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Abstract. In this paper, we introduce and study the notion of “v-Noetherian rings" which is
a notion between Noetherian rings and v-coherent rings. Then we establish the transfer of this
notion to finite direct products, trivial ring extensions, localization, and amalgamated algebras
along an ideal. These results provide examples of non-Noetherian v-Noetherian rings and exam-
ples of non-v-Noetherian v-coherent rings. The article includes a brief discussion of the scope
and precision of our results.

1 Introduction

All rings considered below are commutative with unit and all modules are unital. Let R be a
commutative ring and let Q(R) denote the total ring of quotients of R. A ring R is called a total
ring of quotients if R = Q(R), that is every element of R is invertible or zero-divisor.

We review some terminology related to basic operations on fractional ideals in an arbitrary
ring (i.e., not necessarily a domain). Let R be a commutative ring and let Q(R) denote the total
ring of quotients of R. By an ideal of R we mean an integral ideal of R. Let I and J be two
nonzero fractional ideals of R. We define the fractional ideal (I : J) = {x ∈ Q(R) | xJ ⊂ I}.
We denote (R : I) by I−1 and (I−1)−1 by Iv (called the v-closure of I). A nonzero fractional
ideal I is said to be invertible if II−1 = R, divisorial (or a v-ideal) if Iv = I , and v-finite if
Iv = Jv (or, equivalently, if I−1 = J−1) for some finitely generated fractional ideal J of A.

A ring R is coherent if every finitely generated ideal of R is finitely presented; equivalently,
if (0 : a) and I ∩ J are finitely generated for every a ∈ R and any two finitely generated ideals I
and J of R. Examples of coherent rings are Noetherian rings, Boolean algebras, von Neumann
regular rings, valuation rings, and Prüfer/semihereditary rings. See for instance [8, 9, 10, 12].

A ring R is v-coherent if (0 : a) and
⋂

1≤i≤n Rai are v-finite ideals of R for any finite set
of elements a and a1, ..., an of R. This concept was introduced in integral domain by Nour El
Abidine in [17, 18] and generalized to a ring with zero-divisors by Kabbaj and Mahdou in [12].
Examples of v-coherent rings are coherent rings and total rings of quotients. See for instance
[10, 12, 17, 18].

A ring R is Noetherian if every ideal of R is finitely generated. In this paper, we introduce and
investigate a new class of rings called v-Noetherian rings which is between two notions: Noethe-
rian rings and v-coherent rings. A ring R is called a v-Noetherian ring if any ideal of R is v-finite.

Let A be a ring, E be an A-module and R := A ∝ E be the set of pairs (a, e) with pairwise
addition and multiplication given by (a, e)(b, f) = (ab, af + be). R is called the trivial ring ex-
tension of A by E. Considerable work has been concerned with trivial ring extensions. Part of it
has been summarized in Glaz’s book [8] and Huckaba’s book (where R is called the idealization
of E by A) [11]. See for instance [1, 8, 11, 12, 13, 14].

The amalgamation algebras along an ideal, introduced and studied by D’Anna, Finocchiaro
and Fontana in [4, 5] and defined as follows:

Let A and B be two rings with unity, let J be an ideal of B and let f : A → B be a ring
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homomorphism. In this setting, we can consider the following subring of A×B:

A ./f J := {(a, f(a) + j) | a ∈ A, j ∈ J}

called the amalgamation of A and B along J with respect to f . In particular, they have studied
amalgmations in the frame of pullbacks which allowed them to establish numerous (prime) ideal
and ring-theoretic basic properties for this new construction. This construction is a generaliza-
tion of the amalgamated duplication of a ring along an ideal (introduced and studied by D’Anna
and Fontana in [3, 6, 7]). See for instance [4, 5].

In this work, we introduce and study the notion of v-Noetherian rings. It is clear that the
following diagram of implications hold:

v-Noetherian

#+
Noetherian

#+

3;

v-coherent

coherent

3;

We examine the transfer of the v-Noetherian property to finite direct products, trivial ring
extensions, and amalgamated algebras along an ideal. These results provide examples of non-
Noetherian v-Noetherian rings and examples of non-v-Noetherian v-coherent rings.

2 Main Results

This section develops a result of the transfer of the v-Noetherian property to finite direct prod-
ucts, trivial ring extensions, and amalgamated algebras along an ideal. These results provide
examples of non-Noetherian v-Noetherian rings and examples of non-v-Noetherian v-coherent
rings.

First, we will construct a wide class of v-Noetherian rings.

Proposition 2.1. Any total ring of quotients is v-Noetherian.

Proof. Let R be a total ring of quotients and let I be an ideal of R. Then, I−1 = {x ∈ R/xI ⊆
R} = R since R is a total ring. Hence, I−1 = R−1 and so I is v-finite, as desired. 2

Examples of non-Noetherian v-Noetherian rings may stem from Proposition 2.1 as shown by
the following trivial ring extension.

Proposition 2.2. Let (A,M) be a local ring and E an A-module with ME = 0. Let R := A ∝ E
be the trivial ring extension of A by E. Then:
1) R is a v-Noetherian ring.
2) R is a coherent ring if and only if A is a coherent ring, M is a finitely generated ideal of A,
and E is an (A/M)-vector space of finite rank.

Proof. 1) By Proposition 2.1, it suffices to show that R is a total ring of quotients. Let (a, e)
be an element of R. Two cases are then possibles:
If a /∈M (that is a is invertible in A), then (a, e) is invertible in R by [11, Theorem 25.1].
Now, assume that a ∈M . Then (a, e)(0, f) = (0, 0) for all f ∈ E and so (a, e) is a zero-divisor,
as desired.
2) By [12, Theorem 2.6 (2)]. 2

Now, we are able to construct examples of non-coherent (and so non-Noetherian) v-Noetherian
rings.
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Example 2.3. Let (A,M) be a local non-coherent ring and E an A-module with ME = 0. Let
R := A ∝ E be the trivial ring extension of A by E. Then:
1) R is a v-Noetherian ring by Proposition 2.2(1).
2) R is a non-coherent ring by Proposition 2.2 (2) since A is non-coherent ring. In particular, R
is non-Noetherian ring.

Next, we explore a different context, namely, the trivial ring extension of a domain by its
quotient field.

Theorem 2.4. Let A be a domain which is not a field, K = qf(A), E be a K-vector space, and
let R := A ∝ E be the trivial ring extension of A by E. Then:
(1) R is v-Noetherian if and only if so is A.
(2) R is a non-coherent ring. In particular, R is a non-Noetherian ring.

Proof. Remark that the total ring of quotients of R is Q(R) = K ∝ E. Also, it is clear that any
ideal of R has the form 0 ∝ F for some A-submodule of E or I ∝ E for some nonzero ideal I
of A. And we can easily verify that (0 ∝ F )−1 = Q(R) and (I ∝ E)−1 = I−1 ∝ E if I is a
nonzero ideal of A. Finally, remark that a nonzero ideal I ∝ E of R is finitely generated if and
only if I is a finitely generated ideal of A.

(1) Assume that A is a v-Noetherian ring and let I be a nonzero ideal of A. Then J :=
I ∝ E(= I ∝ IE) is an ideal of R and easily we have J−1(= (I ∝ E)−1) = I−1 ∝ E since
Q(R) = K ∝ E. But J−1 = I−1

0 ∝ E for some nonzero finitely generated ideal I0 of A since R

is v-Noetherian. Therefore, I−1 = I−1
0 and so I is v-finite, as desired.

Conversely, assume that A is v-Noetherian and let J be a proper ideal of R. Two cases are then
possibles:
Case 1: J = 0 ∝ F for some A-submodule F of E. Then J−1 = K ∝ E = (0 ∝ F0)−1 for any
finitely generated A-submodule of E, as desired since 0 ∝ F0 is a finitely generated ideal of R.
Case 2: J = I ∝ E for some nonzero ideal I of A. There exists a nonzero finitely generated
ideal I0 of A such that I−1

0 = I−1 since A is v-Noetherian. Hence, J−1 = (I ∝ E)−1 = I−1 ∝
E = I−1

0 ∝ E = (I0 ∝ E)−1 and I0 ∝ E is a finitely generated ideal of R (since I0 is a nonzero
finitely generated ideal of A), as desired.
Hence, in all cases, J−1 = J−1

0 for some finitely generated ideal of R. Therefore, R is v-
Noetherian.

(2) R is a non-coherent ring by [12, Theorem 2.8(1)]. 2

We know that a Noetherian ring is v-Noetherian and coherent. The following two examples
show that the class of v-Noetherian rings and the class of coherent rings are not comparable.

Now, we may construct new examples of non-coherent v-Noetherian ring.

Example 2.5. Let R := Z ∝ Q be the trivial ring extension of Z by Q. Then:
(1) R is v-Noetherian by Theorem 2.4(1) since Z is Noetherian.
(2) R is a non-coherent ring by Theorem 2.4(2).

Now, we construct an example of a coherent domain ( so a v-coherent domain) which is not
a v-Noetherian domain.

Example 2.6. Let T = K((X))[[Y ]] = K((X)) + M , where X is an indeterminate over a
field K, Y is an indeterminate over a field K((X)), and M = Y K((X))[[Y ]] = Y T . Set
R = K[[X]] +M . Then:
(1) R is a coherent domain by [8, Theorem 5.2.3, p.162]. In particular, R is a v-coherent domain.
(2) R is a non-v-Noetherian ring since M is not v-finite in R by [10, Proposition 2.3] (since M
is invertible in T ).

Any von Neumann regular ring R, that is wdim(R) = 0 is a v-Noetherian ring since it is
a total ring. Now we construct a non-Noetherian v-Noetherian ring (with zerodivosors) with
wdim(R) = 1.
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Example 2.7. Let E be a countable direct sum of copies of Z/2Z with addition and multiplica-
tion defined component wise, where Z is the ring of integers. Let R = Z×E with multiplication
defined by (a, e)(b, f) = (ab, af + be+ ef). Then:
(1) wdim(R) = 1.
(2) R is a v-Noetherian ring.
(3) R is a non-coherent ring.

Proof. (1) That wdim(R) = 1 this is handled in [19, Example 1.3, page 10].

(2) Notice first that an element s ∈ R is regular if and only if s = (a, 0) with a ∈ Z \ 2Z.
This easily follows from the four basic facts: E is Boolean; 2E = 0; ae = e for any a ∈ Z \ 2Z
and e ∈ E; and for any e 6= 0 ∈ E, there exists f 6= 0 ∈ E such that ef = 0.

Next, we wish to show that each ideal of R is v-finite. Let J be an ideal of R and let
I = {a ∈ Z/(a, e) ∈ J for some e ∈ E}. Assume I = 0. Let s be any regular ele-
ment of R. Clearly, (0, e) = s(0, e) for any e ∈ E. It follows that sJ = J and hence
J−1 = Q(R) = (R(0, e))−1 for any e 6= 0 ∈ E. Now, assume I = xZ, where x is a nonzero
integer. We claim that J−1 = (R(x, 0))−1. Indeed, let y/s ∈ Q(R), where y = (a, e) ∈ R and
s = (b, 0) is a regular element. It can easily be seen that sR = bZ×E. Then y/s ∈ J−1 ⇔ yJ ⊆
sR⇔ (a, e)J ⊆ bZ×E ⇔ aI ⊆ bZ⇔ ax ∈ bZ⇔ (a, e)(R(x, 0)) ⊆ sR⇔ y/s ∈ (R(x, 0))−1.
Thus, in both cases, J is v-finite, as asserted.

(3) Let x = (2, 0) ∈ R. Then (0 : x) = {(a, e) ∈ R/(a, e)(2, 0) = 0} = {(a, e) ∈
R/(2a, 0) = 0} = 0 × E which is not a finitely generated ideal of R. Therefore, R is not a
coherent ring., which completes the proof of Example 2.6. 2

Now, we study the transfer of the v-Noetherian property to the direct product.

Theorem 2.8. Let (Ri)i=1,...,n be a family of rings. Then
n∏

i=1

Ri is a v-Noetherian ring if and

only if so is Ri for each i = 1, . . . , n.

Proof. We will prove the result for i = 1, 2, and the Theorem will be established by induction on
n. Remark that the total ring of quotients of R1 ×R2 Q(R1 ×R2) = Q(R1)×Q(R2) and easily
we have (I1 × I2)−1 = (I1)−1 × (I2)−1 for every ideal I1 (resp., I2) of R1 (resp., R2).

Assume that R1 × R2 is a v-Noetherian ring and we show that R1 is a v-Noetherian ring (it
is the same for R2). Let I1 be an ideal of R1 and set I := I1 ×R2 which is an ideal of R1 ×R2.
Then, there exists a finitely generated ideal J := J1 × J2 of R1 × R2 such that I−1 = J−1.
Hence, (I1)−1 × (R2)−1 = (I1 ×R2)−1 = I−1 = J−1 = (J1 × J2)−1 = (J1)−1 × (J2)−1 and so
(I1)−1 = (J1)−1, as desired since J1 is a finitely generated ideal of R1.

Conversely, assume that R1 and R2 are v-Noetherian rings and we show that R1 × R2 is a
v-Noetherian ring. Let I := I1 × I2 be an ideal of R1 × R2, where I1 (resp., I2) is an ideal
of R1 (resp., R2). Hence, there exists a finitely generated ideal J1 of R1 (resp., J2 of R2) such
that I−1

1 = J−1
1 (resp., I−1

2 = J−1
2 ). Therefore, I−1 = (I1 × I2)−1 = (I1)−1 × (I2)−1 =

(J1)−1 × (J2)−1 = (J1 × J2)−1 and so I is v-finite since J1 × J2 is a finitely generated ideal of
R1 ×R2, and this completes the proof of Theorem 2.5. 2

We know that the localization of a v-coherent ring is v-coherent ring. Now, we show that the
localization of a v-Noetherian ring is not always a v-Noetherian ring.

Example 2.9. Let T = K((X,Y ))[[Z]] = K((X,Y )) +M , where X and Y are indeterminates
over a field K, Z is an indeterminate over a field K((X,Y )), and M = ZK((X,Y ))[[Z]] = ZT .
Let A = K[[X,Y ]] + M , R := A ∝ (A/(XA + Y A)) be the trivial ring extension of A by
(A/(XA+ Y A)), and let S = {Xn/n ∈ N} which is a multiplicative set of both K[[X,Y ]], A,
R and T . Then:
(1) R is a v-Noetherian ring.
(2) S−1R is not a v-Noetherian ring.
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Proof. 1) R is a v-Noetherian ring by Proposition 2.2(1) since A is a local ring with maximal
ideal XA+ Y A.

2) Since X is invertible in T , then S−1T = T . Also, we have S−1K[[X,Y ]] = S−1K[[X]][[Y ]] =
K((X))[[Y ]] since S−1K[[X]] = K((X)). Therefore, S−1R = (S−1A) ∝ (S−1(A/(XA +
Y A)) = (S−1A) ∝ 0 ∼= (S−1A) = K((X))[Y ]] +M (since S−1(A/(XA + Y A)) = 0 (since
X(A/(XA+ Y A)) = 0)) is not a v-Noetherian ring since M is not v-finite in R by [10, Propo-
sition 2.3] (since M is invertible in T ), as desired. 2

Finally, we study the transfer of v-Noetherian property between a ring R and his amalga-
mated algebras along some ideals I of R.

Theorem 2.10. Let (A,m) be a local ring, B be a ring, f : A→ B be a ring homomorphism and
J be a proper ideal of B. Assume that one of the following statements holds:
1) A is a total ring of quotients, J ⊆ Rad(B), J ⊆ Z(B), f is injective and f(A) ∩ J 6= (0).
2) A is a total ring of quotients, J ⊆ Rad(B), J ⊆ Z(B), and f is not injective.
3) f(M) ⊆ J and J2 = 0.

Then A ./f J is a v-Noetherian ring.

Proof. By Proposition 2.2, it suffices to show that A ./f J is a total ring of quotients in all three
cases.

1) Assume that f(A) ∩ J 6= (0). We claim that A ./f J is a total ring of quotients. Indeed,
let (a, f(a) + j) ∈ A ./f J, we prove that (a, f(a) + j) is invertible or zero-divisor element. If
a 6∈ m, then (a, f(a) + j) 6∈ m ./f J . And so (a, f(a) + j) is invertible in A ./f J . Assume
that a ∈ m. So, (a, f(a) + j) ∈ m ./f J . Since A is a total ring of quotients, there exists
0 6= b ∈ A such that ab = 0. We have (a, f(a) + j)(b, f(b)) = (0, jf(b)). Using the fact
that f(A) ∩ J 6= (0) and J ⊆ Z(B), there exists some 0 6= f(c) ∈ J and 0 6= k ∈ J such
that jk = 0 and so (c, k) ∈ A ./f J . It follows that (a, f(a) + j)(bc, f(b)k) = (0, 0). Hence,
there exists (0, 0) 6= (bc, f(b)k) ∈ A ./f J such that (a, f(a) + j)(bc, f(b)k) = (0, 0). Thus,
(A ./f J,m ./f J) is local total ring of quotients.

2) Assume that f is not injective. Our aim is to show that A ./f J is a total ring of quotients.
We prove that for each element (a, f(a) + j) of A ./f J is invertible or zero-divisor element.
Indeed, if a 6∈ m, then (a, f(a) + j) 6∈ m ./f J . And so (a, f(a) + j) is invertible in A ./f J .
Assume that a ∈ m. So, (a, f(a) + j) ∈ m ./f J . Since A is a total ring of quotients, there
exists 0 6= b ∈ A such that ab = 0. We have (a, f(a) + j)(b, f(b)) = (0, jf(b)). Using the
fact that f is not injective and J ⊆ Z(B), there exist some 0 6= c ∈ Ker(f) and 0 6= k ∈ J
such that jk = 0 and (c, k) ∈ A ./f J . It follows that (a, f(a) + j)(bc, f(b)k) = (0, 0). Hence,
there exists (0, 0) 6= (bc, f(b)k) ∈ A ./f J such that (a, f(a) + j)(bc, f(b)k) = (0, 0). Thus,
(A ./f J,m ./f J) is a local total ring of quotients.

3) Assume that f(M) ⊆ J and J2 = 0. We prove that for each element (a, f(a) + j) of
A ./f J is invertible or zero-divisor element. Indeed, if a 6∈ m, then (a, f(a) + j) 6∈ m ./f J .
And so (a, f(a) + j) is invertible in A ./f J . Assume that a ∈ m. So, (a, f(a) + j) ∈ m ./f J .
Hence, (a, f(a) + j)(0, k) = (0, 0) for every k ∈ J since f(a) + j ∈ J (since f(M) ⊆ J and
a ∈ M ) and J2 = 0. Thus, (A ./f J,m ./f J) is a local total ring of quotients, completing the
proof. 2

Now, we are able to construct examples of non-coherent (and so non-Noetherian) v-Noetherian
rings.

Example 2.11. Let A be a non-coherent total ring of quotients (See Proposition 2.2), I ⊆
Nil(A), and set R := A ./ I . Then:
1) R := A ./ I is a v-Noetherian ring by Theorem 2.10(1).
2) R := A ./ I is a non-coherent ring by [8, Theorem 4.1.5, page 111] since A is a non-coherent
ring.
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Example 2.12. Let (A,M) be a non-coherent local ring, B := A/M 2 be a local ring with a
maximal ideal J := M/M2, and f : A → B be a canonical rings homomorphism, and set
R := A ./f . Then:
1) R is a v-Noetherian ring by Theorem 2.10(3) since f(M) = J and J2 = 0.
2) R is a non-coherent ring by [8, Theorem 4.1.5, page 111] since A is a non-coherent ring.
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