
Palestine Journal of Mathematics

Vol. 3(Spec 1) (2014) , 449–456 © Palestine Polytechnic University-PPU 2014

Hollow Modules Over Commutative Rings

A. Azizi

Dedicated to Patrick Smith and John Clark on the occasion of their 70th birthdays.

Communicated by Ayman Badawi

MSC 2010 Classifications: Primary 13C99, 13C13; Secondary 13E05, 13F05, 13F15.

Keywords and phrases: Arithmetical Rings, Hollow Modules, Laskerian Modules, Multiplication Modules, Prime Sub-
modules, Serial Modules.

Abstract. Let R be a commutative ring with identity. An R-module M is said to be hollow,
if the set of maximal submodules of M is empty or for every maximal submodule N of M , and
for every submodule K of M , the equality N +K =M , implies that K =M .

Some equivalent conditions for a module to be hollow are given. Hollow modules over Laske-
rian domains and over arithmetical rings are studied. Furthermore modules whose submodules
are hollow will be characterized, and the behavior of hollow modules under the localization is
studied.

1 Introduction

According to [9] a non-zero module M is define to be hollow if every submodule N of M is
small, that is for any submodule K of M, the equality N +K =M implies that K =M.

In noncommutative rings, the above classical notion of hollow modules has been studied
extensively for a long time in many papers (see for example [7, 9, 10, 11, 12, 13, 14, 15, 16, 19,
25, 26]). Some interesting results on hollow modules over noncommutative rings can be found
in [26, Chapter 8].

Throughout this paper all the rings considered are commutative with identity, all modules are
unitary. The set of maximal submodules of a module M is denoted by Max(M).

In this paper a slightly different notion of hollow modules is introduced and studied as fol-
lows:

Definition 1.1. An R-module M is said to be a hollow module, if Max(M) = ∅, or for every
maximal submodule N of M , and for every submodule K of M , the equality N + K = M ,
implies that K =M.

Unlike the classical definition of hollow module, in this new notion of hollow modules, the
module M = 0 is hollow. So whenever we need to proof a module M is hollow, we can assume
that 0 6=M and Max(M) 6= ∅.

Also according to this definition Zp∞ is a hollow Z-module, since Max(Zp∞) = ∅. Besides
if R is an integral domain which is not a field and K is the field of fractions of R, then K is a
hollow R-module, since Max(K) = ∅ (see [21, Theorem 1]).

Several characterizations of hollow modules are given, in Section 2 of this paper. We will
find some equivalent conditions for a module to be hollow; we will study when every submodule
of a module is a hollow module.

We will prove that an integral domain R of Krull dimension ≤ 1 is Laskerian if and only if
every cyclic R-module is either isomorphic to R or isomorphic to a finite direct sum of hollow
modules, and when this is the case, we show that the global dimension of R can be computed
from only the dimensions of cyclic hollow modules.

In Section 4, we will find the relation between the localization of a module and hollowness.
Particularly in 4.2, we will get a characterization for locally cyclic modules.

2 Equivalent conditions for hollowness

The main results in this section gives a list of equivalent conditions that characterize hollow
modules. In this section, we will show that hollow modules are closely related to multiplication
modules. Recall that an R-module M is said to be multiplication if N = (N : M)M for every
submodule N of M, where (N : M) = {r ∈ R | rM ⊆ N} (see, [1, 5, 8]).
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Also recall that an R-module M is locally cyclic, if for each prime ideal P of R, MP is a
cyclic RP -module.

The following lemma will be used throughout this paper.

Lemma 2.1. Let R be a ring. Then:

(i) [5, Proposition 4] Every multiplication module over a semi local ring is cyclic.

(ii) [1, Theorem 2.1(1),(6)] If M is a multiplication R-module, and N is a submodule of M,
then for each prime ideal P of R, MP is a cyclic RP -module and if MP 6= 0, then (N :
M)P = (NP : MP ).

(iii) [5, Lemma 2(ii)] If M is a finitely generated R-module and for each maximal ideal M of
R, MM is a multiplication RM-module, then M is a multiplication R-module.

(iv) [8, Corollary 2.3] Let Mλ, λ ∈ Λ, be a collection of finitely generated R-modules, and
M = ⊕λ∈Λ Mλ. Then M is a multiplication module if and only if for each λ ∈ Λ, Mλ is a
multiplication module and Ann (Mλ) +Ann M̂λ = R.

(v) [5, Lemma 3] If M is a locally cyclic R-module, and R
Ann M is a semi local ring, then M is

a cyclic R-module.

Recall that a local module is a module with exactly one maximal submodule. Also a local
ring is a ring (not necessarily Noetherian) with exactly one maximal ideal.

Theorem 2.2. Let M be a non-zero R-module. Then the following are equivalent:

(i) M is a hollow module and Max(M) 6= ∅;

(ii) M is a cyclic and local module;

(iii) M is a finitely generated local module;

(iv) R
Ann M is a local ring and M is a cyclic module;

(v) R
Ann M is a local ring and M is a multiplication module.

(vi) There exists an ideal I of R where M ∼= R
I and R

I is a local ring.

Proof. (i) =⇒ (ii) Let N be a maximal submodule of M and let L be an arbitrary submodule of
M where L 6⊆ N . Since N + L = M , and M is a hollow module, then M = L. Hence M has
just one maximal submodule. If x ∈M −N and L = Rx, then M = Rx.

(ii) =⇒ (iii) The proof is obvious.
(iii) =⇒ (i) Let N be a maximal submodule of M and let L be a submodule of M . If

N + L = M and L 6= M , then by Zorn’s Lemma there exists a maximal submodule N0 of
M containing L. Since M is a local module, N0 = N . So L ⊆ N0 = N and consequently
M = N + L = N which is a contradiction. Thus L =M.

(ii) =⇒ (iv) Since M is cyclic, so M ∼= R
Ann M . Since M is a local R-module, R

Ann M is a
local R-module. It is easy to see that the submodules of R

Ann M as an R-module are exactly the
ideals of the ring R

Ann M . Hence R
Ann M is a local ring.

(iv) =⇒ (v) The proof is clear.
(v) =⇒ (ii) Obviously M is a multiplication R

Ann M -module, and since R
Ann M is a local ring,

so by 2.1(i), M is a cyclic R
Ann M -module and clearly it is a cyclic R-module. Now M ∼= R

Ann M
and hence M is a local R-module as well.

(iv) =⇒ (vi) Since R
Ann M is a local ring and M is a cyclic R-module, M ∼= R

Ann M . That is,
in this case I = Ann M .

(vi) =⇒ (iv) Obviously M ∼= R
I is a cyclic R-module which is generated by 1+ I . So M is a

non-zero cyclic R-module. Also Ann M = Ann R(
R
I ) = I . This means, R

Ann M = R
I is a local

ring.

Corollary 2.3. Let 0 6= R be a ring. Then the following are equivalent:

(i) Every cyclic R-module is a hollow module;

(ii) R is a local ring.

Proof. If every cyclicR-module is a hollow module, then obviouslyR as anR-module is hollow.
So by 2.2(ii), R is a local R-module and thus R is a local ring.

Conversely let R be a local ring and let M be a non-zero cyclic R-module. Clearly R
Ann M is

a local ring. Hence by 2.2(iv), M is a hollow module.
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Corollary 2.4. Let R be an integral domain of Krull dimension one, and let M be a non-zero
multiplication R-module with Ann M 6= 0. Then M is a hollow module if and only if Ann M is
a primary ideal.

Proof. By 2.2(v), M is a hollow module if and only if R
Ann M is a local ring. Hence it is enough

to show that R
Ann M is a local ring if and only ifAnn M is a primary ideal. This is a consequence

of the following well known facts:
If an ideal is contained in only one prime ideal P, then it is P -primary, and if an ideal I is

m-primary where m is a maximal ideal, then m is the unique prime ideal containing I (see [6,
Page 268, Remark]).

3 Hollow modules over Laskerian domains

Recall that a ring R is called Laskerian if every ideal of R has a primary decomposition.

Theorem 3.1. Let R be an integral domain of Krull dimension ≤ 1. Then R is a Laskerian
domain if and only if every cyclic R-module is either isomorphic to R or isomorphic to a finite
direct sum of hollow modules.

Proof. If dim R = 0, then since R is an integral domain, it is a field, so the proof for the both
sides of implication is obvious. Now suppose that dim R = 1.

(=⇒) Let M be a cyclic R-module, which is not isomorphic to R. Then M ∼= R
I , where I is

a non-zero ideal of R. Since R is a Laskerian ring, then I has a minimal primary decomposition,
say I = ∩ni=1Ik. Suppose

√
Ik = Pk, for 1 ≤ k ≤ n. As dim R = 1, for each k, k′, k 6= k′,

the maximal ideals Pk, Pk′ are coprime and so Ik, Ik′ are coprime. Hence by [23, Theorems 1.4,
1.3], R

I
∼= R

I1
⊕ R

I2
⊕ · · · ⊕ R

In
as rings, by the rule ϕ(x + I) = (x + I1, x + I2, · · · , x + In).

One can easily see that ϕ is also an R-module isomorphism, that is R
I
∼= R

I1
⊕ R

I2
⊕ · · · ⊕ R

In
as

R-modules.
Note that for each k, the annihilator of the R-module R

Ik
is Ik, and it is a non-zero primary

ideal. Thus by 2.4, R
Ik

is a hollow R-module, which completes the proof.
(⇐=) Let I be a non-zero ideal of R. By our assumption, RI ∼=

R
I1
⊕ R
I2
⊕· · ·⊕ R

In
, where each

R
Ik

is a hollow R-module. Therefore I = Ann R
I = Ann (RI1

⊕ R
I2
⊕ · · · ⊕ R

In
) = ∩nk=1Ik. Since

each R
Ik

is a hollow R-module, by 2.4, each Ik is a primary ideal, which completes the proof.

Corollary 3.2. If R is a Dedekind domain, then every finitely generated R-module is a finite
direct sum of hollow modules and a finitely generated projective module.

Proof. Let M be a finitely generated R-module. As R is a Dedekind domain, M is isomorphic
to a direct sum of a finite number of cyclic modules and a projective module. Suppose M ∼=
M1⊕M2⊕ · · · ⊕Mn⊕P, where each Mi is a cyclic module and P is a projective module. Note
that P ∼= M

M1⊕M2⊕···⊕Mn
, so P is a finitely generated module.

Without loss of generality, we may suppose that Mi 6∼= R for 1 ≤ i ≤ k, and Mi
∼= R for

k + 1 ≤ i ≤ n where k is a non-negative integer with k ≤ n.
By 3.1, each Mi is a finite direct sum of hollow modules for each 1 ≤ i ≤ k. Also note that

P ′ = Mk+1 ⊕Mk+2 ⊕ · · · ⊕Mn ⊕ P ∼= R ⊕ R ⊕ · · · ⊕ R ⊕ P, so P ′ is a finitely generated
projective module.

Recall that the projective dimension of a module M (see [24, Page 454]) is denoted by
pdR(M) and the global dimension of a ring R denoted by D(R) is defined by:

D(R) = sup{pdR(M) : M is an R−module}.

According to [24, Theorem 8.16] a formula due to Auslander for simplifying the computation
of D(R) was given as follows:

D(R) = sup{pdR(
R

I
) : I is an ideal of R}.

The flat dimension of a module M is denoted by fdR(M) and the weak global dimension of
a ring R (see [24, Page 462]) denoted by WD(R) is defined by:

WD(R) = sup{fdR(M) : M is an R−module}.
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According to [24, Theorem 8.25],

WD(R) = sup{fdR(
R

I
) : I is a non-zero ideal of R}.

Theorem 3.1 and the facts above show that the global dimensions of Laskerian domains of
Krull dimension ≤ 1 can be computed from only the dimensions of cyclic hollow modules. The
proof of the following result is evident and it is left to the reader.

Corollary 3.3. Let R be a Laskerian domain of Krull dimension ≤ 1. Then
(i) D(R) = sup{pdR(RI ) : I is a non-zero primary ideal of R}

= sup{pdR(M) : M is a non-zero hollow R}.
(ii) WD(R) = sup{fdR(RI ) : I is a non-zero primary ideal of R}

= sup{fdR(M) : M is a non-zero hollow R}.
In particular, R is a field if and only if every hollow R-module is flat.

4 Localization and Modules with Hollow Submodules

Recall that a proper submodule N of an R-module M is said to be a prime submodule of M, if
the condition ra ∈ N, r ∈ R and a ∈ M implies that either a ∈ N or rM ⊆ N. In this case, if
P = (N : M), then it is easy to see that P is a prime ideal of R, and we say that N is a P -prime
submodule of M (see for example, [2], [4], [20], [22]).

Let N be a proper submodule of M and let (N : M) = P be a prime ideal of R. It is easy
to see that N is a prime submodule of M if and only if M

N is a torsion-free R
P -module (see [20,

Theorem 1]).
In this section we will investigate the relation between hollowness and localization. Also we

will characterize module M such that every submodule of M is a hollow module.

Lemma 4.1. [21, Proposition 1] Let M be an R-module, and S be a multiplicatively closed
subset of R.

(i) If N is a P -prime submodule of M such that P ∩ S = ∅, then S−1N is an S−1P -prime
submodule of S−1M as an S−1R-module, and (S−1N) ∩M = N.

(ii) If T is a Q-prime submodule of S−1M as an S−1R-module, then T ∩M is a Q ∩R-prime
submodule of M, S−1(T ∩M) = T, and Q ∩ S = ∅.

Let M be an R-module and P a prime ideal of R. We say that dimP M = 0 if N1 = N2 for
every two P -prime submodules N1 and N2 of M with N1 ⊆ N2 (see [2]).

Definition. An R-module M is called semi multiplication if for every prime ideal P of R,
the RP -module MP is a finitely generated and dimP M = 0.

Theorem 4.2. Let M be an R-module. Then the following are equivalent:

(i) M is a semi multiplication R-module;

(ii) for any maximal ideal P of R, MP is a finitely generated RP -module with dimP M = 0;

(iii) M is a locally cyclic module.

Proof. (i) =⇒ (ii) The proof is clear.
(ii) =⇒ (iii) Let P be a prime ideal of R. We consider the following two cases:
Case 1. The ideal P is a maximal ideal of R.
Consider the vector space MP

PPMP
over the field RP

PP
. We show that rankRP

PP

MP

PPMP
≤ 1, and

by our assumption MP is a finitely generated RP -module, therefore by [23, Theorem 2.3], MP

is a cyclic RP -module.
If rankRP

PP

MP

PPMP
> 1, then there exists a chain of submodules N1

PPMP
⊂ N2

PPMP
⊂ MP

PPMP
of

MP

PPMP
. So PPMP ⊆ N1 ⊂ N2 ⊂ MP , and then PP ⊆ (PPMP : MP ) ⊆ (N1 : MP ) ⊆ (N2 :

MP ) ⊂ RP . We know that PP is a maximal ideal of RP , then PP = (N1 : MP ) = (N2 : MP ).
Since PP is a maximal ideal of RP , so MP

N1
is a non-zero vector space over the field RP

PP
, and

thus MP

N1
is a torsion-free RP

PP
-module. So N1 is a PP -prime submodule of MP . Similarly N2 is a

PP -prime submodule of MP . By 4.1, N1 ∩M and N2 ∩M are P -prime submodules of M, and
since N1 ⊂ N2, so N1 ∩M ⊆ N2 ∩M.
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Now by our assumption we have N1 ∩M = N2 ∩M. Again by 4.1, N1 = (N1 ∩M)P =
(N2 ∩M)P = N2, which is a contradiction.

Case 2. The ideal P is an arbitrary prime ideal of R.
Then P is contained in a maximal ideal M of R. By Case 1, the RM-module MM is cyclic,

and therefore (MM)PM
is a cyclic (RM)PM

-module. One can easily see that (RM)PM
∼= RP

and (MM)PM
∼=MP as RP -modules, hence MP is a cyclic RP -module.

(iii) =⇒ (i) Let P be a prime ideal of R. Suppose N1 and N2 are two P -prime submodules of
M with N1 ⊆ N2. We show that N1 = N2. By 4.1, (N1)P and (N2)P are PP -prime submodule
of MP and (N1)P ⊆ (N2)P . So PPMP ⊆ (N1)P ⊆ (N2)P ⊂ MP , and then (N1)P

PPMP
⊆ (N2)P

PPMP
⊂

MP

PPMP
. Since MP is a cyclic RP -module, so by [23, Theorem 2.3], rankRP

PP

MP

PPMP
≤ 1. Hence

(N1)P
PPMP

= (N2)P
PPMP

, and consequently (N1)P = (N2)P . Now by 4.1, N1 = (N1)P ∩M = (N2)P ∩
M = N2. So M is a semi multiplication R-module.

Corollary 4.3.

(i) Every multiplication module is semi multiplication.

(ii) Every finitely generated semi multiplication module is multiplication.

(iii) Every semi multiplication module over a semi local ring is cyclic.

(iv) Every semi multiplication module over a local ring is hollow.

Proof. (i) Let M be a multiplication R-module. Then by 2.1(ii), for every prime ideal P of R,
MP is a cyclic RP -module. So by 4.2, M is a semi multiplication R-module.

(ii) LetM be a finitely generated semi multiplicationR-module. By 4.2, for every prime ideal
P of R, MP is a cyclic RP -module. Thus for every prime ideal P of R, MP is a multiplication
RP -module, and by 2.1(iii), M is a multiplication R-module.

(iii) Let M be a semi multiplication R-module where R is a semi local ring. By 4.2, for each
prime ideal P of R, MP is a cyclic RP -module. Now by 2.1(v), M is cyclic.

(iv) The proof is obvious by part (iii), and 2.2(iv).

Corollary 4.4. Let M be a multiplication R-module. Then for every prime ideal P of R, MP is
a hollow RP -module.

Proof. By 2.1(ii), for every prime ideal P of R, MP is a cyclic RP -module. If MP = 0, then
obviously MP is a hollow module. If MP 6= 0, since MP is a non-zero cyclic RP -module, so
we have Max(M) 6= ∅, and obviously Ann MP 6= RP , and RP is a local ring, consequently

RP

Ann MP
is a local ring. Now by 2.2(iv), MP is a hollow RP -module.

Remark.

(i) Let Π = The set of prime numbers, and M = ⊕p∈Π Zp, then obviously M is a Z-module,
and for each q ∈ Π, we have M(q) = Zq, and M(0) = 0. By 4.2, M is a semi multiplication
module. It is easy to see that Ann Z2 = 2Z, and Ann Ẑ2 = 0, then by 2.1(iv), M is not a
multiplication Z-module.

(ii) If for every prime ideal P of R, MP is a hollow RP -module, then M is not necessarily a
hollow R-module. For instance if 0 6= R is a ring which is not local, then by 2.2(ii), R as
an R-module is not a hollow module. But for every prime ideal P of R, RP is a non-zero
local and cyclic RP -module, so by 2.2 (ii), RP is a hollow RP -module.

Proposition 4.5. Let M be an R-module and let R
Ann M be a local ring. Then the following are

equivalent:

(i) M is a hollow R-module and Max(M) 6= ∅;

(ii) MP is a hollow RP -module for each prime ideal P of R;

(iii) MP is a hollow RP -module for each maximal ideal P of R.

Proof. Since R
Ann M is a local ring, so M 6= 0.

(i) =⇒ (ii) By 2.2(v), M is multiplication. Now we have the result by 4.4.
(ii) =⇒ (iii) The proof is clear.
(iii) =⇒ (i) By 2.1(v), M is a cyclic R-module and by 2.2(iv), M is a hollow module, and

Max(M) 6= ∅.
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Let M be a hollow R-module and let N be a submodule of M . It is easy to see that M
N is

a hollow R-module. In the following parts of this section we will characterize module M such
that every submodule of M is a hollow module.

Recall that a module M is said to be a serial module if every two submodules of M are
comparable with respect to inclusion.

Theorem 4.6. Let M be an R-module. Then the following are equivalent:

(i) M is a serial module;

(ii) Every submodule of M is hollow;

(iii) Every submodule of M generated by two elements is hollow.

Proof. (i) =⇒ (ii) LetN be a submodule ofM such thatMax(N) 6= ∅, andN1+N2 = N where
N1 is a maximal submodule of the R-module N and N2 is a submodule of N . Since N1 and N2
are submodules of M and M is a serial module, so N1 ≤ N2 or N2 ≤ N1. N1 ≤ N2 implies that
N = N1 + N2 = N2 which proves the case. If N2 ≤ N1, then N = N1 + N2 = N1 which is
impossible, since N1 is a maximal submodule of N .

(ii) =⇒ (iii) The proof is obvious.
(iii) =⇒ (i) Let M1 and M2 be submodules of M and let M1 6⊆ M2. Then there exists an

element x ∈ M1 − M2. Let y be an arbitrary element of M2. We show that y ∈ M1. Let
N = Rx + Ry. If N = Ry, then Rx ⊆ Rx + Ry = N = Ry ⊆ M2. So x ∈ M2 which
is impossible. Hence Ry is a proper submodule of N = Rx + Ry, and since N is a finitely
generated R-module, so there exists a maximal submodule N0 of N containing Ry. Now we
have

N = Rx+Ry ⊆ Rx+N0 ⊆ N.

Thus N = Rx+N0. By our assumption N is a hollow R-module, so N = Rx. Therefore,

Ry ⊆ Rx+Ry = N = Rx ⊆M1,

which implies that y ∈M1.

Recall that a ring R is said to be an arithmetical ring, if for each ideals a, b and c of R, we
have, a+ (b ∩ c) = (a+ b) ∩ (a+ c) (see [17] or [18]).

Lemma 4.7. [18, Theorem 1] A ring R is arithmetical if and only if for each prime (or maximal)
ideal P of R, every two ideals of the ring RP are comparable.

Theorem 4.8. Let M be a multiplication R-module. Consider the following statements:

(i) R
Ann M is an arithmetical ring;

(ii) For each prime (or maximal) ideal P of R, every submodule of the RP -module MP is
hollow;

(iii) For each prime (or maximal) ideal P of R, MP 6= 0, and every submodule of the RP -
module MP is hollow.

Then (i) =⇒ (ii) and (iii) =⇒ (i).

Proof. (i) =⇒ (ii) By 4.6, it is enough to show that MP is a serial module. Let N1 and N2
be submodules of MP . Since M is a multiplication R-module, it is easy to see that M is a
multiplication R

Ann M -module. So by 2.1(ii), MP is a multiplication ( R
Ann M )P -module. Hence

N1 = IMP , and N2 = JMP , for some ideals I and J of ( R
Ann M )P . By 4.7, every two ideals of

( R
Ann M )P are comparable, thus I ⊆ J or J ⊆ I, which implies that N1 ⊆ N2 or N2 ⊆ N1.

(iii) =⇒ (i) By 2.1(ii), (Ann M)P = (0 : M)P = (0P : MP ) = Ann MP . Hence
( R
Ann M )P ∼= RP

(Ann M)P
= RP

Ann MP
. Then by 4.7, it is enough to show that every two ideals

of RP

Ann MP
are comparable.

Let I
Ann MP

and J
Ann MP

be two ideals of RP

Ann MP
. By 4.6, MP is a serial module, then let

IMP ⊆ JMP . By 2.1(ii), MP is a cyclic RP -module, then put MP = RPx. For each i ∈ I, we
have ix ∈ IMp ⊆ JMP = Jx. Then there exists a j ∈ J such that ix = jx, i.e. (i − j)x = 0.
That is, i − j ∈ Ann MP ⊆ J. So i − j ∈ J, and consequently i ∈ J. Thus I ⊆ J, and then

I
Ann MP

⊆ J
Ann MP

.

Corollary 4.9. IfM is a finitely generated multiplicationR-module, then the following are equiv-
alent:
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(i) R
Ann M is an arithmetical ring;

(ii) For each prime (or maximal) ideal P of R, every submodule of the RP -module MP is
hollow.

Proof. (i) =⇒ (ii) The proof is obvious by 4.8.
(ii) =⇒ (i) Since M is a finitely generated R-module, so (Ann M)P = (0 : M)P = (0 :

MP ) = Ann MP . Now follow the proof of 4.8, part (iii) =⇒ (i).

Lemma 4.10. Let R be an integral domain and let M be an R-module. Consider the following
statements:

(i) For each prime ideal P of R, MP 6= 0;

(ii) Ann M = 0;

(iii) M is a non-torsion R-module.

Then (i) =⇒ (ii) and (iii) =⇒ (i) and if M is finitely generated, then (ii) =⇒ (iii).

Proof. (i) =⇒ (ii) Suppose 0 6= r ∈ Ann M. Put S = {rn| n ∈ N}{0}. Obviously S is a
multiplicatively closed subset of R, then there exists a prime ideal P of R such that P ∩ S = ∅.
So r ∈ R − P. Now let ms be an arbitrary element of MP where m ∈ M, and s ∈ R − P. We
have r ∈ Ann M, then rm = 0, and r ∈ R− P, this means m

s = 0
1 in MP . Hence MP = 0.

(iii) =⇒ (i) Let P be a prime ideal of R such that MP = 0, and let x be an arbitrary element
of M. Then x

1 ∈ MP = 0, so there exists an element r ∈ R − P such that rx = 0 which means
x is a torsion element of M. So M is a torsion R-module.

(ii) =⇒ (iii) LetM be generated by x1, x2, · · ·xn. IfM is a torsionR-module. Then for each
xi there exists a non-zero element ri ∈ R, such that rixi = 0. Then obviously 0 6= r1r2 · · · rn ∈
Ann M.

Note. In [3, Proposition 2.4], we proved that every multiplication module over an integral
domain is either torsion or torsion-free. So every non-torsion multiplication module over an
integral domain is torsion-free.

Corollary 4.11. Let R be an integral domain and let M be a non-torsion (torsion-free) multipli-
cation R-module. Then the following are equivalent:

(i) R is an arithmetical ring;

(ii) For each prime (or maximal) ideal P of R, every submodule of the RP -module MP is
hollow.

Proof. Since M is non-torsion, so obviously Ann M = 0.
(i) =⇒ (ii) The proof is given by 4.8.
(ii) =⇒ (i) By part (iii) =⇒ (i) of 4.10 for each prime (or maximal) ideal P of R, MP 6= 0.

Now by 4.8, we have the result.

Proposition 4.12. Let M be a non-torsion R-module and Max(M) 6= ∅. Then the following are
equivalent:

(i) Every submodule of M is hollow;

(ii) M is a multiplication R-module and every two ideals of R are comparable.

Proof. (i) =⇒ (ii) By 2.2, M is multiplication. Let a be a non-torsion element of M , and let I1
and I2 be two ideals of R.

By 4.6, I1a ⊆ I2a, or I2a ⊆ I1a. Let I1a ⊆ I2a. So for each i1 ∈ I1, i1a = i2a for some
i2 ∈ I2. Then (i1 − i2)a = 0, and since a is not a torsion element, i1 = i2, that is I1 ⊆ I2.

(ii) =⇒ (i) Let N1 and N2 be submodules of M . Then N1 = IM and N2 = JM where I and
J are ideals of M . I ⊆ J implies that N1 ⊆ N2, and J ⊆ I implies that N2 ⊆ N1. Hence by 4.6,
every submodule of M is hollow.

Theorem 4.13. LetR be a Noetherian ring and letM be a hollowR-module such thatMax(M) 6=
∅. Then the following are equivalent:

(i) R
Ann M is an arithmetical ring;

(ii) Every submodule of M is a hollow R-module;
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(iii) Every two ideals of R containing Ann M are comparable.

Proof. (i) =⇒ (ii) Since Max(M) 6= ∅, so 0 6=M. By 2.2, M is a finitely generated multiplica-
tion R-module. Let 0 6= N be an arbitrary submodule of M. By 4.9, for each prime ideal P of
R, NP is a hollow RP -module. Since M is a finitely generated R-module and R is a Noetherian
ring, so M is a Noetherian module, and so N is a finitely generated R-module. By 2.2, R

Ann M

is a local ring and obviously Ann M ⊆ Ann N ⊂ R, then R
Ann N is a local ring. Now by 4.5, N

is a hollow R-module.
(ii) =⇒ (iii) Since every submodule ofM is a hollow R-module, so it is easy to see that every

submodule of M as an R
Ann M -module is a hollow R

Ann M -module. M is a finitely generated
faithful R

Ann M -module, then by 4.10, M is a non-torsion R
Ann M -module. Now by 4.12, every

two ideals of R containing Ann M are comparable.
(iii) =⇒ (i) The proof is clear.
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