xn, xn+1)) ≤ α(d(xn−1, xn))ψ(max {d(xn, xn+1), d(xn−1, xn)}).

Since ψ is monotonically non-decreasing and from (2.13) we have

ψ(d(xn, xn+1)) <ψ(max {d(xn, xn+1), d(xn−1, xn)}) = ψ(d(xn−1, xn)).

Then, it follows that (d(xn, xn+1))n is a monotone decreasing sequence of numbers. Consequently, there exists γ ≥ 0
such that lim

n→∞
d(xn, xn+1) = γ. Suppose that γ > 0, then

0 < ψ(γ) ≤ψ(d(xn, xn+1)) < ψ(d(xn−1, xn))

taking limits as n→∞ inequality above yields ψ(γ) < ψ(γ) which is a contradiction. Therefore γ = 0, thus

lim
n→∞

d(xn, xn+1) = 0. (2.14)

Now, we prove that (xn)n is a Cauchy sequence in M . Suppose that (xn)n is not a Cauchy sequence, then there
exists a ε0 and subsequences (xm(k))k, (xn(k))k of (xn)n with m(k) > n(k) > k such that d(xm(k), xn(k)) ≥ ε0,
d(xm(k)−1, xn(k)) < ε0. From Lemma 1.3 we have

lim
k→∞

d(xm(k)−1, xn(k)−1) = ε0. (2.15)

Inequality (2.12) gives us

ψ(ε0) ≤ψ(d(xm(k), xn(k))) = ψ(d(Txm(k)−1, Txn(k)−1))

≤α(d(xm(k)−1, xn(k)−1))ψ(m(xm(k)−1, xn(k)−1)).

On the other hand, we have

m(xm(k)−1, xn(k)−1) =

max
{
d(xm(k)−1,xm(k))d(xn(k)−1,xn(k))

d(xm(k)−1,xn(k)−1)
, d(xm(k)−1, xn(k)−1)

}
.

Now, by taking upper limit as k →∞ and using (2.14) and (2.15), we have

ψ(ε0) < ψ(max{0, ε0}) = ψ(ε0)

which is a contradiction. Hence, (xn)n is a Cauchy sequence in the complete metric space (M,d). Thus, there exists
z0 ∈ M such that lim

n→∞
xn = z0. Furthermore, the continuity of T implies that z0 = Tz0. Finally, we are going to

prove that the fixed point is unique. If there is another fixed point z1 of T , with z0 6= z1, then

ψ(d(z0, z1)) = ψ(d(Tz0, T z1)) ≤ α(d(z0, z1))ψ(m(z0, z1))

where

m(z0, z1) = max
{
d(z0, T z0)d(z1, T z1)

d(z0, z1)
, d(z0, z1)

}
= max{0, d(z0, z1)}.

Thus we have that ψ(d(z0, z1)) < ψ(d(z0, z1)), which is a contradiction. Hence z0 in the unique fixed point of T in
M .

As a consequence of Theorem 2.7 we have the following result.
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Theorem 2.8. Let (M,d) be a complete metric space and let T : M −→ M be a continuous mapping. If T satisfies
any of the following contractive conditions

(i) ψ(d(Tx, Ty)) ≤ γψ(m(x, y)).

(ii) d(Tx, Ty) ≤ α(d(x, y))m(x, y).

(iii) d(Tx, Ty) ≤ γm(x, y).

(iv) d(Tx, Ty) ≤ δd(x, y) + η d(x,Tx)+d(y,Ty)
d(x,y) .

(v)
∫ ψ(d(Tx,Ty))

0
ϕ(t)dt ≤ α(d(x, y))

∫ ψ(m(x,y))

0
ϕ(t)dt.

(vi)
∫ ψ(d(Tx,Ty))

0
ϕ(t)dt ≤ γ

∫ ψ(m(x,y))

0
ϕ(t)dt.

(vii)
∫ d(Tx,Ty)

0
ϕ(t)dt ≤ α(d(x, y))

∫ m(x,y)

0
ϕ(t)dt.

(viii)
∫ d(Tx,Ty)

0
ϕ(t)dt ≤ γ

∫ m(x,y)

0
ϕ(t)dt.

(ix)
∫ d(Tx,Ty)

0
ϕ(t)dt ≤ δ

∫ d(x,y)

0
ϕ(t)dt+ η

∫ d(x,Tx)+d(y,Ty)
d(x,y)

0
ϕ(t)dt.

For all x, y ∈ M , γ, δ, η ∈ [0, 1), δ + η < 1, ψ ∈ Ψ, ϕ ∈ Φ, m(x, y) defined as in (2.11) and α : R+ −→ [0, 1)
a function with lim sup

s→t
α(s) < 1 for all t > 0. Then, T has a unique fixed point z0 ∈ M such that for all x ∈ M ,

lim
n→∞

Tnx=z0.
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