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Abstract. Let R be a commutative ring with identity. An R-module M is said to be hollow,
if the set of maximal submodules of M is empty or for every maximal submodule N of M, and
for every submodule K of M, the equality N + K = M, implies that K = M.

Some equivalent conditions for a module to be hollow are given. Hollow modules over Laske-
rian domains and over arithmetical rings are studied. Furthermore modules whose submodules
are hollow will be characterized, and the behavior of hollow modules under the localization is
studied.

1 Introduction

According to [9] a non-zero module M is define to be hollow if every submodule N of M is
small, that is for any submodule K of M, the equality N + K = M implies that K = M.

In noncommutative rings, the above classical notion of hollow modules has been studied
extensively for a long time in many papers (see for example [7, 9, 10, 11, 12, 13, 14, 15, 16, 19,
25, 26]). Some interesting results on hollow modules over noncommutative rings can be found
in [26, Chapter 8].

Throughout this paper all the rings considered are commutative with identity, all modules are
unitary. The set of maximal submodules of a module M is denoted by Max(M).

In this paper a slightly different notion of hollow modules is introduced and studied as fol-
lows:

Definition 1.1. An R-module M is said to be a hollow module, if Maz(M) = ), or for every
maximal submodule N of M, and for every submodule K of M, the equality N + K = M,
implies that K = M.

Unlike the classical definition of hollow module, in this new notion of hollow modules, the
module M = 0 is hollow. So whenever we need to proof a module M is hollow, we can assume
that 0 # M and Maz(M) # 0.

Also according to this definition Z,,~ is a hollow Z-module, since Max(Zy~) = (). Besides
if R is an integral domain which is not a field and K is the field of fractions of R, then K is a
hollow R-module, since Maz(K) = () (see [21, Theorem 1]).

Several characterizations of hollow modules are given, in Section 2 of this paper. We will
find some equivalent conditions for a module to be hollow; we will study when every submodule
of a module is a hollow module.

We will prove that an integral domain R of Krull dimension < 1 is Laskerian if and only if
every cyclic R-module is either isomorphic to R or isomorphic to a finite direct sum of hollow
modules, and when this is the case, we show that the global dimension of R can be computed
from only the dimensions of cyclic hollow modules.

In Section 4, we will find the relation between the localization of a module and hollowness.
Particularly in 4.2, we will get a characterization for locally cyclic modules.

2 Equivalent conditions for hollowness

The main results in this section gives a list of equivalent conditions that characterize hollow
modules. In this section, we will show that hollow modules are closely related to multiplication
modules. Recall that an R-module M is said to be multiplication if N = (N : M )M for every
submodule N of M, where (N : M) ={r € R|rM C N} (see, [1, 5, 8]).
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Also recall that an R-module M is locally cyclic, if for each prime ideal P of R, Mp is a
cyclic Rp-module.
The following lemma will be used throughout this paper.

Lemma 2.1. Let R be a ring. Then:

(i) [5, Proposition 4] Every multiplication module over a semi local ring is cyclic.

(ii) [1, Theorem 2.1(1),(6)] If M is a multiplication R-module, and N is a submodule of M,
then for each prime ideal P of R, Mp is a cyclic Rp-module and if Mp # 0, then (N
M)p = (Np : Mp).

(iii) /5, Lemma 2(ii)] If M is a finitely generated R-module and for each maximal ideal 9 of
R, My is a multiplication Reop-module, then M is a multiplication R-module.

(iv) [8, Corollary 2.3] Let My, X € A, be a collection of finitely generated R-modules, and
M = ®yep M. Then M is a multiplication mOflule if and only if for each A € A, M is a
multiplication module and Ann (M) + Ann My = R.

(v) [5, Lemma 3] If M is a locally cyclic R-module, and M is a semi local ring, then M is
a cyclic R-module.

Recall that a local module is a module with exactly one maximal submodule. Also a local
ring is a ring (not necessarily Noetherian) with exactly one maximal ideal.

Theorem 2.2. Let M be a non-zero R-module. Then the following are equivalent:

(i) M is a hollow module and Maxz (M) # (;
(ii) M is a cyclic and local module;
(iii) M is a finitely generated local module;
(>iv) WISM is a local ring and M is a cyclic module;

) ﬁ is a local ring and M is a multiplication module.

(vi) There exists an ideal I of R where M = % and ? is a local ring.

Proof. (i) = (ii) Let NV be a maximal submodule of M and let L be an arbitrary submodule of
M where L £ N. Since N + L = M, and M is a hollow module, then M = L. Hence M has
just one maximal submodule. If z € M — N and L = Rz, then M = Rx.

(ii) = (iii) The proof is obvious.

(iii) = (i) Let NV be a maximal submodule of M and let L be a submodule of M. If
N+ L = M and L # M, then by Zorn’s Lemma there exists a maximal submodule Ny of
M containing L. Since M is a local module, Ny = N. So L C Ny = N and consequently
M = N + L = N which is a contradiction. Thus L =M.

(if) = (iv) Since M is cyclic, so M = Am 57 Since M is a local R-module, Anf: 17 is a
local R-module. It is easy to see that the submodules of M as an R-module are exactly the
ideals of the ring Ann . Hence Ai is a local ring.

(iv) = (v) The proof is clear.

(v) = (i) Obviously M is a multiplication ﬁ-module and since - R 7 is alocal ring,
so by 2.1(i), M is a cyclic Anf -module and clearly it is a cyclic R-module. Now M = Anff 57
and hence M is a local R- module as well.

(iv) = (vi) Since ﬁ 77 18 alocal ring and M is a cyclic R-module, M = ——*—. That is,
in this case I = Ann M.

(vi) = (iv) Obviously M = £ T is a cyclic R-module which is generated by 1 + I So M isa
non-zero cyclic R-module. Also Ann M = Ann r(#) = I. This means, .- = & is a local
ring. O

Corollary 2.3. Let 0 # R be a ring. Then the following are equivalent:
(i) Every cyclic R-module is a hollow module;

(ii) R is alocal ring.

Proof. If every cyclic R-module is a hollow module, then obviously R as an R-module is hollow.
So by 2.2(ii), R is a local R-module and thus R is a local ring.

Conversely let R be a local ring and let M be a non-zero cyclic R-module. Clearly "+ R 7 1S
a local ring. Hence by 2.2(iv), M is a hollow module. O
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Corollary 2.4. Let R be an integral domain of Krull dimension one, and let M be a non-zero
multiplication R-module with Ann M # 0. Then M is a hollow module if and only if Ann M is
a primary ideal.

Proof. By 2. 2(V) M is a hollow module if and only if "5 is a local ring. Hence it is enough
to show that — M is a local ring if and only if Ann M is a primary ideal. This is a consequence
of the followmg well known facts:

If an ideal is contained in only one prime ideal P, then it is P-primary, and if an ideal [ is

m-primary where m is a maximal ideal, then m is the unique prime ideal containing I (see [6,
Page 268, Remark]). O

3 Hollow modules over Laskerian domains
Recall that a ring R is called Laskerian if every ideal of R has a primary decomposition.

Theorem 3.1. Let R be an integral domain of Krull dimension < 1. Then R is a Laskerian
domain if and only if every cyclic R-module is either isomorphic to R or isomorphic to a finite
direct sum of hollow modules.

Proof. If dim R = 0, then since R is an integral domain, it is a field, so the proof for the both
sides of implication is obvious. Now suppose that dim R = 1.

(=) Let M be a cyclic R-module, which is not isomorphic to R. Then M = I , where I is
a non-zero ideal of R. Since R is a Laskerian ring, then I has a minimal primary decomposition,
say I = N Iy. Suppose /I, = Py, for 1 < k < n. Asdim R = 1, for each k, k', k # K/,
the maximal ideals Py, P} are coprime and so Iy, I}/ are coprime. Hence by [23, Theorems 1.4,
13], & ~ I—R] ® % DB % as rings, by the rule p(x + I) = (x + I,z + L, ,z + 1,).
One can easily see that ¢ is also an R-module isomorphism, that is ? = ILT S T}j G- & 1% as
R-modules.

Note that for each k, the annihilator of the R-module Iﬁ is Ij, and it is a non-zero primary

ideal. Thus by 2.4, - is a hollow R-module, which completes the proof

(<=)LetIbea non zero ideal of R. By our assumption, £ 22 R ofg...@ where each
y p T i 1 ,

# is a hollow R-module. Therefore I = Ann & = Ann (£ © £ @ @ ﬁ) = N¢_, 1. Since
each R - is a hollow R-module, by 2.4, each I, is a primary ideal, which completes the proof. O

Corollary 3.2. If R is a Dedekind domain, then every finitely generated R-module is a finite
direct sum of hollow modules and a finitely generated projective module.

Proof. Let M be a finitely generated R-module. As R is a Dedekind domain, M is isomorphic
to a direct sum of a finite number of cyclic modules and a projective module. Suppose M =
My®M,®---® M, ® P, where each M; is a cyclic module and P is a projective module. Note
that P = m, so P is a finitely generated module.

Without loss of generality, we may suppose that M; 2 R for 1 < i < k, and M; = R for
k 4+ 1 <i < n where k is a non-negative integer with k < n.

By 3.1, each M; is a finite direct sum of hollow modules for each 1 < i < k. Also note that
P =Muy1®&Mpy2® - &M, ®P =ZRO®R®---® R® P, so P is a finitely generated
projective module. O

Recall that the projective dimension of a module M (see [24, Page 454]) is denoted by
pdr(M) and the global dimension of a ring R denoted by D(R) is defined by:

D(R) = sup{pdr(M) : M is an R — module}.

According to [24, Theorem 8.16] a formula due to Auslander for simplifying the computation
of D(R) was given as follows:

D(R) = sup{pdﬂ?) : Iis anideal of R}.

The flat dimension of a module M is denoted by fdg(M) and the weak global dimension of
aring R (see [24, Page 462]) denoted by W D(R) is defined by:

WD(R) = sup{fdr(M): M isan R — module}.



452 A. Azizi

According to [24, Theorem 8.25],
R . .
WD(R) = sup{de(T) : I is a non-zero ideal of R}.
Theorem 3.1 and the facts above show that the global dimensions of Laskerian domains of

Krull dimension < 1 can be computed from only the dimensions of cyclic hollow modules. The
proof of the following result is evident and it is left to the reader.

Corollary 3.3. Let R be a Laskerian domain of Krull dimension < 1. Then

() D(R) = sup{pdr(%): Iisanon-zero primary ideal of R}
= sup{pdr(M): M is a non-zero hollow R}.
(i) WD(R) = sup{fdr(£): Iisanon-zero primary ideal of R}

= sup{fdr(M): M is a non-zero hollow R}.
In particular, R is a field if and only if every hollow R-module is flat.

4 Localization and Modules with Hollow Submodules

Recall that a proper submodule N of an R-module M is said to be a prime submodule of M, if
the condition ra € N, r € R and a € M implies that either « € N or rM C N. In this case, if
P = (N : M), then it is easy to see that P is a prime ideal of R, and we say that NV is a P-prime
submodule of M (see for example, [2], [4], [20], [22]).

Let N be a proper submodule of M and let (N : M) = P be a prime ideal of R. It is easy
to see that N is a prime submodule of M if and only if % is a torsion-free %-module (see [20,
Theorem 1]).

In this section we will investigate the relation between hollowness and localization. Also we
will characterize module M such that every submodule of M is a hollow module.

Lemma 4.1. [2], Proposition 1] Let M be an R-module, and S be a multiplicatively closed
subset of R.

(i) If N is a P-prime submodule of M such that PN S = (), then S™'N is an S~' P-prime
submodule of S~'M as an S~' R-module, and (S~'N) N M = N.

(i) If T is a Q-prime submodule of S~'M as an S~—'R-module, then T N M is a Q N R-prime
submodule of M, ST (TN M) =T,and QN S = (.

Let M be an R-module and P a prime ideal of R. We say that dimp M = 0 if Ny = N, for
every two P-prime submodules N and NV, of M with N; C N, (see [2]).

Definition. An R-module M is called semi multiplication if for every prime ideal P of R,
the Rp-module Mp is a finitely generated and dimp M = 0.

Theorem 4.2. Let M be an R-module. Then the following are equivalent:

(i) M is a semi multiplication R-module;

(i) for any maximal ideal P of R, Mp is a finitely generated Rp-module with dimp M = 0;
(iii) M is a locally cyclic module.

Proof. (i) = (ii) The proof is clear.
(ii) = (iii) Let P be a prime ideal of R. We consider the following two cases:
Case 1. The ideal Pis a maximal ideal of R.
Consider the vector space P over the field RP . We show that rank e Pp <1, and

by our assumption Mp is a ﬁnltely generated Rp- module therefore by [23, Theorem 2.3], Mp
is a cyclic Rp-module.

If rank Rp PN > 1, then there exists a chain of submodules P 1\]41: Cs IjV]fIP - Pi/IJ\ZP of

PM SOPPMPCN1CNZCMp,andthean_(PPMP.MP)_(Nl.Mp)_(Nzl
Mp) C Rp. We know that Pp is a max1mal ideal of Rp, then Pp = (N; : Mp) = (N, : Mp).
Since Pp is a maximal ideal of Rp, so =£ is a non-zero vector space over the field RP , and

thus %P is a torsion- free —module So N] is a Pp-prime submodule of Mp. Slmﬂarly Ng isa
Pp-prime submodule of M p.By 4.1, Ny N M and N, N M are P-prime submodules of M, and

since Ny C Ny, so NyNM C N, N M.
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Now by our assumption we have Ny " M = N, N M. Again by 4.1, Ny = (NN M)p =
(N, N M)p = N, which is a contradiction.

Case 2. The ideal P is an arbitrary prime ideal of R.

Then P is contained in a maximal ideal 20t of R. By Case 1, the Rgn-module Myy is cyclic,
and therefore (Moy) p,, is a cyclic (Ron) py, -module. One can easily see that (Ron)p,, = Rp
and (Mo ) p,, = Mp as Rp-modules, hence Mp is a cyclic Rp-module.

(iii) = (i) Let P be a prime ideal of R. Suppose /N; and N, are two P-prime submodules of
M with N; C N,. We show that N; = N,. By 4.1, (N;)p and (V) p are Pp-prime submodule
N)p ~ (Ma)p -

of Mp and (Nl)p - (Nz)p. So PpMp C (Nl)p - (Nz)p C Mp, and then Py = Ppiip
Mp

Prils Since Mp is a cyclic Rp-module, so by [23, Theorem 2.3], rank rp Mp_ < 1. Hence
Fp

|~

PpMp
% = },fzj\)/[i, and consequently (N1)p = (N2)p. Now by 4.1, Ny = (N1)pN M = (N,)p N
M = N,. So M is a semi multiplication R-module. O
Corollary 4.3.

(i) Every multiplication module is semi multiplication.
(ii) Every finitely generated semi multiplication module is multiplication.
(iii) Every semi multiplication module over a semi local ring is cyclic.

(iv) Every semi multiplication module over a local ring is hollow.

Proof. (i) Let M be a multiplication R-module. Then by 2.1(ii), for every prime ideal P of R,
Mp is a cyclic Rp-module. So by 4.2, M is a semi multiplication R-module.

(ii) Let M be a finitely generated semi multiplication R-module. By 4.2, for every prime ideal
P of R, Mp is a cyclic Rp-module. Thus for every prime ideal P of R, Mp is a multiplication
Rp-module, and by 2.1(iii), M is a multiplication R-module.

(iii) Let M be a semi multiplication R-module where R is a semi local ring. By 4.2, for each
prime ideal P of R, Mp is a cyclic Rp-module. Now by 2.1(v), M is cyclic.

(iv) The proof is obvious by part (iii), and 2.2(iv). O

Corollary 4.4. Let M be a multiplication R-module. Then for every prime ideal P of R, Mp is
a hollow Rp-module.

Proof. By 2.1(ii), for every prime ideal P of R, Mp is a cyclic Rp-module. If Mp = 0, then
obviously Mp is a hollow module. If Mp # 0, since Mp is a non-zero cyclic Rp-module, so
we have Max(M) # 0, and obviously Ann Mp # Rp, and Rp is a local ring, consequently
Anﬁﬂup is a local ring. Now by 2.2(iv), Mp is a hollow Rp-module. O

Remark.

(i) Let IT = The set of prime numbers, and M = @,cn Zp, then obviously M is a Z-module,
and for each ¢ € I1, we have M) = Z;, and Mgy = 0. By 4.2, M is a semi multiplication

module. It is easy to see that Ann Z, = 27, and Ann Z, = 0, then by 2.1(iv), M is not a
multiplication Z-module.

(ii) If for every prime ideal P of R, Mp is a hollow Rp-module, then M is not necessarily a
hollow R-module. For instance if 0 # R is a ring which is not local, then by 2.2(ii), R as
an R-module is not a hollow module. But for every prime ideal P of R, Rp is a non-zero
local and cyclic Rp-module, so by 2.2 (ii), Rp is a hollow Rp-module.

Proposition 4.5. Let M be an R-module and let ﬁ be a local ring. Then the following are
equivalent:

(i) M is a hollow R-module and Max(M) # 0;
(ii) Mp is a hollow Rp-module for each prime ideal P of R,

(iii) Mp is a hollow Rp-module for each maximal ideal P of R.

Proof. Since ﬁ is a local ring, so M # 0.

(i) = (ii) By 2.2(v), M is multiplication. Now we have the result by 4.4.

(ii) = (iii) The proof is clear.

(iii) = (i) By 2.1(v), M is a cyclic R-module and by 2.2(iv), M is a hollow module, and
Max (M) # 0. O
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Let M be a hollow R-module and let N be a submodule of M. It is easy to see that % is
a hollow R-module. In the following parts of this section we will characterize module M such
that every submodule of M is a hollow module.

Recall that a module M is said to be a serial module if every two submodules of M are
comparable with respect to inclusion.

Theorem 4.6. Let M be an R-module. Then the following are equivalent:

(i) M is a serial module;
(ii) Every submodule of M is hollow;

(iii) Every submodule of M generated by two elements is hollow.

Proof. (i) = (ii) Let N be a submodule of M such that Maz(N) # (), and Ny + N, = N where
Nj is a maximal submodule of the R-module N and NV, is a submodule of V. Since N; and N,
are submodules of M and M is a serial module, so N1 < N; or N; < Nj. Ni < N, implies that
N = N + N, = N, which proves the case. If N, < Nj, then N = N; + N, = N; which is
impossible, since N; is a maximal submodule of N.

(ii) = (iii) The proof is obvious.

(iii) = (i) Let M; and M, be submodules of M and let M; € M,. Then there exists an
element x € M; — M,. Let y be an arbitrary element of M;. We show that y € M. Let
N = Rxr+ Ry. If N = Ry, then Rt C Rrx + Ry = N = Ry C M,. So x € M, which
is impossible. Hence Ry is a proper submodule of N = Rx 4+ Ry, and since N is a finitely
generated R-module, so there exists a maximal submodule Ny of NV containing Ry. Now we
have

N =Rx+ Ry C Rx + Ny C N.

Thus N = Rx + Nyp. By our assumption N is a hollow R-module, so N = Rx. Therefore,
Ry C Rx+ Ry= N = Rx C My,
which implies that y € M. O

Recall that a ring R is said to be an arithmetical ring, if for each ideals a, b and c of R, we
have, a + (bN¢c) = (a+b) N (a + ¢) (see [17] or [18]).

Lemma 4.7. [ 18, Theorem 1] A ring R is arithmetical if and only if for each prime (or maximal)
ideal P of R, every two ideals of the ring Rp are comparable.

Theorem 4.8. Let M be a multiplication R-module. Consider the following statements:
() 257 is an arithmetical ring;

(ii) For each prime (or maximal) ideal P of R, every submodule of the Rp-module Mp is
hollow,

(iii) For each prime (or maximal) ideal P of R, Mp # 0, and every submodule of the Rp-
module Mp is hollow.

Then (i) = (ii) and (iii) = (i).

Proof. (i) = (ii) By 4.6, it is enough to show that Mp is a serial module. Let N; and N,
be submodules of Mp. Since M is a multiplication R-module, it is easy to see that M is a
multiplication ——f—-module. So by 2.1(ii), Mp is a multiplication (--fi+;)p-module. Hence

N, = IMp, and N, = JMp, for some ideals I and .J of (ﬁ)]x By 4.7, every two ideals of

(ﬁ)p are comparable, thus 7 C J or J C I, which implies that Ny C N, or N, C Nj.
(iii) = (i) By 2.1(ii), (Ann M)p = (0 : M)p = (0p : Mp) = Ann Mp. Hence
R

(s P = (Ann M7 — Anﬁf}wp. Then by 4.7, it is enough to show that every two ideals
of Anlspl\/[p are Comparable_

L J : R . .
Let onars and - be two ideals of 75— By 4.6, Mp is a serial module, then let

IMp C JMp. By 2.1(ii), Mp is a cyclic Rp-module, then put Mp = Rpx. For eachi € I, we
have iz € IM,, C JMp = Jz. Then there exists a j € J such that iz = jz,ie. (i — j)z = 0.

Thatis, i —j € Ann Mp C J. Soi — j € J, and consequently ¢ € J. Thus I C J, and then
I J
Ann Mp < Ann Mp* o

Corollary 4.9. If M is a finitely generated multiplication R-module, then the following are equiv-
alent:
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. R . . . . .
() —;;, 37 is an arithmetical ring;

(ii) For each prime (or maximal) ideal P of R, every submodule of the Rp-module Mp is
hollow.

Proof. (i) = (ii) The proof is obvious by 4.8.
(ii) = (i) Since M is a finitely generated R-module, so (Ann M)p = (0 : M)p = (0 :
Mp) = Ann Mp. Now follow the proof of 4.8, part (iii) => (i). O

Lemma 4.10. Let R be an integral domain and let M be an R-module. Consider the following
statements:

(i) For each prime ideal P of R, Mp # 0;
(ii) Ann M =0;
(iii) M is a non-torsion R-module.
Then (i) = (ii) and (iii) = (i) and if M is finitely generated, then (ii) = (iii).

Proof. (i) = (ii) Suppose 0 # r € Ann M. Put S = {r"| n € N}{0}. Obviously S is a
multiplicatively closed subset of R, then there exists a prime ideal P of R such that P N .S = .
Sor € R— P. Now let ** be an arbitrary element of Mp where m € M, and s € R — P. We
have r € Ann M, then rm = 0, and r € R — P, this means ™ = % in Mp. Hence Mp = 0.

(iii) = (i) Let P be a prime ideal of R such that Mp = 0, and let = be an arbitrary element
of M. Then § € Mp = 0, so there exists an element r € R — P such that rz = 0 which means
x is a torsion element of M. So M is a torsion R-module.

(ii) = (iii) Let M be generated by x|, x3, - --x,. If M is a torsion R-module. Then for each
x; there exists a non-zero element r; € R, such that r;z; = 0. Then obviously 0 # ryry-- -1, €
Ann M. m|

Note. In [3, Proposition 2.4], we proved that every multiplication module over an integral
domain is either torsion or torsion-free. So every non-torsion multiplication module over an
integral domain is torsion-free.

Corollary 4.11. Let R be an integral domain and let M be a non-torsion (torsion-free) multipli-
cation R-module. Then the following are equivalent:

(i) R is an arithmetical ring;

(ii) For each prime (or maximal) ideal P of R, every submodule of the Rp-module Mp is
hollow.

Proof. Since M is non-torsion, so obviously Ann M = 0.

(i) = (ii) The proof is given by 4.8.

(ii) = (i) By part (iii) = (i) of 4.10 for each prime (or maximal) ideal P of R, Mp # 0.
Now by 4.8, we have the result. O

Proposition 4.12. Let M be a non-torsion R-module and Max(M) # 0. Then the following are
equivalent:

(i) Every submodule of M is hollow;

(i) M is a multiplication R-module and every two ideals of R are comparable.

Proof. (i) = (ii) By 2.2, M is multiplication. Let a be a non-torsion element of M, and let [,
and I, be two ideals of R.

By 4.6, I1a C Ia, or [a C Ija. Let I1a C La. So for each iy € Iy, ija = iya for some
iy € I;. Then (i; —42)a = 0, and since a is not a torsion element, i; = 4,, thatis I} C I,.

(ii) = (i) Let N, and N, be submodules of M. Then N; = IM and N, = JM where I and
J are ideals of M. I C J implies that Ny C N,, and J C [ implies that N, C N;. Hence by 4.6,
every submodule of M is hollow. O

Theorem 4.13. Let R be a Noetherian ring and let M be a hollow R-module such that M ax (M) #
(). Then the following are equivalent:

. R . . . . .
() —;;, 37 is an arithmetical ring;

(ii) Every submodule of M is a hollow R-module;
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(iii) Every two ideals of R containing Ann M are comparable.

Proof. (i) = (ii) Since Max(M) # 0,00 # M. By 2.2, M is a finitely generated multiplica-
tion R-module. Let 0 % NN be an arbitrary submodule of M. By 4.9, for each prime ideal P of
R, Np is a hollow Rp-module. Since M is a finitely generated R-module and R is a Noetherian
ring, so M is a Noetherian module, and so N is a finitely generated R-module. By 2.2, Ann i
is a local ring and obviously Ann M C Ann N C R, then N is a local ring. Now by 4.5, N
is a hollow R-module.

(ii) = (iii) Since every submodule of M is a hollow R-module, so it is easy to see that every

submodule of M as an R -7 -module is a hollow ——"—- R ——r-module. M is a finitely generated
faithful L~ -module, then by 4.10, M is a non-torsion ——i—-module. Now by 4.12, every
two 1deals of R containing Ann M are comparable.

(iii) = (i) The proof is clear. O
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